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(Received 16 October 2017; published 26 December 2017)

We have recently shown that the electromagnetic pulse in a medium is made of mass-polariton (MP)
quasiparticles, which are quantized coupled states of the field and an atomic mass density wave (MDW) [M.
Partanen et al., Phys. Rev. A 95, 063850 (2017)]. In this work, we generalize the MP theory of light for dispersive
media assuming that absorption and scattering losses are very small. Following our previous work, we present
two different approaches to the coupled state of light: (1) the MP quasiparticle theory, which is derived by only
using the fundamental conservation laws and the Lorentz transformation; (2) the classical optoelastic continuum
dynamics (OCD), which is a generalization of the electrodynamics of continuous media to include the dynamics
of the medium under the influence of optical forces. We show that the total momentum and the transferred
mass of the light pulse can be determined in a straightforward way if we know the field energy of the pulse
and the dispersion relation of the medium. In analogy to the nondispersive case, we also find unambiguous
correspondence between the MP and OCD theories. For the coupled MP state of a single photon and the medium,
we obtain the total MP momentum pMP = nph̄ω/c, where np is the phase refractive index. The field’s share of the
MP momentum is equal to pfield = h̄ω/(ngc), where ng is the group refractive index and the share of the MDW
is equal to pMDW = pMP − pfield. Thus, as in a nondispersive medium, the total momentum of the MP is equal to
the Minkowski momentum and the field’s share of the momentum is equal to the Abraham momentum. We also
show that the correspondence between the MP and OCD models and the conservation of momentum at interfaces
gives an unambiguous formula for the optical force. The dynamics of the light pulse and the related MDW lead
to nonequilibrium of the medium and to relaxation of the atomic density by sound waves in the same way as for
nondispersive media. We also carry out simulations for optimal measurements of atomic displacements related to
the MDW in silicon. In the simulations, we consider different waveguide cross sections and optical pulse widths
and account for the breakdown threshold irradiance of materials. We also compare the MP theory to previous
theories of the momentum of light in a dispersive medium. We show that our generalized MP theory resolves all
the problems related to the Abraham-Minkowski dilemma in a dispersive medium.

DOI: 10.1103/PhysRevA.96.063834

I. INTRODUCTION

Previous theories of light in a medium have neglected the
possibility of an associated mass density wave (MDW) formed
by small atomic movements caused by the optical force that
is alternately accelerating and decelerating medium atoms.
We have recently shown that the MDW is an unavoidable
part of the consistent theory of light in a medium [1]. In
the single-photon picture, the coupling of the electromagnetic
field to the atomic MDW gives rise to mass-polariton (MP)
quasiparticles, which are covariant coupled states of the field
and matter having a nonzero rest mass [1]. The coupled
state of the field and matter can also be described by using
classical optoelastic continuum dynamics (OCD) [1]. In the
OCD model, the electrodynamics of continuous media [2]
is generalized to include the coupling between the field and
matter and the related continuum dynamics of the medium.

Accounting for the MDW coupled to the electromagnetic
field, the photon mass drag effect has been shown [1] to resolve
the centennial Abraham-Minkowski controversy of optical
momentum in a medium [3–14]. This controversy has its origin
in the formulation of two rivaling momentum densities for light
by Abraham, gA = E × H/c2 [15,16], and by Minkowski,
gM = D × B [17], where c is the speed of light in vacuum,
E and H are the electric- and magnetic-field strengths, and
D and B are the electric and magnetic flux densities. For a
nondispersive medium, the momentum densities gA and gM

correspond to the single-photon momenta pA = h̄ω/(nc) or
pM = nh̄ω/c, respectively, where h̄ is the reduced Planck

constant, ω is the angular frequency of the field, and n is
the refractive index of the medium. In order to determine the
momentum of light in a medium, several experimental setups
have been introduced [18–28] but with partly controversial
results. In the recently developed MP theory [1], the Abraham
momentum pA is the momentum of the electromagnetic field
of the coupled MP state while the difference pM − pA is
carried by the MDW. The total MP momentum is then of
the Minkowski form pM = nh̄ω/c.

The initial derivation of the MP theory in Ref. [1] assumed
a nondispersive medium. In this work, we generalize the
MP quasiparticle model based on the conservation laws and
the Lorentz transformation for dispersive media. Following
Ref. [1], we also present the complementary classical OCD
model, which we have generalized for a dispersive medium.
The OCD model uses the optoelastic force density to calculate
the coupled Newtonian dynamics of the field and the medium
[1]. The calculations show that the quasiparticle and continuum
dynamics models are in full agreement in the limit of a
monochromatic field, i.e., when the photon picture becomes
reasonable, and also in the limit of weak dispersion.

This paper is organized as follows: Section II presents a
brief summary of the most conclusive experiments to measure
the momentum of light in dispersive media. Section III reviews
the well-known principles of the dispersion relations and the
solution of the electric and magnetic fields of a light pulse.
This is followed by presenting the OCD model generalized
for dispersive media in Sec. IV and the related complementary

2469-9926/2017/96(6)/063834(14) 063834-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevA.95.063850
https://doi.org/10.1103/PhysRevA.95.063850
https://doi.org/10.1103/PhysRevA.95.063850
https://doi.org/10.1103/PhysRevA.95.063850
https://doi.org/10.1103/PhysRevA.96.063834


MIKKO PARTANEN AND JUKKA TULKKI PHYSICAL REVIEW A 96, 063834 (2017)

MP quasiparticle model in Sec. V. In this work, we consider
the OCD model first since it is for most readers easier to
approach being based on the familiar concepts of Maxwell’s
and Newton’s theories. However, the theories are independent
and the reader can also start from the MP quasiparticle model.
Section VI presents the OCD simulations of a Gaussian
light pulse propagating in linearly and nonlinearly dispersive
media. To facilitate the planning of possible experiments
of the transferred mass of the MDW, we also compute
the atomic displacements due to the MDW in a schematic
silicon waveguide structure. The results of the OCD and
MP quasiparticle models are compared in Sec. VII. We also
compare our theory to selected previous experiments and
theories that have been used to determine the momentum of
light in a dispersive medium. Finally, conclusions are drawn
in Sec. VIII.

II. BRIEF SUMMARY OF EXPERIMENTS

The most conclusive set of experiments to measure the
momentum of light in a medium were started in 1954 by Jones
and Richards [20] who studied the pressure exerted by light on
a reflector immersed in a liquid with known refractive index.
By performing the experiment with a number of liquids of
varying refractive index, they showed with 1.2% precision
that the pressure on a reflector immersed in a liquid scales
linearly with the refractive index. The experiment was repeated
in 1978 by Jones and Leslie [21] with 0.05% precision. A
more than tenfold improvement in precision was possible by
using a laser as a light source and multilayer reflectors of
high reflectivity and low absorption. The accuracy obtained
was sufficient to conclusively show that the force on the
mirror is directly proportional to the phase refractive index
np and not to the group refractive index ng. A principally
identical schematic experimental setup is illustrated in Fig. 1.
If the force F2 on the perfect lossless reflector results from
the single-photon impulses �pi in time �t , we obtain F2 =∑

i �pi/�t . Then the experiment unambiguously supports
the Minkowski formula p = nph̄ω/c [5–7], provided that we

FIG. 1. Schematic illustration of an experimental setup for the
measurement of the electromagnetic forces due to a light beam in a
dispersive medium. Light enters from vacuum to a liquid container
with antireflective coating. Inside the liquid having phase and group
refractive indices np and ng, light is fully reflected from a mirror
attached to a detector that measures the resulting force F2. F1 is a
recoil force that balances the conservation law of momentum at the
interface.

know the intensity and the frequency of a monochromatic
laser beam. There exist also other experiments that have
been interpreted to support either the Minkowski or Abraham
momentum [18,19,22–27]. In these experiments, the relation
of the measured force or other quantity to the momentum of
light is much more subtle and analyzing these experiments
using our theory is a topic of a separate work.

