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We study the dynamics of head-to-head domain walls separating in-plane domains in a disordered ferromagnetic
thin film. The competition between the domain-wall surface tension and dipolar interactions induces a crossover
between a rough domain-wall phase at short length scales and a large-scale phase where the walls display a
zigzag morphology. The two phases are characterized by different critical exponents for Barkhausen avalanche
dynamics that are in quantitative agreement with experimental measurements on MnAs thin films.
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I. INTRODUCTION

When subject to an external magnetic field, a ferromagnetic
material shows a sequence of discrete and intermittent jumps of
the magnetic domain walls (DW’s), known as the Barkhausen
effect [1], a paradigmatic example of crackling noise in
materials [2]. The statistical properties of the Barkhausen noise
are usually studied by measuring the size distribution P (s) of
such jumps, or avalanches, which typically follows a power
law P (s) ∼ s−τ , with the exponent τ characterizing the uni-
versality class of the avalanche dynamics. In three-dimensional
bulk ferromagnetic materials, the scaling behavior of the
Barkhausen effect is understood theoretically in terms of the
depinning transition of domain walls [3] with two distinct
universality classes for amorphous and polycrystalline materi-
als [4]. A similar clear-cut classification does not exist in lower
dimensions, despite Barkhausen avalanches having been stud-
ied experimentally for decades in several ferromagnetic thin
films with in-plane [5–10] or out-of-plane anisotropy [11,12].
This issue is particularly important because these low-
dimensional magnetic structures have become increasingly
relevant for various technological applications [13,14].

An important step towards understanding the different
universality classes in thin films was achieved by the magneto-
optical experiments of Ryu et al. [10], who observed a
crossover between two different avalanche size exponents τ

as temperature T was varied close to but below the Curie
temperature Tc of a 50-nm MnAs film. This crossover was
accompanied by changes in DW morphology, such that the
DW structure evolves from rough for high T to DW’s with a
pronounced tendency to form zigzag or sawtoothlike patterns
for lower T . It was argued that by varying T close to Tc, one can
tune the value of the squared saturation magnetization M2

s , and
thus the strength of the long-range dipolar interactions between
different DW segments. The zigzag pattern is expected to arise
as a result of a competition between the domain-wall energy
and the dipolar interactions, with the former favoring a flat
horizontal DW, while the latter would prefer a vertically spread
DW to reduce the magnetic charge density [15–19].

In this paper, we provide a theoretical explanation of the
experimentally observed universality classes and the crossover
between them. Starting from micromagnetic theory, we derive

an equation of motion for a line model of a head-to-head DW
in a two-dimensional thin film separating in-plane domains.
By numerical simulations and theoretical analysis, we show
that the model exhibits a crossover between two universality
classes of the Barkhausen avalanche dynamics, resulting
from a competition between DW surface tension and dipolar
interactions. We present a detailed characterization of the DW
morphology, avalanche dynamics, and the crossover scaling
between the two universality classes. The paper is organized
as follows: In the next section (Sec. II), we derive the line
model of the head-to-head DW, and study it numerically and
theoretically in Sec. III. Finally, Sec. IV finishes the paper with
discussion and conclusions.

II. MODEL

Due to the essentially two-dimensional thin-film geometry
considered here (the film thickness �z is much smaller than
the DW length), we model the DW as a flexible line � with
surface tension γw due to DW energy. The line moves within
the xy plane, and has an average orientation along the x axis. It
is taken to separate two magnetic domains with magnetization
along ±ŷ, respectively. Thus, a head-to-head DW is character-
ized by a magnetic charge density σ (r) = 2Ms cos θ (r) along
the DW, with θ (r) the angle between the local DW normal
n̂ and the ŷ direction. These magnetic charges then lead to
a magnetostatic field Hm(r) = ∫

