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We study the ground state and excitations of a one-dimensional trapped polarized Fermi gas interacting with
a single impurity. First, we study the tunneling dynamics of the impurity through a potential barrier, such as one
effectively created by a double-well trap. To this end, we perform an exact diagonalization of the full few-body
Hamiltonian and analyze the results in a local-density approximation. Off-diagonal and one-particle correlation

matrices are studied and are shown to be useful for discerning between different symmetries of the states. Second,
we consider a radio-frequency spectroscopy of our system and the resulting spectral function. These calculations
can motivate future experiments, which can provide further insight into the physics of a Fermi polaron.
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I. INTRODUCTION

Interacting ultracold Fermi gases in a continuum and
trapped in optical lattices provide clean setups for experimental
realizations of models essential for our understanding of the
more complex condensed-matter systems. Since the interac-
tions between fermions, combined with the Pauli exclusion
principle, can lead to very complicated physics, it has always
been instructive to simplify the system as much as possible and
to consider a mostly noninteracting Fermi gas, where only one
particle (an impurity) can interact with other atoms. It is even
more instructive to study interactions of such an impurity with
only a few atoms of the noninteracting species. Furthermore,
recent progress in confining ultracold gases and in detection
techniques has allowed for trapping and studying just a few
atoms with an unprecedented control. A single impurity atom
interacting with a few identical fermions in one dimension
(1D), schematically represented in Fig. 1, was experimentally
realized, as described in Refs. [1,2]. The equation of state was
measured starting with only one atom in each component and
then increasing the number of majority atoms one by one.
It was found that in one-dimensional geometry five atoms
were already sufficient to find good agreement between the
measured polaron energy shift and the exact result for a
single impurity interacting with a homogeneous Fermi gas by
McGuire [3,4]. Such a quick arrival to the thermodynamic limit
suggests that in a one-dimensional geometry a few fermions
are already many. These experiments allow for studying
the mesoscopic counterpart of the so-called Fermi polaron
problem. The latter received much attention in the past decade
due to a joint experimental and theoretical effort (see, e.g., [5]
and references therein). Many properties such as the energy,
effective mass, lifetime, and some coherence properties of the
polaron have been experimentally addressed. Evidence of a
stable polaron quasiparticle on the repulsive branch has also
been reported [6,7].

As far as the dynamics is concerned, the information about
the dressed particle is carried by the relative motion of the
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impurity and the Fermi bath. For instance, the effective mass
can be extracted by measuring out-of-phase modes [8]. Yet,
in the presence of a three-dimensional large bath, the relative
dynamics consists of many strongly damped modes and the
dynamics of dressed impurity is often dominated by decaying
processes [8,9].

On the other hand, in a one-dimensional small bath, it is
possible to have long-living modes. Moreover, for a small
number of particles, exact results for both static and dynamic
properties can be obtained by exact diagonalization (ED). Such
systems were already studied theoretically to some extent,
beginning with an analytical solution for two harmonically
trapped atoms by Busch et al. [10]. The limit of strong
repulsion is very peculiar in 1D, as it effectively plays the role
of the Pauli exclusion principle and leads to fermionization;
it was investigated for several particles in Refs. [11-13]. In
Ref. [14] such a two-component Fermi system was studied
with a mapping to an effective spin chain and in Ref. [15]
by constructing an energy functional. A numerical method
for extracting the information about excitations corresponding
to the relative motion of the particles in a harmonically
trapped Fermi gas was developed recently [16]. However,
it is important to understand how the interaction with the
background gas affects tunneling properties of a polaron
through a thin barrier, such as that present in a double-well
trap. Such traps were investigated for both bosons [17,18] and
fermions [2,19].

In the present work, we study the motion of an impurity
coupled to a few identical Fermi atoms in a one-dimensional
trap. In particular, we address the question of the frequency
shift of the dipole mode of the impurity in a harmonic trap as
well as the renormalization of the tunneling frequency in the
case of a double-well potential. We anticipate that also in the
latter case an inhomogeneous extension [20] of the McGuire
expression gives very reasonable results.

The paper is organized as follows. After defining our system
in Sec. II, we start in Sec. III with the description of the polaron
system in the local-density approximation (LDA) with the
McGuire formula and then compare it with the results obtained
with ED. We study the dynamics of the oscillations in harmonic
and double-well potentials in Sec. IV and compare it with the
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FIG. 1. Schematic representation of the system. A single impurity
is oscillating in a double-well potential (1), but the oscillations are
affected by the presence of a background gas of single-species
fermions. The pairwise quasidegeneracy of the low-lying single-
particle energy levels, where each pair contains states with an odd
and an even wave function, is responsible for the shell structure of
the resulting spectrum.

system’s eigenenergies and with a sum-rule approach. Finally,
in Sec. V the spectral function for the impurity spectroscopy
is determined using Fermi’s golden rule.