If we consider light in a dispersive medium as a coupled
state of the field and matter, we are expected to be able to
apply the de Broglie wavelength in the analysis of diffraction
experiments. In the diffraction experiments, one obtains the
de Broglie wavelength which is related to the momentum of
the coupled state as λ = h/p, where h is the (nonreduced)
Planck constant. Since numerous diffraction experiments
have confirmed that the wavelength fulfilling the diffraction
condition is given by λ = λ0/np, where λ0 is the vacuum
wavelength, we obtain p = nph̄ω0/c, which is again of the
Minkowski form. Note that so far there are no reported
measurements of the transferred mass of a light pulse.

III. SOLUTION OF FIELDS IN DISPERSIVE MEDIA

A. General dispersion

In dispersive media, the phase velocity and the phase
refractive index depend on frequency ω(k) = ck/np(ω), where
np(ω) is the frequency-dependent phase refractive index. The
phase velocity is given by vp(ω) = c/np(ω) = ω(k)/k and the
group velocity by the formula vg(ω) = c/ng(ω) = ∂ω(k)/∂k,
where ng(ω) is the group refractive index.

The most general forms of the electric and magnetic fields
of a linearly polarized one-dimensional light pulse propagating
in x direction in a dispersive medium can be written as [29]

E(r,t) = Re

[ ∫ ∞

−∞
Ẽ(k)ei[kx−ω(k)t]dk

]
ŷ, (1)

H(r,t) = Re

[ ∫ ∞

−∞
H̃ (k)ei[kx−ω(k)t]dk

]
ẑ, (2)

where ŷ and ẑ are unit vectors with respect to y and z axes and
Ẽ(k) and H̃ (k) are the Fourier components of the electric and
magnetic fields. The field components are related to each other
by H̃ (k) = √

ε[ω(k)]/μ[ω(k)]Ẽ(k), where ε(ω) and μ(ω) are
the frequency-dependent permittivity and permeability of the
medium. These are related to the phase refractive index as
ε(ω)μ(ω) = ε0μ0np(ω)2, where ε0 and μ0 are the permittivity
and permeability of the vacuum respectively. The electric and
magnetic fields in Eqs. (1) and (2) are exact solutions of
Maxwell’s equations.

B. Linear dispersion

We first investigate a light pulse in a dispersive medium,
where the dispersion relation is effectively linear near the
central frequency ω0 containing the first terms of the Taylor
expansion of ω(k) as

ω(k) ≈ ω0 + (c/ng)(k − k0,med), (3)

where k0,med = npk0 is the wave number corresponding to ω0

in the medium, k0 = ω0/c is the wave number in vacuum,
np = np(ω0) is the phase refractive index for ω0, and the group
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refractive index ng is constant. The linear dispersion relation
in Eq. (3) is a good approximation for any general dispersion
relation if the frequency spread of the wave packet is relatively
small, the dispersion relation does not have sharp variations
due to resonances, and if the wave packet does not travel
over very long distances. Otherwise, higher-order terms in the
Taylor expansion of ω(k) also become important.

For frequencies deviating from ω0, the linear dispersion
relation in Eq. (3) defines the frequency-dependent phase
refractive index as

np(ω) = ng + (np − ng)
ω0

ω
. (4)

The linear form of the dispersion relation in Eq. (3) is known
to be the most general form of the dispersion relation, which
does not lead to the distortion of the pulse envelope while the
pulse propagates.

We assume a Gaussian light pulse with Ẽ(k) =
Ẽ0e

−[(k−npk0)/(np�k0)]2/2 where Ẽ0 is a normalization factor
and �k0 is the standard deviation of the wave number in
vacuum related to the pulse width in the x direction as
�x = 1/(

√
2np�k0). The corresponding standard deviation in

time is then �t = np�x/c = 1/(
√

2�k0c) and the full width
at half maximum is �tFWHM = 2

√
2 ln 2 �t . Using Eq. (1) and

the linear dispersion relation in Eq. (3), the electric field then
becomes

E(r,t) =
√

2π np�k0Ẽ0 cos

[
npk0

(
x − ct

np

)]

× e−(np�k0)2(x−ct/ng)2/2ŷ. (5)

The normalization factor Ẽ0 in Eq. (5) can be determined so
that the integral of the corresponding instantaneous energy
density over x gives U0/A, where A is a cross-sectional area
and U0 is the total energy of the light pulse.

An example of the electric field of a Gaussian light pulse
given in Eq. (5) is presented in Fig. 2. The envelope function
described by the exponential factor in Eq. (5) propagates
at the group velocity vg = c/ng while the individual peaks
and troughs inside the wave envelope propagate at the phase
velocity vp = c/np. In other words, the phase velocity vp(ω)
describes the propagation velocity of individual frequency
components while the amplitudes of the frequency components
add up to produce a wave packet, which propagates at the group
velocity [29]. Therefore, the total energy of the wave packet
propagates at the group velocity.

C. Nonlinear dispersion

In general, the linear dispersion relation above cannot pro-
vide a complete description of dispersion close to resonances
or in the case of large frequency ranges. Therefore, following
some previous works on the Abraham-Minkowski controversy
[30], we study as an example of nonlinear dispersion a simple
Lorentz model for a dielectric medium with a single resonance
frequency ωr and zero damping factor [31]. The imaginary part
of the refractive index can be assumed zero at ω0 and the real

FIG. 2. Example of the electric field and its envelope function in
the case of an ultrashort Gaussian light pulse of vacuum wavelength
λ0 = 1550 nm, �tFWHM = 27 fs, and energy U0 = 1 μJ per cross-
sectional area of diameter d = 100 μm. The phase and group
refractive indices for the central frequency in a linearly dispersive
medium are assumed to be np = 1.5 and ng = 2. The wave envelope
propagates at the group velocity vg = c/ng while the individual peaks
and troughs inside the wave envelope propagate at the phase velocity
vp = c/np.

part of the refractive index is given by [30]

np(ω) =
√

1 + ω2
p

ω2
r − ω2

, (6)

where ωp is a model parameter. The dispersion equation k =
np(ω)ω/c then takes the quadratic form [30]

ω4 − (
ω2

p + ω2
r + k2c2)ω2 + k2c2ω2

r = 0. (7)

For each k, there are two positive solutions. These solutions
are given by [30]

ω± =

√√√√ω2
r + ω2

p + k2c2 ±
√(

ω2
r + ω2

p + k2c2
)2 − 4k2c2ω2

r

2
.

(8)

These are called the upper (+) and lower (−) polariton
branches and they have been illustrated in Fig. 3. For the wave
number k = np(ω0)ω0/c corresponding to ω0 with ω0 > ωr,
we obtain ω+ = ω0 and ω− = np(ω0)ωr and with ω0 < ωr

we obtain ω+ = np(ω0)ωr and ω− = ω0. We must restrict
to the solution for which ωi = ω0. The other solution of
the dispersion equation has the same wave number, but the
frequency is very different from ω0.

The main difference between linear and nonlinear disper-
sion is that, in the nonlinear case, the envelope of a wave
packet becomes distorted as it travels. This follows from the
fact that the group velocity vg = ∂ω(k)/∂k is not constant
but different for different values of k. Therefore, the wave-
number components move at different velocities distorting the
envelope of the wave packet. However, if the wave packet
has a range of frequencies that is narrow enough compared
to the nonlinearity, then ω(k) is necessarily approximately
linear over that narrow range and the pulse distortion is small.
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FIG. 3. An example of a two-branch polariton dispersion curve
with a single resonance frequency ωr. For the lower branch ω < ωr

and for the upper branch ω > ωr.

Therefore, in the limit of narrow frequency range, using the
linear dispersion relation in Eq. (3) becomes an accurate
approximation.