�′ σ (r′)(r − r′)/|r − r′|3ds ′,
the y component of which produces a normal pressure acting
on the DW segments, along with an applied field Ha = Ha ŷ.
In addition, the DW segments interact with quenched disorder,
described by a random pressure field η(r) due to short-range
interactions with random pinning centers. Thus, the total
normal pressure difference �p acting across the DW at point
r reads

�p(r) = γw/R(r) + 2Msμ0Ha + η(r) · n̂

+4μ0M
2
s

∫
�(r′)

(y − y ′) cos θ ′

[(x − x ′)2 + (y − y ′)2]3/2
ds ′, (1)

where R(r) is the local radius of curvature. To simulate such a
system, we discretize the DW along the x direction, by using
the film thickness �z as the lattice constant, and describe the
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DW by a single-valued function y = h(x,t) (implying that
formation of overhangs are excluded by construction), with
x = i = 1,2, . . . ,L. The local DW velocity is assumed to be
proportional to the local pressure acting on the DW, such that
the equation of motion for the DW line segment i along the y

direction is given by

	
∂hi

∂t
= 1

cos θi

⎡
⎣γw

∂2hi

∂x2
+ 2Msμ0Ha + η(i,hi)

+ 4μ0M
2
s �2

z

∑
j �=i

hi − hj[
�2

z(i − j )2 + (hi − hj )2
]3/2

⎤
⎦ ,

(2)

where we have approximated the curvature term by a dis-
cretized Laplacian, θi is the angle between the normal of
the ith segment and the y direction, and 	 is a damping
constant. The factor 1/ cos θi multiplying the right-hand side
of Eq. (2) transforms normal motion into motion along the
y direction. The quenched random force has correlations
〈η(i,hi)η(j,hj )〉 = σ 2δ(i − j )δ(hi − hj ). We further write
Eq. (2) in nondimensional units, by measuring lengths in
units of �z and times in units of 	�z/(μ0M

2
s ). The resulting

dimensionless equation of motion reads

∂hi

∂t
= 1

cos θi

⎡
⎣λ

∂2hi

∂x2
+ Fext + η(i,hi)

+ 4
∑
j �=i

hi − hj

[(i − j )2 + (hi − hj )2]3/2

⎤
⎦ , (3)

where the dimensionless driving force is Fext = 2Ha/Ms

and λ ≡ lD/�z is the ratio between the “domain formation”
length [20] lD = γw/(μ0M

2
s ) and the film thickness. In

dimensionless units, the quenched random force has corre-
lations 〈η(i,hi)η(j,hj )〉 = σ 2

ndδ(i − j )δ(hi − hj ), with σnd =
σ/(μ0M

2
s �z). Periodic boundary conditions are implemented

by using the nearest image approximation to compute the
nonlocal dipolar forces. Notice that the dipolar interaction
term in Eq. (3) acts like a negative surface tension, i.e., it is
nonconvex. Thus, some typical properties of elastic interfaces
in random media, such as the no-passing rule [21], are not
expected to hold.

III. RESULTS

To mimic the experiments of Ruy et al. [10], we simulate
the system by integrating Eq. (3) numerically for a lateral
system size L = 512, fixing the external force Fext to a constant
value below the critical depinning force Fc (above which
the DW would keep moving continuously with a nonzero
time-averaged velocity), and monitor the dynamics of the
DW. The results are averaged over several realizations of the
random impurity configuration. Whenever the average DW
velocity V (t) = 1/L

∑
i ∂hi/∂t falls below a low threshold

value Vth, a randomly selected DW segment is given a “kick,”
such that an additional local force acting on the DW segment
is first increased linearly from zero until V > Vth, and then
decreased continuously back to zero. This can then trigger

FIG. 1. (Color online) The spatial structure of Barkhausen
avalanches for λ = 1 (top), λ = 2 (middle), and λ = 4 (bottom). The
domain wall is moving from top to bottom, and the area swept over
by each avalanche has been colored with a random color. An example
of the DW structure is given by a black line in each case.

an avalanche, which lasts until the average velocity of the
front again falls below Vth, and the process is repeated. The
area (measured in units of �2

z) over which the DW moves
between two such triggering events (which mimic the effect
of thermal activation) is taken to be the avalanche size s.
Figure 1 shows typical examples of the spatial structure of
the avalanches for different λ values. Note that tuning λ in the
model corresponds to varying temperature in an experiment,
which close to the Curie temperature affects the value of Ms ,
and consequently the strength of the dipolar interactions [10].
For small λ, the DW’s exhibit a clear zigzag morphology (with
avalanches tilted accordingly), and roughen due to disorder as
λ is increased.

