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Recent experimental investigations of arrays of magnetic atoms deposited on top of a superconductor have
opened a new chapter in the search for topological superconductivity. We generalize the microscopic model
derived by Pientka et al. [Phys. Rev. B 88, 155420 (2013)] to accommodate the effects of finite supercurrent
in the host material. Previously it was discovered that helical chains with nonplanar textures are plagued by a
gapless phase. We show that by employing supercurrent it is possible to tune the chain from the gapless phase to
the topological gapped phase. It is also possible to tune the chain between the trivial and the topological gapped
phase, the size of which may be dramatically increased due to supercurrent. For planar textures supercurrent
mainly contributes to proliferation of the gapless phase. Our predictions, which could be probed in scanning
tunneling microscope experiments, are encouraging for the observation and manipulation of Majorana states.
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Introduction. Finding novel realizations for topological
superconductivity and accompanying Majorana states has
become a major source of inspiration in quantum condensed
matter physics [1–3]. The possibility of engineering Majorana
bound states (MBS), particlelike entities that could serve as
building blocks of topological quantum computation [4–7],
has been the primary driving force in the recent developments.
Magnetic Shiba chains [8–14], consisting of arrays of magnetic
atoms deposited on top of a superconducting host material,
were recognized as promising candidates for topological su-
perconductivity. In addition, the recent ground-breaking exper-
iment in ferromagnetic chains presented persuasive signatures
of topological superconductivity [15]. Magnetic realizations
of topological superconductivity have attracted attention, since
they commonly circumvent the need for materials with strong
spin-orbit coupling or exotic superconducting pairing [16–22].
Shiba chains are particular representatives of magnetic topo-
logical systems with special advantages. Nearby magnetic
atoms form effectively one-dimensional (1D) band that may
undergo a topological phase transition to a 1D topological
superconductor with Majorana end states, similar to nanowire
realization [23–26]. Shiba chains are exceptionally disorder
free and allow accessing the local density of state (LDOS) in
scanning tunneling microscope (STM) experiments, enabling
spatial mapping of the Majorana wave functions.

Previous work on Shiba chains mostly employed a short-
range hopping model which obeys the correct symmetries
and captures some qualitative features of the topological
properties [8–11]. A substantial step was taken by Pientka
et al., who provided a microscopic derivation of a long-range
hopping model [12,13] for helical magnetic order [27], arising
possibly from the Ruderman-Kittel-Kasuya-Yosida (RKKY)
and the spin-orbit interaction. The iron-based Shiba chains
in the recent experiment were found to be ferromagnetic.
Ferromagnetism originates from the chemistry of iron in
dense chains, and in such systems the existence of topological
superconductivity relies on the spin-orbit coupling on the
surface. However, a recent numerical investigation suggests
that helical chains are favored in a more dilute system [28].

*teemuo@boojum.hut.fi

In this Rapid Communication we follow the treatment of
Ref. [12] and generalize the microscopic theory of helical
Shiba chains to the case where the order parameter of the
host superconductor supports supercurrent. Previously it was
discovered that the phase diagram of a nonplanar helical
chain exhibits a pervasive gapless phase [12]. Remarkably, we
discover that supercurrent enables tuning a gapless system to
the topological gapped phase. This is an important difference
compared to the nanowire realization where the system is
always gapped in the absence of supercurrent [29]. For a
nonplanar helix it is possible to push the system into a
topological state even if the topological phase is marginal
or completely absent without supercurrent and to switch the
state between the topological and trivial phases. This is highly
desirable in controlling the topological superconductivity and
manipulating Majorana states. When the magnetic helix is
planar, supercurrent will mainly drive the system towards the
gapless phase. In contrast to Ref. [14], which studied the effects
of supercurrent on antiferromagnetic chains (a special point in
the space of helical textures), our results yield an essentially
analytical description for the phase diagram of arbitrary
helical textures, allowing a simple physical interpretation
of the supercurrent effects. We will also provide a direct
connection of our theory of supercurrent-induced control to
observables by calculating the LDOS which can be accessed
in STM experiments.