IV. OPTOELASTIC CONTINUUM DYNAMICS

A. Optical force density

In previous literature, there has been extensive discussion
on the appropriate form of the force density acting on the
medium under the influence of time-dependent electromag-
netic field [30]. We have recently shown [1] that there is only
one form of optical force density that is fully consistent with the
MP quasiparticle model and the underlying principles of the
special theory of relativity in the case of nondispersive media
[1]. We generalize this optical force density for dispersive
media by writing

fopt(r,t) = −ε0ngE2∇np + npng − 1

c2

∂

∂t
E × H, (9)

where E × H = S is the instantaneous Poynting vector. The
expression of the optical force density given in Eq. (9) can be
at this stage taken as a postulate. We will later on justify it by
showing that it is the only form of the optical force density
that enables covariant description of the light pulse, fulfills the
conservation law of momentum, and is also consistent with the
MP quasiparticle model. We have not found this specific form
of the optical force density in previous works.

In calculating the optoelastic force field, we assume that the
damping of the electromagnetic field due to the transfer of field
energy to the kinetic and elastic energies of the medium by the
optical force is negligible. Adopting this perturbative approach
is justified as the effect of the fields on the dynamical state of
the material is such that the back action of the dynamics of
the medium on the state of the fields is extremely small. The
accuracy of this approximation is estimated in Ref. [1] and
the conclusions are valid also for dispersive media if there
is no direct optical absorption related, e.g., to the electronic
excitation of the medium.

B. Newton’s equation of motion

In the OCD model, the coupling between the field and
matter is described by Newton’s equation of motion. As the
atomic velocities are nonrelativistic, Newton’s equation of
motion for the mass density of the medium ρa(r,t) is given
by

ρa(r,t)
d2ra(r,t)

dt2
= fopt(r,t) + fel(r,t), (10)

where ra(r,t) is the position- and time-dependent atomic
displacement field of the medium, fopt(r,t) is the optical force
density experienced by atoms, given in Eq. (9), and fel(r,t) is
the elastic force density between atoms that are displaced from
their initial equilibrium positions by the optical force density.

Close to equilibrium, the elastic forces between atoms are
known to be well described by Hooke’s law. In the simple case
of a homogeneous isotropic elastic medium, the elastic force
density in terms of the material displacement field ra(r,t) is
well known to be given by [32]

fel(r,t) = (
B + 4

3G
)∇[∇ · ra(r,t)] − G∇ × [∇ × ra(r,t)],

(11)

where B is the bulk modulus and G is the shear modulus of
the medium [33]. In more general anisotropic cubic crystals,
Eq. (11) must be replaced with a more general form given by
the following set of componentwise equations [34]:

fel,x = C11
∂2ra,x

∂x2
+ C44

(
∂2ra,x

∂y2
+ ∂2ra,x

∂z2

)

+ (C12 + C44)

(
∂2ra,y

∂x∂y
+ ∂2ra,z

∂x∂z

)
, (12)

fel,y = C11
∂2ra,y

∂y2
+ C44

(
∂2ra,y

∂x2
+ ∂2ra,y

∂z2

)

+ (C12 + C44)

(
∂2ra,x

∂x∂y
+ ∂2ra,z

∂y∂z

)
, (13)

fel,z = C11
∂2ra,z

∂z2
+ C44

(
∂2ra,z

∂x2
+ ∂2ra,z

∂y2

)

+ (C12 + C44)

(
∂2ra,x

∂x∂z
+ ∂2ra,y

∂y∂z

)
, (14)

where C11, C12, and C44 are elastic constants. The forces given
in Eqs. (12)–(14) simplify to the case of an isotropic medium
in Eq. (11) by substitutions C11 = B + 4

3G, C12 = B − 2
3G,

and C44 = G.

C. Energy and momentum of the MP

For a monochromatic field with angular frequency ω0 in
a lossless dispersive medium, the energy and momentum are
given by [2]

Efield =
∫

1

2

[
d(εω0)

dω0
E2 + d(μω0)

dω0
H2

]
d3r, (15)

pfield =
∫

1

c2
E × Hd3r. (16)

063834-4



MASS-POLARITON THEORY OF LIGHT IN DISPERSIVE . . . PHYSICAL REVIEW A 96, 063834 (2017)

The momentum density of the field in Eq. (16) is essentially of
the Abraham form. The momentum density in Eq. (16) is also
justified by the MP quasiparticle model as described below.

The energy density in the integrand of Eq. (15) is known to
be accurate only in the limit of a monochromatic field. Here,
we use it as an approximation for light pulses. A more accurate
but also more complicated expression for the energy density of
a finite light pulse in a dispersive medium is given in Ref. [35].

In the same way as done for a nondispersive medium in
Ref. [1], it can be easily shown that, in the OCD model, the
energy and momentum of the MDW atoms are given by

EMDW =
∫

ρMDWc2d3r ≈ (npng − 1)Efield, (17)

pMDW =
∫

ρavad
3r =

∫
ρMDWvgd

3r ≈ (npng − 1)pfield.

(18)

Here va = dra/dt is the velocity of atoms, vg is the group
velocity vector, and the MDW mass density ρMDW is given by
ρMDW = ρa − ρ0, in which ρ0 is the equilibrium mass density
of the medium. Thus, the MDW mass density corresponds to
the excess mass density in the medium. The total energy and
momentum of the MP are given as sums EMP = EMDW + Efield

and pMP = pMDW + pfield resulting in

EMP =
∫ {

ρMDWc2 + 1

2

[
d(εω0)

dω0
E2 + d(μω0)

dω0
H2

]}
d3r,

(19)

pMP =
∫ (

ρava + 1

c2
E × H

)
d3r. (20)

Following Appendix B of Ref. [1], it is also straightforward
to present the energy and momentum densities in the integrands
of Eqs. (15)–(20) using the energy-momentum tensor formal-
ism. The total energy-momentum tensor of the MP can also be
correspondingly split into parts related to the electromagnetic
field and the MDW.

V. MASS-POLARITON QUASIPARTICLE MODEL

In the following, we generalize the MP quasiparticle model
of Ref. [1] for dispersive media. To emphasize the role of the
MP as an intrinsic covariant state of a single photon coupled to
the medium, we neglect for the moment the possible interface
effects that occur when the photon enters the medium and
instead assume that a photon having a field energy h̄ω0 is
propagating inside the medium. Generalization of the present
work for full quantum optical description of the MP is left for
future works.

Instead, we use an analogy of a single MP state to a very
narrow wave packet in phase space having a central frequency
ω0 and field energy h̄ω0. In the OCD theory, such a wave
packet can be made arbitrarily close to a monochromatic wave.
Monochromatic components of such a wave packet propagate
at the phase velocity vp. First, we assume that the field energy
of the wave packet will vanish in the frame propagating with
velocity vp (F frame). Second, we assume that the frame
moving with the group velocity vg (R frame) is the rest frame
of the MP and accordingly the total momentum of the MP

becomes zero in this frame. Third, in analogy with the case of
a nondispersive medium, we know that the kinetic energy of
the atomic MDW is extremely small in the laboratory frame
(L frame), which is the initial rest frame of the medium. As
described in Ref. [1], the mass δm of the MDW is carried by
atoms. Since the total mass of atoms in the MDW is vastly
larger than the mass δm carried by the MDW, the speed of
atoms is very small and, in particular, their kinetic energy is
extremely small in comparison with h̄ω0. Next we determine
the total energy and momentum of the MP by requiring that
their values in the L frame, F frame, and R frame are related
by the Lorentz transformation.

L frame. The total energy of the MP in L frame is given by
EMP = h̄ω0 + δmc2. The first term is the assumed fixed field
energy. The second term δm is the mass energy carried by the
MDW. Note that, as discussed above, the kinetic energy of the
MDW is negligible in the L frame. The problem to be solved
is to determine δm and the total momentum pMP of the MP.