We further characterize the zigzag morphology by consider-
ing the distributions of the local slopes ∂h/∂x of the DW; see
Fig. 2. For finite λ, the distributions are bimodal, reflecting
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FIG. 2. (Color online) Distributions of the local slopes ∂h/∂x

(see text for definition) for various λ. The inset shows the corre-
sponding zigzag angle 2φ as a function of λ. The solid line is a fit to
of Eq. (5), corresponding to l = 3.9.

the fact that the dipolar interactions render the flat DW
unstable. For the sake of comparison, we show also the slope
distribution for the linear interface model (LIM)/quenched
Edwards-Wilkinson (qEW) equation [i.e., Eq. (3) without the
nonlocal term, corresponding to the limit λ → ∞), displaying
a single peak at ∂h/∂x = 0. The inset of Fig. 2 shows the
zigzag angle 2φ, defined as 2φ = 2 tan−1(1/〈|∂h/∂x|〉). For
small λ ∼ 1/M2

s , 2φ is linear in λ, similar to experimental
results [22], while for very large λ the DW becomes rough
(i.e., the DW morphology is given by the usual roughness
properties of the LIM/qEW case), and the concept of the zigzag
angle is ill-defined. An approximate analytical estimate of the
λ dependence of 2φ can be obtained by requiring balance
between forces due to line tension and dipolar interactions.
The former can be estimated as λ∂2h/∂x2 = λ2m/l, where
m = 〈|∂h/∂x|〉 is the average magnitude of the local zigzag
slope, and l is the length of the “transition region” at the tip of
the zigzag where a constant curvature 2m/l is assumed. These
have to be balanced by forces due to dipolar interactions, which
we write in terms of the slope m as

4
∑
j �=i

m|i − j |
|i − j |3(1 + m2)3/2

= 4
m

(1 + m2)3/2
2ζ (2), (4)

where ζ (2) = π2/6. Thus, from the force balance condition,
one obtains for the slope m =

√
(2π2l/3λ)2/3 − 1, corre-

sponding to the zigzag angle

2φ = 2 tan−1(m−1) = 2 tan−1[(2π2l/3λ)2/3 − 1]−1/2. (5)

A good fit to the data with Eq. (5) can be obtained by using
l as a fitting parameter, resulting in l ≈ 3.9; see the inset of
Fig. 2.

We also quantify the morphology of the DWs by consid-
ering the roughness exponent ζ of the fronts. To this end, we
compute the power spectrum S(k) of the line profiles h(x),
expected to scale as S(k) ∝ k−(2ζ+1). Figure 3 shows S(k) of
the λ = 1 case, resulting in ζ ≈ 1.5: Thus, when a dipolar
interaction term, favoring vertical spread of the DW, is added
to the LIM/qEW model with ζ ≈ 1.25 [23], the fronts become
more rough. In Fig. 3, we also consider a slope-subtracted
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FIG. 3. (Color online) Main figure: Power spectra S(k) of the DW
profile h(x) and of the slope-subtracted h(x) for λ = 1, exhibiting
scaling of the form of S(k) ∝ k−(2ζ+1), with ζ the roughness exponent.
Inset shows examples of h(x) and the corresponding slope-subtracted
front, from which the average local tilt (the zigzag slope m) has been
subtracted.

version of the λ = 1 fronts (see the inset of Fig. 3), where the
average local zigzag slope (positive or negative depending on
the DW segment) has been subtracted from h(x). The power
spectrum of the resulting fronts is characterized by ζ ≈ 1.25,
i.e., it is indistinguishable from the LIM/qEW result. Thus, it
seems that dipolar interactions induce a local tilt (the zigzag
slope) to the otherwise LIM/qEW-like fronts.