II. SYSTEM

We consider N4 Fermi atoms interacting with one impurity
atom denoted by the subscript |, whose dynamics is con-
strained to 1D and in the presence of an external potential.
The trapping potential can be either a standard harmonic
confinement or a double-well potential. We model it as

2
V(x) — %xz + Voe—mwox"/zﬁ + C, (1)

with the value of the constant offset C such that the minimal
value of the potential is equal to zero; the simple harmonic
potential case corresponds to Vo = C = 0. Our system is
schematically represented in Fig. 1. The many-body Hamilto-
nian can be written as

= [ dx[ > vl hovs @)
- o=t

+ gmwi(x)wj(xm(x)wx)}, @)

where 1/4(x) is the field of the background polarized Fermi
atoms and v (x) is the field of the impurity. The field operators
for the Fermi gas obey usual anticommutation relations
(Y1 ()WL) = 8(xr — ') and (¥4 (x), ¥y (x')} = 0, whereas
the statistics of the impurity does not matter. The operator
ho = —1h*V?/m + V (x) stands for the single-particle Hamil-
tonian, while g;p = —2h/map is the coupling constant in a
homogeneous system in terms of the one-dimensional s-wave
scattering length a;p. When the dynamics is confined to 1D by
a tight transverse harmonic confinement, the effective scatter-
ing length can be expressed in terms of the three-dimensional
scattering length asp and the oscillator length of the tight
confinement &, i.e., ajp & —EJZ_ (1 —1.46a3p/&1)/2a3p as
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in Ref. [21]. In the following we use

& = /h/mawy, ey =hwy, go=hwoko 3)

as the units of length, energy, and the coupling constant,
respectively.

III. RESULTS

A. Nonuniform McGuire formula

In order calculate the polaron energy, i.e., the shift of
the energy of the system due to the interaction between the
impurity and the polarized gas, we first adopt an approach
based on the McGuire expression [3,4,20], where the energy
shift of the impurity in a uniform system is given by

AE(N) vy 4 y 27 Y
— =L l1-= L 4= tan — |. (4
Er 712[ 4+ 2n+ y e o “®

Here Ep = i*n*n?/2m is the Fermi energy of the uniform
noninteracting gas and n its density. The ratio between the
interaction and the kinetic energy, also known as the Lieb-
Liniger parameter

_ Tmgip

, &)

WPkp
determines the strength of interactions in a homogeneous sys-
tem and reads y = —2/nap in terms of the one-dimensional

s-wave scattering length a;p. We generalize formula (4) to a
nonuniform system by substituting the corresponding Fermi
wave vector kr in Eq. (5) according to

52
wi(Np) = 5k, (6)

where (14 is the chemical potential of the majority component
(i.e., a polarized Fermi gas) in the external trap (either a
harmonic oscillator or a double well) in the absence of the
impurity. For a harmonic trap this expression takes a particu-
larly simple form py = E(Ny) — E(Ny — 1) = Nyliay.

2.0

harmonic trap .-

1.5

1.0

0.5

AE(Ny) /huwy

0.0

—0.5

_10 I I

Ny

FIG. 2. Polaron energy in a harmonic potential. Dashed lines
show results obtained with McGuire formula adapted to an inho-
mogeneous geometry (4) and the crosses show the exact energies as
obtained by exact diagonalization. For comparison, see Ref. [20].
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FIG. 3. Splitting of the first two energy levels in a double-
well potential. Solid lines show a result obtained with McGuire
formula adapted to an inhomogeneous geometry (4) and the crosses
correspond to exact energies obtained by exact diagonalization. For
the legend, see Fig. 2.

The resulting polaron energy as a function of the number
of majority atoms and for various strengths of the coupling
constant g;p is shown in Figs. 2 and 3 for a harmonic trap
and a double-well potential, respectively. The predictions of
Eq. (4), shown with a dashed line, follow closely the results of
ED (see the next section), which are marked with crosses.

The corrected McGuire expression gives a very accurate
result for a few-body system in the presence of a harmonic
confinement, as noted in [20]. Here we find good agreement in
the presence of a double-well potential (except for the case of
N; =1 particles with repulsive interaction), which suggests
that the generalization of the McGuire formula can be used for
trapped impurities. In particular, for a double-well potential the
energy shift of an impurity clearly shows formation of “steps”
as the number of particles is increased one by one. This is
due to the almost degenerate structure of the low-lying energy
levels. Because of the presence of the barrier and the symmetry
of the potential under parity transformations (x — —x), there
is little difference between a state whose wave function has
an extra node in the center and a state whose wave function
has one node less and is only exponentially suppressed by
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FIG. 4. Spectra of the (a) Ny =1 and (b) Ny, =2 problem in
the HO potential and of the (c) Ny =1 and (d) Ny = 2 problem in
the double-well potential for Vy = Shwy. The lines are alternately
colored with blue and red for clarity. We can see that the spectra for
a double well are pairwise almost degenerate (i.e., blue and red lines
overlap), which reflects the structure of the single-particle spectrum.

the barrier. This effect can be interpreted as a shell structure
with two fermions occupying each shell. The higher the barrier
between the wells, the smaller the level splitting, because the
wells are more independent. As a consequence, the Fermi
energy grows with adding subsequent spin-1 atoms only after
filling both levels in every pair. The discrepancy between the
generalized McGuire expression and the exact result grows
with the height of the potential barrier, because the energy
levels are becoming pairwise quasidegenerate and these pairs
are farther apart from each other.