Lorentz transformation. When the L frame energy and mo-
mentum of the MP are transformed to any frame moving with
constant velocity v with respect to the L frame, their values in
the moving frame are given by the Lorentz transformation as

E′
MP = γv(EMP − vpMP) = γv(h̄ω0 − vpMP) + γvδmc2,

(21)

p′
MP = γv

(
pMP − vEMP

c2

)
= γv

(
pMP − vh̄ω0

c2
− vδm

)
,

(22)

where γv = 1/
√

1 − v2/c2 is the Lorentz factor. In the fol-
lowing, we will show that pMP and δm can be determined by
investigating Eqs. (21) and (22) in two special inertial frames:
the F frame and the R frame.

F frame. First, we observe that, in Eq. (21), the last term
on the right represents the transformed mass energy of the
MP, while the first term h̄ω′

0 = γv(h̄ω0 − vpMP) has its origin
entirely in the field energy. In the special case of the F frame,
which propagates with the phase velocity v = vp = c/np, the
frequency and the related field energy become zero as h̄ω′

0 →
0. Therefore, we obtain

pMP = nph̄ω0

c
, (23)

which is of the Minkowski form as commonly defined in liter-
ature for a dispersive medium [6,7]. Note that in the literature
there exists also another rather commonly defined form of
the Minkowski momentum given by pM = n2

ph̄ω0/(ngc) [36].
These momenta are discussed in more detail in Sec. VII B.

R frame. Second, we consider the special case of the R

frame in which the total momentum of the MP is zero by
definition. Inserting the momentum pMP from Eq. (23) into
Eq. (22) and setting v = vg = c/ng and p′

MP = 0, we obtain

δm = (npng − 1)h̄ω0/c
2. (24)

As the final outcome, we have obtained unique values for
pMP and δm, given in Eqs. (23) and (24). With the Lorentz
transformation in Eqs. (21) and (22), these values can be used
to unambiguously calculate the total energy and momentum
of the MP in arbitrary inertial frames. Therefore, the MP
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quasiparticle is the only model of a light quantum in a medium
that fully satisfies the Lorentz transformation and is consistent
with the phase and group velocities.

According to the special theory of relativity, we can write
the total energy of the MP in the R frame as m0c

2, where m0

is the rest mass of the structural system of the MP. Therefore,
inserting pMP and δm from Eqs. (23) and (24) into Eq. (21)
together with v = vg = c/ng, we obtain in the R frame

m0 = np

√
n2

g − 1 h̄ω0/c
2. (25)

The corresponding MP energy and momentum in the L

frame are then given by

EMP = γvgm0c
2 = npngh̄ω0,

pMP = γvgm0vg = nph̄ω0

c
. (26)

These results essentially generalize the results of Ref. [1]
for dispersive media. The energy and momentum in Eq. (26)
and the rest mass in Eq. (25) fulfill the covariance condition
E2

MP − (pMPc)2 = (m0c
2)2. Although knowing δm is enough

to understand the mass transfer associated with the MP, m0 is
useful for transparent understanding of the covariant MP state
of light in a medium.

Using the covariant energy-momentum ratio E/p = c2/vg,
we can split the total MP momentum in Eq. (26) into parts
corresponding to the electromagnetic energy Efield = h̄ω0 and
the MDW energy EMDW = δmc2. As a result, we obtain the
field’s and MDW’s shares of the total MP momentaum in the
L frame as

pMDW = δmvg =
(

np − 1

ng

)
h̄ω0

c
,

pfield = pMP − pMDW = h̄ω0vg

c2
= h̄ω0

ngc
. (27)

The field’s share of the momentum is of the Abraham form
and the MDW’s share of the momentum corresponds to the
difference of the Minkowski and Abraham momenta.

Using Eqs. (23)–(26) one can easily show that the constant
center of energy velocity (CEV) law, essentially equal to
Newton’s first law, is fulfilled by the MP theory also in the case
of dispersive media. We apply the conservation of momentum
at the interface where the photon enters a medium block. The
photon momentum in vacuum must then be equal to the sum of
the MP momentum and the possible recoil momentum received
by a thin interface layer of the medium block. We can write the
momentum conservation law as h̄ω0/c = pMP + MrVr, where
Mr = M − δm is the mass of the medium block from which
the mass transferred by the MP has been subtracted. The
center of energy velocity Vr of Mr can then be solved from
the momentum conservation law as Vr = (1 − np)h̄ω0/(Mrc),
where we have used the transferred mass given in Eq. (24).
Writing the energy of the MP using its rest mass given in
Eq. (25) and observing that the atomic velocities are certainly
nonrelativistic, we can write the CEV law before and after the
photon has entered the medium as

VCEV =
∑

i Eivi∑
i Ei

= h̄ω0c

h̄ω0 + Mc2
= γm0c

2vg + Mrc
2Vr

γm0c2 + Mrc2
.

(28)

Here the summation is over all material particles and field
quanta and Ei and vi are their energies and velocities. The
equality of the numerators divided by c2 corresponds to the
momentum conservation and the equality of the denominators
is nothing but the conservation of energy. Therefore, Eq. (28)
directly shows that the MP model obeys the constant CEV
motion in dispersive media, thus generalizing the result derived
for nondispersive media in Ref. [1]. This also explains why the
derivations of the Minkowski momentum assuming zero rest
mass for the light quantum in a medium lead to violation of
the constant CEV motion [6,7].

As a side product, by substituting pMP from Eq. (23)
into the first term of Eq. (21), h̄ω′

0 = γv(h̄ω0 − vpMP), we
obtain h̄ω′

0 = γv(1 − npv/c)h̄ω0, which is the well-known
Doppler-shifted energy of a photon in a medium in an arbitrary
frame moving with the velocity v with respect to the L

frame [37]. Thus, the total MP momentum of the Minkowski
form in Eq. (23) can also be derived from the Doppler shift
[6,38], which, however, must be used as a part of the Lorentz
transformation in Eqs. (21) and (22) in order to enable the
determination of the transferred mass δm of the MP.

VI. OCD SIMULATIONS

Above, we have derived the MP theory for dispersive media
using the complementary MP quasiparticle and OCD models.
In order to show the correspondence between these models and
to illustrate the MDW and the actual atomic displacements due
to optoelastic forces in dispersive media, we present numerical
OCD simulations of a Gaussian light pulse propagating in
linearly and nonlinearly dispersive sample media. To facilitate
the planning of possible experiments, we also compute the
atomic displacements due to the MDW in silicon.

A. Visualization of the node structure of the MDW

1. Linearly dispersive medium

First, we apply the OCD model to illustrate the node
structure of the MDW and the actual atomic displacements due
to a Gaussian light pulse in a linearly dispersive material. The
Gaussian light pulse of Eq. (5) is assumed to have a vacuum
wavelength of λ0 = 1550 nm and a total electromagnetic
energy of U0 = 1 μJ. We assume that the relative spectral
width of the pulse, in our example, is �ω/ω0 = �k0/k0 =
0.05 corresponding to �tFWHM = 27 fs. The FWHM is fixed
to this close to feasibility limit value to make the node
structure of the MDW visible. In our simulations, we use
space discretization of hx = λ/40 and time discretization of
ht = 2π/(40ω0) that are sufficiently dense compared to the
scale of the harmonic cycle. The computational details of the
simulation are described in Appendix C of Ref. [1].