For small λ, the statistical properties of the Barkhausen
avalanches are expected to reflect the dominant nature of
the dipolar interactions. Figure 4 shows the avalanche size
distributions P (s) for λ = 1 and various Fext < Fc. By fitting
the data using the least-squares method [24], the distributions
are found to obey

P (s) = s−τDIPFDIP

[
s

(Fc − Fext)−1/σDIP

]
, (6)

where FDIP(x) is a scaling function, τDIP � 1.33 and 1/σDIP �
3.5. The value of τDIP characterizes the “zigzag” universality
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FIG. 4. (Color online) The distribution of avalanche sizes s with
λ = 1, corresponding to the limit dominated by dipolar interactions,
for various Fext � Fc. The inset shows a collapse with exponents
τDIP = 1.33 and 1/σDIP = 3.5.

104402-3



LASSE LAURSON, GIANFRANCO DURIN, AND STEFANO ZAPPERI PHYSICAL REVIEW B 89, 104402 (2014)

class dominated by dipolar interactions, and is close to that
found for certain other systems with long-range anisotropic
interaction kernels, such as models of amorphous plastic-
ity [25]. For larger λ, while large enough avalanches are still
dominated by the dipolar interactions, small avalanches start
to be governed by the surface tension, and are thus expected
to obey the LIM/qEW scaling. Therefore the scaling form in
Eq. (6) has to be replaced by a crossover scaling form including
two different power laws with the corresponding τ exponents
(τLIM and τDIP),

P (s,s/s0,s/sχ ) = s−τLIMG(s/s0,s/sχ ), (7)

where the two-variable scaling function is given by

G(x,y) = e−x

(1 + y(τDIP−τLIM)κ )1/κ
, (8)

with sχ a crossover avalanche size separating the two regimes,
κ controls the sharpness of the crossover and s0 is the cut-off
avalanche size. The short length scale exponent is expected
to be that of the LIM/qEW, τLIM � 1.11 [26] and 1/σLIM =
3.0 [3].

To estimate the crossover scale Lχ (and the corresponding
crossover avalanche size sχ ) above which the dipolar forces
will dominate the line tension, we consider the continuum
version of Eq. (3) for small deformation of the DW without
disorder and external force,

∂h

∂t
= λ

∂2h

∂x2
+ 4

∫
h(x) − h(x ′)

|x − x ′|3 dx ′, (9)

and examine the stability of a flat DW. By writing
the two interaction terms in Eq. (9) in terms of their
Fourier transforms, λ∂2hi

∂x2 = ∫
dqhqe

i2πqx(−4π2λq2) and

4
∫

dx h(x)−h(x ′)
|x−x ′ |3 = 4

∫
dqei2πqxhq

∫
dx ′ 1−ei2πq(x′−x)

|x−x ′ |3 , one arrives

at a stability condition for the mode q, −4π2λq2 + I (q) < 0,
where I (q) ≡ 4

∫
dr 1−ei2πqr

|r|3 . We expand I (q) for small q, such

that I (q) � 8π2
∫ 1/q

1 dr(qr)2/|r|3 = −8π2q2ln(q).Thus, the
stability condition becomes 2ln(q) + λ > 0, which leads to a
crossover length

Lχ = eλ/2. (10)

The crossover avalanche size is expected to scale as sχ ∼
L

1+ζχ

χ , where ζχ is the roughness exponent of the avalanches
at the crossover scale. Thus, also the crossover avalanche size
is an exponential in λ,

sχ = e(1+ζχ )λ/2. (11)

Notice that this form is different from the one employed in
Ref. [10].