Model. We consider a superconducting system with a
regular 1D lattice of magnetic atoms deposited on top of it.
Our strategy follows the formulation of Ref. [12] which is
complicated by the supercurrent-induced modifications. Work-
ing in the Nambu operator basis �̂ = (ψ̂↑,ψ̂↓,ψ̂

†
↓, − ψ̂

†
↑)T ,

the Bogoliubov–de Gennes equation for the four-component
c-number spinor becomes

[E − ξkτz − � · τ ]�(r) = −J
∑

j

Sj · σδ(rj )�(r), (1)

where � = |�|[cos ϕ(r), sin ϕ(r),0] describes the position-
dependent superconducting order parameter, ξk = k2

2m
− μ is

the single-particle energy, J is the exchange coupling, and
Sj describes the direction and magnitude of the magnetic
moment of the j th atom. Supercurrent flowing in the bulk
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is proportional to ∇ϕ. The set of Pauli matrices τ = (τx,τy,τz)
and σ = (σx,σy,σz) operate in particle-hole and spin space,
respectively. In this work we consider magnetic textures of the
form Ŝj = (cos 2khaj sin θ, sin 2khaj sin θ, cos θ ), where kh is
the wave number of the magnetic helix pitch angle, θ is the tilt
of the moments, and a is the distance between two adjacent
moments. A helix is planar when θ = π/2, in which case the
average magnetization vanishes.

The explicit breaking of translational invariance on the
left-hand side (LHS) in (1) due to the superconducting phase
poses a major complication in solving the eigenvalue problem.
To remedy this, we introduce a unitary transformation �̄(r) =
U (r)�(r), where U (r) = eiτz

ϕ(r)
2 . The transformed Eq. (1)

takes the form[
E − τz

(
(k − ∇ϕ

2 τz)2

2m
− μ

)
− |�|τx

]
�̄(r)

= −J
∑

j

Sj · σδ(rj )�̄(r). (2)

We will further assume that the phase winding (and thus the
supercurrent) is linear so that ∇ϕ is independent of r. The key
observation here is that in the transformed basis the explicit
violation of the translation symmetry on the LHS has been
removed, allowing us to follow the general steps of Ref. [12]
with some additional technical complications. The equation
for the spinor at the position of ith atom can then be written as

�̄(ri) = −
∑

j

(Ŝj · σ )JE(ri − rj )�̄(rj ), (3)

where Ŝj = Sj /S, S = |Sj |, and

JE(r) = JS

∫
dk

(2π )3

eik·r

E − τz

( (k− ∇ϕ

2 τz)2

2m
− μ

) − |�|τx

= JS

∫
dk

(2π )3
eik·r

(
E + k·∇ϕ

2m

) + τzξk + |�|τx(
E + k·∇ϕ

2m

)2 − ξ 2
k − |�|2

. (4)

On the second line we have noted that the characteristic
magnitude of momentum is |k| ≈ kF and the maximum
phase gradient corresponding to the critical current satisfies
|∇ϕ| � 2π/ξ � kF , where the coherence length is defined
as ξ = vF /|�|, so that the (∇ϕ)2 term in the denominator
gives a negligible contribution to the term proportional to
τz. From Eq. (4) we see that the phase gradient introduces
a new energy scale ε̃ϕ = vF |∇ϕ|

2 in the problem which satisfies
condition ε̃ϕ/|�| � 1 when the supercurrent is much smaller
than the critical current. Since this is the relevant regime for
finding robust gapped states in general, we can treat ε̃ϕ/|�| as
a natural small parameter.