For visualization needs, we use here an artificial example
material for which the refractive indices at the central fre-
quency ω0 = 2πc/λ0 are np = 1.5 and ng = 2. The chosen
phase refractive index is close to typical values for glasses but
we have made the group refractive index somewhat larger to
enable the visual separation of the phase velocity dynamics
of the nodes inside the Gaussian envelope. The diameter d of
the circular cross-sectional area A = π (d/2)2 is assumed to
be d = 100 μm, which is chosen to be large enough so that the
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FIG. 4. Illustration of (a) the MDW and (b) the atomic displacements in a linearly dispersive material where the phase and group refractive
indices for the central frequency are np = 1.5 and ng = 2. The Gaussian light pulse has a vacuum wavelength λ0 = 1550 nm, �tFWHM = 27 fs,
and energy U0 = 1 μJ per cross-sectional area of diameter d = 100 μm. The pulse parameters are close to technological feasibility limit
but they are chosen to visualize the node structure of the MDW. Panel (c) shows the MDW and (d) shows the atomic displacements of a
three-dimensional light pulse with finite lateral dimensions in the plane z = 0 m.

resulting maximum value 3.3 × 1011 W/cm2 of the Poynting
vector averaged over the harmonic cycle is below the bulk
value of the breakdown threshold irradiance of many common
materials, e.g., 5.0 × 1011 reported for fused silica [39]. The
equilibrium density of the material is assumed to be ρ0 = 2400
kg/m3, the material is assumed to be isotropic, and we use the
value B = 50 GPa for the bulk modulus and G = 25 GPa for
the shear modulus. These values are close to typical values of
the corresponding quantities for glass.

Figure 4(a) shows the simulated MDW as a function of
position when the light pulse is propagating at the position
x = 0 μm. The time-dependent simulation is presented as a
video file in the Supplemental Material [40]. The MDW equals
the difference of the disturbed mass density ρa(r,t) and the
equilibrium mass density ρ0 of the medium and it is obtained
by solving Newton’s equation of motion in Eq. (10). The
MDW is driven by the optoelastic forces due to the Gaussian
light pulse. The envelope of the MDW clearly follows the
Gaussian form of the pulse as expected. As the light pulse
is not very long compared to the harmonic cycle, the node
structure of the MDW can be seen in the same scale with
the Gaussian envelope. When we integrate the MDW mass
density in Fig. 4(a), we obtain the total transferred mass of
2.23 × 10−23 kg. Dividing this by the photon number of the
light pulse, we then obtain the value of 1.60 eV/c2 for the
transferred mass per photon. Within the relative error of 10−4,

this equals the MP quasiparticle value obtained from Eq. (24).
For a more detailed discussion of the correspondence between
the MP quasiparticle and OCD approaches, see Sec. VII.

Figure 4(b) shows the atomic displacements corresponding
to MDW in Fig. 4(a), again, as a function of position. On the left
of the light pulse, the atomic displacement has a constant value
of ra,max = 1.18 × 10−18 m. This follows from the optical force
in the second term of Eq. (9). Within the relative error of 10−4,
we obtain ra,max = δM/(ρ0A), where δM = N0δm is the total
transferred mass of the light pulse. The leading edge of the
optical pulse is propagating to the right approximately at the
position x = 7 μm. Therefore, to the right of x = 7 μm, the
atomic displacement is zero. The optoelastically driven MDW
is manifested by the fact that atoms are more densely spaced
at the position of the light pulse as the atoms on the left of
the pulse have been displaced forward and the atoms on the
right of the pulse are still at their equilibrium positions. The
momentum of atoms in the MDW is obtained by integrating
the classical momentum density as given in Eq. (18) at an
arbitrary time.

We also illustrate the MDW and the atomic displacements
due to a three-dimensional light pulse. This light pulse is
only an approximative solution of Maxwell’s equations. It
is obtained from the one-dimensional pulse described by
Eq. (5) by adding additional y and z dependencies by using
factors e−(�ky )2y2/2 and e−(�kz)2z2/2. As reasoned in Ref. [1],
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this approximation becomes accurate if �ky and �kz are
sufficiently small compared to the wave number of the central
frequency in the medium equal to k0,med = npk0. In our
example, we use �ky = �kz = 10−4k0, which are small so
that the approximation is well justified for our visualization
purposes.

The contour plot in Fig. 4(c) shows the MDW of the
three-dimensional Gaussian pulse in the plane z = 0 m. The
corresponding time-dependent simulation is presented as a
video file in the Supplemental Material [40]. The three-
dimensional pulse differs from the one-dimensional pulse in
Fig. 4(a) by its finite lateral dimensions as described above.
The values of the MDW in Fig. 4(c) are thus smaller than the
values in Fig. 4(a) due to the smaller value of the energy per
cross-sectional area.

The contour plot in Fig. 4(d) presents the x component
of the atomic displacements due to the three-dimensional
Gaussian pulse in the plane z = 0 m. The values of the atomic
displacement in Fig. 4(d) are smaller than the values in the
one-dimensional case in Fig. 4(b), again, due to the smaller
value of the energy per cross-sectional area.

2. Nonlinearly dispersive medium

Next we investigate the MDW in a nonlinearly dispersive
example material. The nonlinear dispersion is described by
the simple Lorentz model of a dielectric in Sec. III C. We use
the same parameters for the Gaussian pulse as above. The
only difference is the use of the nonlinear dispersion relation
in Eq. (7), in which the model parameters ωr = 1.632 99ω0

and ωp = 1.443 38ω0 have been determined so that the phase
and group refractive indices have the same values np = 1.5
and ng = 2 for the central frequency of the pulse as above.
As ω0 < ωr, the dispersion relation corresponds to the lower
polariton branch in Fig. 3.

We start by briefly discussing how the nonlinear dispersion
relation affects the pulse shape in comparison with the linear
dispersion relation. At t = 0 fs, the electric field of the pulse
is determined by its Fourier components that are chosen
to be of the same Gaussian form as in the case of linear
dispersion above. In dispersive media, the Fourier components
of the magnetic field are given by H̃ (k) = Z(k)Ẽ(k), where
the proportionality factor Z(k) = √

μ[ω(k)]/ε[ω(k)] is the
k-dependent wave impedance. Due to this k-dependent propor-
tionality factor, the Fourier components of the magnetic field
and the resulting pulse shapes are modified depending on the
dispersion relation even at t = 0 fs. However, for light pulses
with a narrow spectral width, the deviation in the pulse shape
between the nonlinear and the corresponding linear dispersion
relation is typically very small for t = 0 fs. At later times
t > 0 fs, the dispersion-modified time dependence through
the exponential factor e−iω(k)t of the fields in Eqs. (1) and (2)
more clearly affects the pulse shape. Therefore, in order to
illustrate the effect of nonlinear dispersion, we compare the
MDW pulse shapes at t = 0 and t = 500 fs.

Figure 5(a) presents the MDW of the Gaussian pulse in
the nonlinearly dispersive medium at these two instances
of time. The corresponding time-dependent simulation is
presented as a video file in the Supplemental Material [40].
The pulse on the left in Fig. 5(a) corresponds to the pulse
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FIG. 5. (a) The MDW and (b) the atomic displacement of
a Gaussian light pulse in a nonlinearly dispersive material as a
function of the position at two instances of time: t = 0 fs (blue)
and t = 500 fs (red). The vacuum wavelength is λ0 = 1550 nm and
the corresponding phase and group refractive indices are np = 1.5
and ng = 2.

at t = 0 fs while the pulse on the right corresponds to the
pulse at t = 500 fs. During this time interval, the pulse has
propagated to the right a distance of 75 μm. One can clearly
see that the pulse has become lower and broadened when
compared to the initial pulse. This effect follows purely from
the nonlinearity of the dispersion relation. If the dispersion
relation would be perfectly linear, this broadening would not
occur as the Gaussian envelope would maintain its width.

Figure 5(b) shows the atomic displacements corresponding
to the MDW in Fig. 5(a) at t = 0 and t = 500 fs. The most
clear physical difference between the atomic displacements
at these two moments of time is that the slope of the atomic
displacement curve in Fig. 5(b) is lowered at t = 500 fs. This
follows from the broadening of the light pulse. The atomic
displacements on the left of the pulse are approximatively
equal as expected. This constant value, ra,max, depends on
the phase and group refractive indices and the density of the
material, but it is only slightly affected by the nonlinearity of
the dispersion relation. This can be seen by observing that the
constant value of the atomic displacement on the left of the
light pulse in Fig. 5(b) is closely equal to the corresponding
value in Fig. 4(c). This is related to the fact that we have used
the same density for the material and defined the nonlinear
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dispersion relation so that the phase and group refractive
indices for the central frequency in our nonlinear case are equal
to the same quantities in the case of linear dispersion above.