To test this argument, we simulate the model for various
λ � 1, and estimate sχ (λ) by fitting Eq. (7) to the data. We
found that Eqs. (7) and (8) with κ = 10 (corresponding to
a sharp crossover), τLIM = 1.11 and τDIP = 1.33 produce a
very good fit; see Fig. 5. Figure 6(a) shows the resulting
sχ (λ) data, which can be well fitted by an exponential, thus
confirming the functional form in Eq. (11). Estimating the
value of the crossover roughness exponent ζχ in Eq. (11)
from the exponential fit leads to (1 + ζχ )/2 = 1.577 (Fig. 6),
or ζχ = 2.15, somewhat larger than the ζ values measured
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FIG. 5. (Color online) The rescaled avalanche size distributions
for various λ, with F slightly below Fc in each case, showing the
crossover between the two scaling exponents, τLIM = 1.11 (dashed
blue line) and τDIP = 1.33 (dash-dotted red line). The solid lines are
fits of Eq. (7) to the data. The dependence of the crossover avalanche
size sχ on λ resulting from the fits is reported in Fig. 6(a). The factors
C(λ) are chosen to make the rescaled distributions overlap in the
scaling regime.

in Fig. 3. We think this small difference is due to the
approximations made in deriving Eq. (11). Figure 5 shows the
avalanche size distributions for different λ, with s rescaled with
the corresponding sχ (λ) and P (s) by the factors C(λ), chosen
to make the different distributions overlap. This procedure
reveals a clear crossover scaling, with the exponents τLIM �
1.11 and τDIP � 1.33 below and above s/sχ = 1, respectively.
Notice also that the crossover is rather sharp, taking place
within one order of magnitude in s/sχ . This is in contrast to
the results of Ref. [10], where a large crossover region with
a slowly changing effective exponent was found, by using an
expression for the crossover avalanche size which is different
from the one found here. The crossover can also be seen by
fitting a single power law with an exponential cutoff,

P (s) = s−τeff (λ) exp

(
− s

s0(λ)

)
, (12)

2 3 4
λ

10
2

10
3

10
4

s χ

0 1 2 3 4
λ

1.1

1.2

1.3

1.4

τ ef
f

τ
LIM

 = 1.11
τ

DIP
 = 1.33

(a) (b)

FIG. 6. (Color online) Panel (a) shows the exponential depen-
dence of the crossover avalanche size sχ on λ. The solid line
corresponds to an exponential fit sχ = AeBλ, with A = 15.5 and
B = 1.577. Panel (b) shows the effective exponent τeff as obtained by
fitting Eq. (12) to the data.
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to the data. The resulting effective exponent τeff as a function
of λ is shown in Fig. 6(b), showing again a crossover between
the values of τLIM = 1.11 and τDIP = 1.33.

IV. DISCUSSION

We have presented a theoretical analysis and a numerical
model of DW morphology and avalanche dynamics in thin
films with in-plane uniaxial anisotropy, giving rise to charged
head-to-head (or tail-to-tail) DW’s. As a result of the compe-
tition between DW surface tension and dipolar interactions,
the DW’s develop a zigzag structure. The avalanche dynamics
displays a sharp crossover between two universality classes,
characterized by the exponents τLIM � 1.11 and τDIP � 1.33,
for scales dominated by the line tension and dipolar interac-
tions, respectively. These two scaling regimes are separated by
a crossover avalanche size sχ which exhibits an exponential
dependence on λ ∼ 1/M2

s . It is worth noticing that the dipolar
interactions scale as q2 log(q) in Fourier space. Hence, in
the q → 0 limit, the kernel is similar to a negative surface
tension, and it is therefore not possible to infer the dipolar
universality class based on simple power counting (as claimed,
e.g., in [10]). It would instead be necessary to perform a

functional renormalization-group calculation along the lines
of Refs. [27–32], taking into account explicitly the nonconvex
nature of the interaction kernel, leading to a violation of the
no-passing rule usually obeyed by depinning interfaces [21].
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