Following Ref. [12] we first consider the case of a
single magnetic moment to understand the low-energy prop-
erties of a chain. This problem can be solved starting
from Eq. (3) by setting Sj = 0 when j �= i and evalu-
ating JE(0) [30]. In the absence of supercurrent (ε̃ϕ =
0) there exist two subgap solutions E = ±ε = ±|�| 1−α2

1+α2 ,
where α = πν0SJ is a dimensionless constant [31–33]. The
corresponding eigenspinors are �+(ri) ≡ |+i〉 = |+τx〉|↑i〉
and �−(ri) ≡ |−i〉 = |−τx〉|↓i〉, where τx |±τx〉 = ±|±τx〉

and Ŝi · σ |↑/↓i〉 = ±|↑/↓i〉. For deep impurities defined by
α ∼ 1 that we study below, the bound-state energies are
±ε0 = ±|�|(1 − α). The supercurrent-induced modification
in the lowest order is ±ε̃0 = ±ε0 ∓ |�|

6 ( ε̃ϕ

|�| )
2 while leaving

the eigenstates unaffected [30].
The single-impurity subgap states form a convenient

basis to study the low-energy properties of Shiba chains.
Expanding the spinors �̄(ri) in the low-energy components
� ′

i = (〈+i|�̄(ri)〉,〈−i|�̄(ri)〉)T and projecting Eq. (3) onto
the low-energy subspace as in Ref. [12], we discover an
effective Bogoliubov–de Gennes equation for the reduced
spinor H� ′ = E� ′, where

H =
(

hij �ij

(�ij )† −h∗
ij

)
. (5)

Here hij = ε̃0 and �ij = 0 when i = j and

hij = |�| e
− rij

ξ

kF rij

(
i

εϕ

|�| sgn(i−j ) cos kF rij− sin kF rij

)

〈↑ i| ↑ j 〉,

�ij = |�| e
− rij

ξ

kF rij

cos kF rij 〈↑ i| ↓ j 〉, (6)

when i �= j , with rij = |ri − rj | = a|i − j | [30]. The param-
eter εϕ = vF |∇ϕ|

2 cos β, where β is the angle between ∇ϕ

and ri − rj , describes the magnitude and the direction of
the supercurrent. Model (5) is valid for the case of deep
impurities ε0/|�| � 1 in the dilute limit kF a � 1. When
εϕ = 0, Eq. (6) reduces to the result derived in Ref. [12]. The
supercurrent-dependent corrections to Eq. (6) are of the order

O( 1
kF a

ε0εϕ

|�|2 ,
1

kF a

ε2
ϕ

|�|2 ) containing three small parameters and are
omitted below. The spin matrix elements corresponding to
the helical order are 〈↑i|↑j 〉 = cos2 θ

2 + sin2 θ
2 e−2ikhxij and

〈↑i|↓j 〉 = i sin khxij sin θ , where xij = a(i − j ). To bench-
mark our result with that of Ref. [12], we also perform a unitary
transformation, modifying the matrix elements 〈↑i|↑j 〉 →
cos2 θ

2 eikhxij + sin2 θ
2 e−ikhxij and 〈↑i|↓j 〉 = i sin khxij sin θ .

The Hamiltonian (5) is appropriate for finite-size studies but
the topological phase diagram is most conveniently studied in
Fourier space. Evaluating h(k) = ∑

j hij e
ikxij and �(k) we

obtain

H (k) =
(

h(k) �(k)
�(k) −h(−k)

)
, (7)

where h(k) can be expressed through the antisymmetric
and symmetric components Ah(k) = 1

2 [h(k) − h(−k)] and
Sh(k) = 1

2 [h(k) + h(−k)] as

Ah(k) = − |�|
kF a

cos θ

2
[f (k1) + f (k2) − f (k3) − f (k4)]

−1

2

εϕ

kF a
[f (k1) + f (k2) + f (k3) + f (k4)] , (8)

Sh(k) = ε̃0 − |�|
kF a

1

2
[f (k1) − f (k2) + f (k3) − f (k4)]

− εϕ

kF a

cos θ

2
[f (k1) − f (k2) − f (k3) + f (k4)], (9)
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in terms of the variables k1 = k + kF + kh, k2 = k − kF − kh,
k3 = k + kF − kh, k4 = k − kF + kh, and the function f (k) =
arctan e−a/ξ sin ka