3. Continuous wave

By changing the Gaussian light pulse to a top-hat pulse and
by making the length of the pulse very large, we can also use
the time-dependent OCD model to simulate a continuous-wave
(cw) laser beam. The cw beam deserves a separate comment
since it has been extensively discussed in previous theoretical
works and in the analysis of experiments. Previous theoretical
works have often concluded that, since the time average of the
Abraham force given by the second term of Eq. (9) is zero
for the cw field, its effect is not directly observable [30]. This
conclusion is not sound. The maxima of the cw field energy
give rise to alternative acceleration and deceleration of the
atoms in the medium in the direction of the light beam. As
a net effect, the atoms are displaced in the direction of the
beam and, in the average, they also carry momentum. This
changes the dynamical state of the medium and also leads to
shift of the atomic density which must be accounted for in
the analysis of experiments. Note that in the simulations of
the dynamical state of the medium using the OCD method,
whether we analyze a light pulse in a solid using elasticity
theory or in a liquid using Navier-Stokes equation, we cannot
assume that the medium is incompressible, which is often
done [8]. In a perfectly incompressible medium, the medium
dynamics cannot follow the time and position dependence
of the electromagnetic field in a way governed by Newton’s
equation of motion in Eq. (10).

In long time scales, the elastic forces that try to restore the
mass equilibrium in the medium also play an important role.
Assuming the geometry of a medium block whose transverse
boundaries are held fixed by external forces, the OCD model
leads to an equilibrium where the forward mass transfer due
to the MDW is balanced by the backward mass transfer due to
elastic waves. The accumulation of the elastic waves together
with the absorption of photons also lead to heating of the
medium block. Therefore, in order to obtain an equilibrium in
the simulation, one must also account for the transport of the
generated heat over the boundaries of the medium block by
conduction and radiation. The detailed study of this cw case is
left as a topic of further work.

B. Estimating atomic displacements of the MDW in silicon

Next we study how the atomic displacement of the MDW
depends on the pulse energy and the diameter of the cross-
sectional area. These calculations are presented for designing
experimental setups for the measurement of the transferred
mass of a light pulse. We simulate a one-dimensional Gaussian
pulse in silicon for different pulse energies, cross-sectional
areas, and �tFWHM. The computed atomic displacements
correspond to the experimental arrangement in which the given
pulse energy is propagating in a waveguide or an optical fiber
as schematically illustrated in Fig. 6. Due to the interface
effects, the cross-sectional area of the fiber cannot be directly
compared with the cross-sectional area of our calculations. The
core cross section of the waveguide or fiber should be corrected
for the possible cladding layer, metallic coating, and other

FIG. 6. Schematic illustration of a waveguide or an optical fiber
with a core diameter d and length L. The transferred mass of the
MDW is to be measured as the shift of atoms on the surface of the
waveguide at x = L/2 just after the light pulse has gone.

factors that influence the spreading of the pulse energy in the
transverse direction. In detailed calculations, the waveguide
dispersion should also be taken into account. All these factors
can be easily accounted for in the OCD simulations.

The phase and group refractive indices of silicon are given
by np = 3.4757 and ng = 3.5997 for λ0 = 1550 nm [41]. The
density is ρ0 = 2329 kg/m3 [42] and the elastic constants in
the direction of the (100) plane are C11 = 165.7 GPa, C12 =
63.9 GPa, and C44 = 79.6 GPa [43]. These elastic constants
correspond to the bulk modulus of B = (C11 + 2C12)/3 =
97.8 GPa and the shear modulus of G = C44 = 79.6 GPa.

Figure 7 shows the atomic displacement as a function
of the pulse energy and the diameter of the cross-sectional
area. Compared to the femtosecond pulses above, we here
assume longer pulses with �tFWHM > 1 ns. Therefore, the
correspondence of the MP quasiparticle and the OCD models
is very accurate and we can use the quasiparticle model
result ra,max = δM/(ρ0A) for the maximum atomic displace-
ment ra,max. Using δM = (npng − 1)U0/c

2 and A = π (d/2)2,
where d is the diameter of the cross-sectional area, we
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FIG. 7. The total atomic displacement of the MDW of a Gaussian
light pulse in silicon as a function of the pulse energy and the diameter
of the cross-sectional area of the pulse. The vacuum wavelength is
λ0 = 1550 nm and the corresponding phase and group refractive
indices are np = 3.4757 and ng = 3.5997. The second color-bar axis
shows the threshold �tth of the pulse obtained by requiring that the
bulk value of the breakdown threshold irradiance of the material is
not exceeded.
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then obtain ra,max = (npng − 1)U0/[c2ρ0π (d/2)2]. Hence the
atomic displacement depends linearly on the pulse energy
while it is inversely proportional to the cross-sectional area.
Consequently, in Fig. 7, the atomic displacement is seen to
be large for high pulse energies and for small cross-sectional
areas as expected.

1. Influence of the material breakdown irradiance

We also evaluate the minimum �tFWHM of a Gaussian
pulse that is needed to produce the corresponding atomic
displacement without exceeding the bulk value of the break-
down threshold irradiance of the material. Using the total
electromagnetic energy of the pulse given by U0, and the
cross-sectional area of the pulse given by A = π (d/2)2, this
threshold �tFWHM, denoted by �tth, is calculated as �tth =
2U0/[π (d/2)2Ith], where Ith is the bulk value of the breakdown
threshold irradiance of the material. The corresponding fluence
is Fth = 2U0/[π (d/2)2]. The factor 2 comes from the fact that
the pulse is Gaussian and not a top-hat pulse with constant
irradiance. For silicon with λ0 = 1550 nm, the bulk value of
the breakdown threshold energy density has been reported to
be uth = 13.3 J/cm3 [44], which corresponds to the threshold
irradiance of Ith = uthvg = 1.11 × 1011 W/cm2. These are
values averaged over the harmonic cycle.

The threshold �tth of a Gaussian pulse calculated as
explained above is presented by the second color-bar axis
in Fig. 7. Using the relations above, the scaling between
the atomic displacement and the threshold �tth is given
by ra,max/�tth = (npng − 1)Ith/(2c2ρ0). This clearly indicates
that, in order to obtain large atomic displacements for a given
pulse energy, it is beneficial to have a material with a high
refractive index, high breakdown threshold irradiance, and
relatively small mass density. In Fig. 7, one can see that, in
order to obtain atomic displacements larger than 1 nm in silicon
without breaking the material, the pulse width must be larger
than �tth = 33 μs.

2. Displacement of atoms due to optical absorption

In measuring the atomic displacements due to the MDW,
one essential point is to ensure that the momentum transfer
due to optical absorption of the material is not too large so that
the resulting atomic movement would exceed the photon mass
drag effect. Therefore, we estimate the atomic displacement
and the atomic velocity resulting from the optical absorption.
The mass of a cylindrical medium block with a diameter
d and length L, or the core of the waveguide in Fig. 6,
is given by M = ρ0π (d/2)2L. The momentum absorbed by
this medium block is given by Pabs = (1 − e−αL)npU0/c ≈
αLnpU0/c, where α is the small absorption coefficient of
the medium. The velocity obtained by the medium block is
then Vabs = Pabs/M ≈ αnpU0/[cρ0π (d/2)2]. In the time scale
of �tFWHM, the resulting atomic displacement is given by
Xabs = Vabs�tFWHM.

In the case of silicon, absorption is very low at λ0 = 1550
nm. The measurements by Schinke et al. [45] and Green [46]
for λ0 = 1450 nm give α ≈ 10−8 cm−1 and the absorption
is known to decrease towards λ0 = 1550 nm. Therefore, we
can conservatively estimate α = 10−8 cm−1. Using �tFWHM =
�tth = 33 μs and d = 2.5 μm corresponding to ra,max =

1.0 nm atomic displacement due to the MDW, and solving
the threshold pulse energy from �tth = 2U0/[π (d/2)2Ith], we
obtain U0 = 90 mJ. The velocity of atoms is then Vabs = 9.1 ×
10−8 m/s and, in the time scale of �tth, the resulting atomic
displacement is given by Xabs = 3.0 pm. This atomic displace-
ment due to optical absorption is clearly smaller than ra,max =
1.0 nm following from the photon mass drag effect. Therefore,
optical absorption is not expected to prevent measurements of
the atomic displacements due to the photon mass drag effect.
This result strongly supports the experimental feasibility of
the measurement of the transferred mass of the MDW.

We have also considered the thermal expansion following
from the optical absorption. Using the well-known specific-
heat capacity and thermal-expansion coefficients, it can be
shown that the thermal expansion does not lead to measurable
atomic displacements in the middle part of the fiber in the time
scale of �tFWHM that is shorter than the time that it takes for
sound waves to travel through the fiber. This is also related to
the longitudinal relaxation studied below.

3. Transverse relaxation

In the experimental verification of the transferred mass of
the MDW, one also has to account for the phonon relaxation
of the atomic displacements due to the MDW. This relaxation
takes place at the velocity of sound and it is governed by
Eqs. (12)–(14) of the OCD model. The relaxation effect has
been briefly studied in Ref. [1]. If a three-dimensional light
pulse propagates inside a medium or in the core of an optical
fiber that has a cladding, the MDW displaces atoms as shown
in Fig. 4(d). The atoms along the path of the MP are displaced
forward while the atoms in the surrounding layers are not
shifted. This results in a shear strain field along the path of the
MP. The transverse relaxation refers to the relaxation of the
strain field so that atoms in the displaced region are shifted
backwards and atoms in the surrounding layers are shifted for-
wards. After the transverse relaxation, the longitudinal strain
becomes constant across the cross section of the waveguide.

The relaxation of the strain field is quite fast in optical
fibers where the distances to be traveled by phonons in the
transverse direction are very short. Using the longitudinal
velocity of sound in silicon, given by v‖ = √

C11/ρ0 = 8435
m/s, the time at which a sound wave propagates, e.g., a distance
of 1 mm is 1.2 ns. This is obviously very short compared
to the time scale of �tFWHM = 33 μs used above. Thus,
as a net effect, this transverse relaxation takes place in a
time scale that is shorter than the passing of the pulse and
we can approximate that, in a narrow waveguide, atoms are
displaced in the longitudinal direction by the same amount
in the middle and at the surface of the waveguide. After
the transverse relaxation, the constant atomic displacement
is reduced to ra,relaxed = ra,maxρ0A/(ρeffAtot), where Atot is
the total cross-sectional area of all layers and ρeff is the
effective mass density of the cross-sectional area given by
ρeff = ∑

i ρiAi/Atot, where the sum is taken over all material
layers and ρi and Ai are the densities and cross-sectional areas
of the corresponding layers.

The time constant of the transverse relaxation is much
shorter than the pulse width �tFWHM for structures where the
atomic displacement is potentially measurable. Therefore, it
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is advantageous to keep the waveguide diameter as small as
possible considering the effectivity of the coupling of the light
source to the waveguide and the technical processing aspects
of fabricating it. This suggests that the narrower the waveguide
is, the larger is the atomic displacement and the breakdown of
the material can be prevented by increasing the pulse width
�tFWHM. However, the longitudinal relaxation described in the
next subsection will set a limit for increasing �tFWHM.

4. Longitudinal relaxation

After the transverse relaxation has taken place, further
relaxation can only occur starting from the ends of the fiber,
which have experienced recoil effects and which may be
attached to some part of the experimental setup that tries to
keep them fixed. If the fiber is long enough, these longitudinal
relaxation waves starting from the ends of the fiber have not
time enough to reach the middle part of the fiber where the
atomic displacement is to be measured. The distance traveled
by sound in silicon in the time scale of �tFWHM = 33 μs is
28 cm. Therefore, a fiber with length L > 56 cm is sufficient to
avoid the longitudinal relaxation from having an effect on the
measured value of the atomic displacement assuming that the
atomic displacement in the middle part of the fiber is measured
just after the light pulse has gone.

VII. DISCUSSION AND COMPARISON OF
THE MP AND OCD RESULTS

A. Dependence on the pulse width

We have shown in Ref. [1] that, in the case of nondispersive
media, the MP and OCD models give equal results within the
relative numerical accuracy of the OCD simulations. For a dis-
persive medium, the comparison of the MP and OCD momenta
becomes more subtle. The derivation of the MP model in Sec. V
assumes infinitely narrow pulse in the frequency domain while
the OCD model involves integration over partial waves and
thus accounts for the frequency-dependent dispersion relation.
Using Eqs. (15)–(20) and (23)–(27), the total transferred mass
and the total momentum and the momentum of the field and
the MDW can be written for a dispersive medium as given in
Table I.

In order to study the correspondence between the MP and
OCD results in a dispersive medium, we plot the relative
difference in the total momentum PMP obtained from the MP
and OCD models as a function of the relative spectral width
�ω/ω0 of a Gaussian light pulse. The relative difference is

TABLE I. The transferred mass, the total momentum, the field’s
share of the momentum, and the MDW’s share of the momentum
calculated by using the MP and OCD models. Here N0 = U0/h̄ω0 is
the photon number of the pulse.

OCD MP

δM
∫

ρMDWd3r (npng − 1) N0h̄ω0
c2

PMP

∫ (
ρava + E×H

c2

)
d3r

npN0h̄ω0
c

x̂

Pfield

∫
E×H
c2 d3r

N0h̄ω0
ngc

x̂

PMDW

∫
ρavad

3r
(
np − 1

ng

)
N0h̄ω0

c
x̂

10−4 10−3 10−2 10−1 100
10−10
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10−2
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np=1.9
np=1.99
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FIG. 8. Relative difference in PMP obtained from the MP and
OCD models as a function of the relative spectral width of a
Gaussian light pulse. The wavelength is fixed to λ0 = 1550 nm and
the group refractive index is fixed to ng = 2. Solid lines show the
relative difference calculated by using the linear dispersion relation
for selected values of the phase refractive index. The dashed line
shows the corresponding plot assuming the nonlinearly dispersive
material studied in Sec. VI A, where np = 1.5 and ng = 2 for the
central frequency.

plotted in Fig. 8 for selected values of the phase refractive index
of a linearly dispersive material when the group refractive
index is fixed to ng = 2 and λ0 = 1550 nm.

Figure 8 shows that, for dispersive media, the OCD and MP
momenta are not equal but their relative difference depends
critically on the pulse width. For dispersive media, the MP
and OCD results become equal only in the narrow band limit
�ω/ω0 → 0 for which the relative difference in PMP becomes
zero. For relative difference values smaller than 10−10, the
graphs saturate to a constant value (not shown) following from
the accuracy of the numerical simulation. It is also found that
the relative difference in the transferred mass obtained by using
the MP and OCD models behaves the same way as the relative
difference in the total momentum in Fig. 8. At the narrow
band limit, both models describe very accurately the same
electromagnetic pulse. Thus, one may argue, in analogy to the
nondispersive case [1], that since the MP and OCD models
are representations of the same covariant theory for the single-
photon and continuum fields, respectively, the results predicted
by them must be equal.