1−e−a/ξ cos ka
. The (antisymmetric) effective pairing func-

tion is given by

�(k) = |�|
kF a

sin θ

4
[f̃ (k1) − f̃ (k2) − f̃ (k3) + f̃ (k4)], (10)

where f̃ (k) = −ln(1 + e−2a/ξ − 2e−a/ξ cos ka). The spec-
trum of Eq. (7) is

E±(k) = Ah(k) ±
√

[Sh(k)]2 + �(k)2. (11)

Supercurrent-modified phase diagram. The analytically
obtained spectrum (11) allows us to make a number of general
statements. A finite antisymmetric function Ah(k) always
suppresses the gap between the E+ and E− bands compared
to the case Ah(k) = 0. Since the system obeys particle-hole
symmetry E+(k) = −E−(−k), we immediately see that the
system enters a gapless phase whenever min E+(k) < 0, a
transition driven by Ah(k). The phase transition between
topological and trivial gapped phases requires that the square
root in Eq. (11) vanishes, taking place when Sh(k) = 0 and
�(k) = 0, while E+(k) � 0 should be satisfied. This can only
take place at k0a = nπ (n = 0,±1, . . .), where �(k0) = 0. In
summary,Ah(k) may only drive the gapless-gapped transitions
and Sh(k) only affects the transitions between the gapped
phases. These general properties have crucial implications for
the supercurrent-modified phase diagram in different cases of
interest.

Case 1: The helical texture is nonplanar θ �= π
2 and the

parameters put the system in the gapless phase in the absence
of supercurrent. The gapless phase arises from finite Ah(k)

FIG. 1. (Color online) (a) The studied system consists of a helical
arrangement of magnetic atoms on a superconductor. Supercurrent
can be employed to modify the topological state of the chain. The
signatures of the topological phase can be observed by tunneling
from an STM tip to the MBS localized at the end. (b) Minimum
value of E+(k). Different phases are separated by the condition
min E+(k) = 0. The labels stand for normal (N), topological (T),
and gapless (G). The parameters are θ = 2π/5, kha = π/10, εϕ =
|�|/3, ξ = 50a. The inset shows the phase diagram for vanishing
supercurrent εϕ = 0. In addition to adding gapless regions, finite
supercurrent also pushes some gapless regions to the topologically
nontrivial gapped phase indicated by the red arrows. (c) Same as (b),
but with inverted supercurrent εϕ = −εϕ .

FIG. 2. (Color online) (a) Same quantities as in Fig. 1(b) but
for θ = π/5, kha = π/3, εϕ = |�|/3, ξ = 50a. The inset shows
the phase diagram for vanishing supercurrent εϕ = 0. Supercurrent
significantly increases the size of the topological region. (b) Same as
(a), but kha = π

2 . Supercurrent opens up large topologically nontrivial
regions that are completely absent when the supercurrent vanishes.

which dominates the square root in (11) for some k. By
reducing Ah(k) by the supercurrent-induced contribution in
the second line of Eq. (8), it is possible to drive the system
towards a gapped state. As illustrated in Figs. 1(a) and 1(b),
the supercurrent-induced gapped state can be the topologically
nontrivial, so it is possible to tune the system from the gapless
initial state to the topologically nontrivial gapped state.

Case 2: The helical texture is nonplanar θ �= π
2 and the

parameters put the system in a gapped phase in the absence
of supercurrent. The second line of Eq. (9) indicates that the
supercurrent-induced term modifies the symmetric function
Sh(k) which drives the transition between the topological and
trivial gapped phases. This mechanism enables supercurrent-
induced switching between the gapped phases. This could
take place in the regions of the phase diagram where the
condition Sh(k0) = 0 is met before the supercurrent-induced
contribution to Ah(k) drives the system gapless. Remarkably,
as illustrated in Fig. 2(a), for some helical configurations it is
possible to dramatically increase the topologically nontrivial
region in the phase diagram. Ultimately, as depicted in
Fig. 2(b), it is also possible to open up topological regions in the

FIG. 3. (Color online) (a) Same quantities as in Fig. 2 but for a
planar helix θ = π