That the results of the MP and OCD models are not exactly
equal for a broader pulse can be understood by looking at the
expressions of the electric and magnetic fields of the pulse,
see Eqs. (1) and (2), and in particular, keeping in mind the
dispersion relation and the related k dependence of the Fourier
components Ẽ(k)e−iω(k)t and H̃ (k)e−iω(k)t . Thus, the OCD
model effectively accounts for the frequency dependence of
the refractive index. Accordingly, the OCD result cannot be
exactly equal to the MP result if we multiply the MP total
momentum by photon number of the pulse and keep the
refractive indices fixed to their central frequency values. Note
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also that the accuracy of the total momentum given by the OCD
model is limited by the fact that the electromagnetic energy
density formula in Eq. (15) used in the OCD model is known
to hold exactly only in the limit of a monochromatic field [2].
Applying the OCD model with a more accurate form of the
energy density given in Ref. [35] is a topic of further work.

The dashed line in Fig. 8 represents the result for the
nonlinearly dispersive case studied in Sec. VI A, where np =
1.5 and ng = 2 for the central frequency. One can see that
this graph is qualitatively similar to the graphs obtained for
linearly dispersive media. This indicates that the nonlinearity
of the dispersion relation does not significantly influence the
relative difference between the MP and OCD results.

B. Comparison of the MP and OCD models with previous
experiments and theories

Neither previous experiments or theories have determined
the transferred mass of the light pulse, but we can still compare
the total MP and OCD momenta of the light pulse with previous
works. In the narrow-band limit, both the MP and OCD
models give the total momentum which is of the Minkowski
form pMP = npN0h̄ω0/c. This result is in accordance with
the laser beam experiment of Jones and Leslie [21], which
as discussed in Sec. II supports the Minkowski formula.
The experiments of Jones and Leslie were carried out for
transparent liquids for which the relaxation dynamics follows
Navier-Stokes equation instead of the elasticity theory. How-
ever, the relaxation dynamics has extremely small influence on
the total momentum of the light pulse. Thus, our simulations
for solids can also explain the results of Jones and Leslie. For
a reference of possible future experiments making use of a
broad pulse, one should note that the OCD model gives a more
accurate total momentum. The conventional definition of the
Minkowski momentum pMP = npN0h̄ω0/c is not meaningful
since, instead of a constant np, we should use a phase index
that is appropriately averaged over the broad band pulse.

Previously, Garrison et al. [36] have encountered into
a problem that the single-photon expectation value of the
momentum pM = ∫

gMd3r , obtained by using the Minkowski
momentum density gM = D × B, is not equal to the commonly
defined Minkowski momentum p̃M = nph̄ω/c following from
the de Broglie hypothesis or from the present theory but rather
pM = n2

ph̄ω/(ngc). This controversy has prompted Barnett
to introduce different kinetic and canonical values for the
momentum of light [6,7]. In Barnett’s theory, gM is called
as the canonical momentum density, but the single-photon
value of the momentum is determined by the spatial shift of
the field rather than by the single-photon expectation value of∫

gMd3r [6,7]. In contrast to Barnett’s theory, in our MP theory,
all complications are avoided as the Minkowski momentum
pMP = nph̄ω/c of the MP is also obtained for the single-photon
expectation value calculated by using the total MP momentum
density gMP = ρava + E × H/c2.

In the literature, there exist also other attempts to explain the
difference between the two different forms of the Minkowski
momentum. According to Philbin [35] and the very recent
works by Bliokh et al. [47,48], the form pM = n2

ph̄ω/(ngc)
is obtained if one neglects certain dispersion-related terms
in the momentum density while accounting for these terms

gives the correct form p̃M = nph̄ω/c, which equals the MP
momentum of the present work in Eq. (23). These works
did not however present any general splitting of the total
Minkowski momentum to the field and the atomic MDW
parts. In the studies of surface plasmon polaritons (SPPs)
[47,48], Bliokh et al. found that there is a current of electrons
which accounts for the difference between the Abraham and
Minkowski momenta. Therefore, one can expect that, in
structures supporting SPPs, the MDW may correspond to
the excess mass density due to the moving electrons. The
concept of the covariant state of light and the related MDW
are very general and expected to apply to the description of
light propagation in any material structures.

C. Expression of the optical force

In the derivation of the covariant description of the light
pulse, we have emphasized the coupled state of the field and
matter as an internal property of the MP. Also, the OCD
simulations are carried far from the interfaces so that the
first term of the optical force density Eq. (9) including the
gradient of the phase refractive index does not influence the
momentum or the transferred mass of the light pulse. For
this internal coupled state, we can forget various interface
effects and consider only the second term of the optical force
density in Eq. (9). The second term in Eq. (9) represents
the generalization of the well-known Abraham force for a
dispersive medium.

The full agreement between the MP and OCD models is
obtained only if the Abraham force used in the OCD model is
of the form given in Eq. (9). The interface term of the optical
force then also obtains an unambiguous form because of the
momentum conservation at the interfaces. Thus, the MP theory
of light in a dispersive medium leads to a unique expression
for the optical force.

VIII. CONCLUSIONS

We have generalized the recently developed MP theory
of light for dispersive media assuming that the absorption
and scattering losses are very small. The total momentum
and the transferred mass of the light pulse were derived both
using the MP quasiparticle model and the OCD model. In the
OCD simulations, we have considered only solid dispersive
media. However, the relation of the calculated momentum
and the transferred mass to the phase and group refractive
indices and to the pulse shape is very accurately the same
for dispersive liquids. For liquids, the relaxation dynamics
restoring the equilibrium in the medium is governed by the
Navier-Stokes dynamics instead of the elasticity theory. The
effect of the restoring force on the MP state of light is evidently
very small and it is mainly related to the strain field losses.
Detailed study of the MP theory of light in liquids is a topic of
further work. The MP theory as formulated in this work and
in Ref. [1] also applies for gases. There, in the OCD analysis,
the relaxation dynamics is described by the Fokker-Planck
equation. Note that the MP quasiparticle model appears to be
universally valid independently on the phase of the medium.
If we know the electromagnetic energy of the field and the
velocity of light in the medium or, in the dispersive case, the
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dispersion relation of the medium, we can independently of
the phase of the medium use the results in Table I to obtain the
total momentum and the transferred mass of the light pulse.

In analogy to the case of a nondispersive medium, we found
an unambiguous correspondence between the MP quasipar-
ticle and OCD models. The present results generalize our
ultimate solution of the Abraham-Minkowski controversy for
a dispersive medium. The interesting feature in the MP theory
of light in a dispersive medium is the atomic MDW and the
related mass transfer which explains how the total momentum
of light is shared between the field and medium atoms which
move under the influence of the optical force. The mass
transferred by the MDW makes our theory to fulfill Newton’s
first law and the covariance condition of the special theory of
relativity. We have also proven that the covariance condition
and the conservation laws jointly determine the expression of
the optical force on the medium associated with a light pulse.

In analogy to our analysis of light propagation in a
nondispersive medium, we also found in this work that the field
and the MDW can be described using classical variables of the
field and medium dynamics. This implies that the dynamical
state of the medium is described entirely using phase phase,
i.e., momentum and position related to each degree of freedom

of the system. Therefore, since momentum and position are in
classical physics unambiguously measurable, in principle to
the desired degree of accuracy, we can experimentally deter-
mine at any moment how the momentum is shared between
the field and the medium. This result is in contrast to many
previous works on the momentum of light in a medium [5].

To facilitate the planning of measurements, we have also
carried out simulations of how the displacement of atoms due
to the MDW can be measured in a simple silicon waveguide
structure. In these simulations, we have paid particular atten-
tion in the irradiance breakdown threshold of silicon, which is
one of the main limiting factors in possible experimental setups
as the electromagnetic energy density in the medium cannot be
made arbitrarily large. The OCD model also allows for more
detailed simulations accounting for the waveguide dispersion
and the spreading of the pulse energy in the transverse
direction. These simulations are left as a topic of further work.
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