2 , kha = π/10, εϕ = |�|/3, ξ = 50a. Supercurrent
cannot deform the phase boundaries between the gapped phases; it
can only add gapless regions on top of the εϕ = 0 phase diagram
(in the inset). (b) Phase diagram for a finite-size chain of 50 atoms
with the same parameters as in (a). Colors indicate the ratio of the
lowest-lying and the first excited energy level |E0/E1|. Small values
(dark blue) indicate the topological phase with Majorana end states
and large values (white) signals the trivial gapped state. In a finite-size
system oscillations (blue stripes) indicate the gapless phase.
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FIG. 4. (Color online) (a) LDOS at the end of the chain of 100
atoms. The system is gapless in the absence of supercurrent and enters
the topologically nontrivial gapped phase signaled by a ZBP and the
opening of a minigap (white arrow). The parameters are θ = 2π/5,
kha = π/10, kF a = 4.8π , ε0 = 0.05|�|, ξ = 50a. (b) Same as (a)
but for a system that is in the trivial gapped phase in the absence of
supercurrent. The parameters are θ = π/5, kha = π/2, kF a = 4π ,
ε0 = 0.015|�|, ξ = 50a.

antiferromagnetic case kha = π/2 where they are completely
absent for vanishing supercurrent [14].

Case 3: The helical texture is planar θ = π
2 . In the absence

of supercurrent the phase diagram contains only gapped phases
(for kha �= nπ ) [12]. The linear supercurrent-induced term
on the second line of Eq. (9) vanishes, so the supercurrent
modification toSh(k) arises from the weak supercurrent renor-
malization of ε̃0. However, the antisymmetric contribution,
which is zero for planar texture in the absence of supercurrent,
becomes nonzero due to the second line of Eq. (8). As pointed
out above, finite Ah(k) only have a detrimental effect on
the gapped phases, suppressing gaps and eventually driving
the system to the gapless phase. As illustrated in Fig. 3(a),
supercurrent mainly adds a gapless region in the phase diagram
but does not deform the phase boundaries of the gapped phases.
Numerical diagonalization of finite-size systems shows that the
phase diagram of an infinite system is reproduced accurately
with a few tens of magnetic sites, as shown in Fig. 3(b), and
essentially perfectly with �100 lattice sites.

Physical implications. Experimental investigations of topo-
logical properties of Shiba chains have recently been initiated.
In STM experiments it is possible to map the LDOS Ni(E) =∑

n[|un(i)|2δ(E − En) + |vn(i)|2δ(E + En)] along the chain.
Here un(i) [vn(i)] is the particlelike (holelike) component of
the eigenspinor with energy En at site i. It is also possible to
probe the magnetic texture in order to find out the nature of the
magnetic ordering in the system. The primary signature of the
topologically nontrivial phase consists of the zero-bias peak
(ZBP) in the LDOS arising from the Majorana bound state
localized at the end of the chain. In the topological phase the
ZBP is isolated from other excitations by a minigap. The LDOS
for the trivial gapped phase does not display a ZBP and should
exhibit a robust gap everywhere in the wire, in stark contrast to

the gapless phase for which the LDOS is nonvanishing near the
Fermi level and does not exhibit a minigap. The ZBP observed
at the chain ends in experiment [15] provided strong evidence
that ferromagnetic chains support Majorana end states.

The supercurrent-induced modifications to the phase dia-
gram discussed above are observable in the LDOS. In Fig. 4
we plot the LDOS at the end of the chain. The parameters
corresponding to Fig. 4(a) place the helix in the gapless phase
in the absence of supercurrent εϕ = 0. By increasing the phase
gradient the system enters the topological phase with Majorana
end states and the LDOS exhibits a clear ZBP. In Fig. 4(b) the
system is initially in the trivial state but undergoes a topological
phase transition signaled by the appearance of a ZBP and the
opening of a minigap.

Our results have encouraging implications for the appli-
cations of topological superconductivity. If the microscopic
parameters place a chain in the gapless or in the trivial gapped
state, it could be possible to tune it to the topological phase
in the case of a nonplanar helix. In addition, the textures in
Fig. 2 enable convenient switching between the nontrivial and
trivial phases by supercurrent, providing, for example, a means
to braid Majorana states in “the Majorana necklace” [34].
Instead of a rotating magnetic field, one could carry out the
braiding by rotating the direction of the supercurrent. A planar
helix θ = π/2 could be distorted by an external magnetic
field to a nonplanar configuration to render the supercurrent
control to be more effective. Supercurrent provides a valuable
control parameter in studying the topological phase transitions
in experiments. In this Rapid Communication we studied a
clean system, but the study of disorder in Ref. [28] shows that
a topological phase in Shiba chains is robust against weak
to moderate potential and exchange coupling disorder. The
topological phase in a short-range model was also found to
be quite robust against disorder in the direction of magnetic
moments [11]. Therefore we expect that our results may also
carry over to unidealized situations.

Conclusion. In this Rapid Communication we studied
the effects of supercurrent on the topological properties of
Shiba chains and provided the phase diagram for an arbitrary
helical magnetic texture. We discovered that, for nonplanar
magnetic textures, supercurrent control can be employed in
tuning the system from the gapless phase to the nontrivial
gapped phase. Supercurrent also enables switching the system
between topological and trivial gapped phases, in some cases
significantly increasing the nontrivial phase in the phase
diagram. For a planar magnetic helix, supercurrent mostly
drives the system towards the gapless phase. The LDOS,
accessible in STM measurements, exhibits clear signatures
of the predicted supercurrent-modified phase diagram.
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sions. T.O. acknowledges the Academy of Finland for support.

[1] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
[2] A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, Phys.

Rev. B 78, 195125 (2008); S. Ryu, A. P. Schnyder, A. Furusaki,
and A. W. W. Ludwig, New J. Phys. 12, 065010 (2010).

[3] A. Y. Kitaev, Phys. Usp. 44, 131 (2001).
[4] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das

Sarma, Rev. Mod. Phys. 80, 1083 (2008).
[5] A. Y. Kitaev, Ann. Phys. 303, 2 (2003).

180503-4

http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/PhysRevB.78.195125
http://dx.doi.org/10.1103/PhysRevB.78.195125
http://dx.doi.org/10.1103/PhysRevB.78.195125
http://dx.doi.org/10.1103/PhysRevB.78.195125
http://dx.doi.org/10.1088/1367-2630/12/6/065010
http://dx.doi.org/10.1088/1367-2630/12/6/065010
http://dx.doi.org/10.1088/1367-2630/12/6/065010
http://dx.doi.org/10.1088/1367-2630/12/6/065010
http://dx.doi.org/10.1070/1063-7869/44/10S/S29
http://dx.doi.org/10.1070/1063-7869/44/10S/S29
http://dx.doi.org/10.1070/1063-7869/44/10S/S29
http://dx.doi.org/10.1070/1063-7869/44/10S/S29
http://dx.doi.org/10.1103/RevModPhys.80.1083
http://dx.doi.org/10.1103/RevModPhys.80.1083
http://dx.doi.org/10.1103/RevModPhys.80.1083
http://dx.doi.org/10.1103/RevModPhys.80.1083
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1016/S0003-4916(02)00018-0


RAPID COMMUNICATIONS

TUNING TOPOLOGICAL SUPERCONDUCTIVITY IN . . . PHYSICAL REVIEW B 90, 180503(R) (2014)

[6] A. Y. Kitaev, Ann. Phys. 321, 2 (2006).
[7] J. Alicea, Y. Oreg, G. Refael, F. von Oppen, and M. P. A. Fisher,

Nat. Phys. 7, 412 (2011).
[8] T. P. Choy, J. M. Edge, A. R. Akhmerov, and C. W. J. Beenakker,

Phys. Rev. B 84, 195442 (2011).
[9] S. Nadj-Perge, I. K. Drozdov, B. A. Bernevig, and A. Yazdani,

Phys. Rev. B 88, 020407(R) (2013).
[10] M. M. Vazifeh and M. Franz, Phys. Rev. Lett. 111, 206802

(2013).
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