B. Exact diagonalization

We study the system with the exact diagonalization, which
is very useful for out-of-equilibrium phenomena [18,19,22—
25]. The field operators can be decomposed as ¥, (x) =
Y nGon@n(x), with 0 =1, and ¢,’s forming a complete
eigenbasis of ho, hop, = €,¢,. The operators ay, and a,
are annihilation operators of 1 and | fermions in the single-
particle state n, respectively. The Hamiltonian then reads

H=> €alam+ J,-jkzaLanmkaTz, (7)
io ijki

with Jyju = gip /5, dx ¢f ()@ (N)er(x)@i(x). An example
of energy spectra is shown in Fig. 4 for harmonic-oscillator
(HO) and double-well (DW) potentials.

The horizontal lines correspond to the fully antisymmetric
states, which are therefore insensitive to interaction. For large
positive values of the interaction strength, the impurity starts
behaving like an additional fermion of the majority component
and the spectrum looks like that of a noninteracting gas of
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FIG. 5. Example of densities of three fermions (thin blue line)
interacting with an impurity (thick red line). It can be clearly seen
that, for strong repulsion, initially noninteracting impurity starts
behaving like the fourth fermion. The total density (shown with
a green dashed line), i.e., ny +n,, coincides with that of Ny =4
noninteracting Fermi gas. For the harmonically trapped system in the
strong attraction limit, the density of Ny = 2 Fermi gas and that of
a noninteracting molecule (of mass mj = 2m) are shown (dashed
and dotted black lines, respectively). For definitions of the units, see
Eq. (3).

N4 + 1 fermions. This is known as a fermionization limit in
analogy to the corresponding case of strongly repulsive bosons.

Before studying the dynamics, we determine the ground-
state one-particle density matrices and the corresponding den-
sity profiles of the atoms. The density profile of the component
o is the diagonal part of the one-particle density matrix
n(x) = p@(x,x), with p(x,x) = (Y} (X)Yo (x")n) for
the system in the state |7).

Figure 5 shows the densities of the impurity embedded
in three spin-1 fermions for three different regimes of the
interaction parameter. In a harmonic trap, when the system
becomes noninteracting (g;p = 0), the impurity takes the
Gaussian shape of a free particle, while the Fermi gas shows
three clear peaks of Friedel oscillations corresponding to
three spin-1 fermions. For strong attraction g;p — —oo, the
impurity forms a strong bound state with one fermion. In a
homogeneous system it was shown by McGuire in Ref. [4] that
the energy in this limit is consistent with that of a molecule
which does not interact with Ny — 1 ideal fermions. Thus the
impurity decreases the number of ideal fermions by one, as
one of the fermions effectively becomes distinguishable from
the others due to the strong binding. Formally expanding the
McGuire expression for the excess energy up to second order
in a we get

h? 4 s
AE%——z—EF—i——EFna—i—O(a ). ®)
ma 3
The first term corresponds to the binding energy of the
molecule, while the second term corresponds to the removal
of the bound fermion from the bath. The next-order positive
correction can be interpreted as a repulsive interaction between
the molecule and the majority fermions, which results in a
broader density profile of the two components, as we indeed
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FIG. 6. Densities of the N; =3 antisymmetric state in the
degeneracy manifold at the g — +oo limit for a harmonic trap (left)
and a double well (right). The thick (red) line corresponds to the
density of the impurity, the thin solid (blue) line to the density of the
majority fermions, and the dashed (green) line to the total density
I’lT +n 1

report in Fig. 5. In a trapped system the density of a molecule,
located at the center of the trap, is superimposed with that of
an ideal Fermi gas of N4 — 1 particles showing the Friedel
oscillations n4(x) = (1 + 2x2) e‘xz/ /7 (dashed black line in
Fig. 5). The molecule, having a mass twice as large as an atom,
is expected to be localized at the center of the trap, enhancing
the central peak in the total density ny(x)/2 = /2/7 e
(black dotted line in Fig. 5). This peak at the trap’s center masks
the Friedel oscillation minimum in the density of Ny — 1 =2
polarized fermions. The larger widths of the profiles can be
attributed to the repulsion between the molecule having a
double effective mass and an effectively reduced number of 1
fermions.

For strong repulsion g;p — +00, McGuire has shown that
in a homogeneous system the energy is comparable to that
of N + 1 ideal fermions [3]. Also in a trap a similar effect is
observed for the energy, which in this limit becomes degenerate
(see Fig. 4), so that there are states in the degeneracy manifold
with different density profiles and the same energy. At the
same time, the total density of the entire system now features
four peaks instead of three (compare with Refs. [26,27]), so
the impurity effectively plays the role of an additional ideal
fermion. The state which is adiabatically connected to the
ground state in the g;p — —oo limit, where the molecule is
localized in the center, has similarly the impurity localized in
the center. Since in our system the masses are equal m4 =
m and the SU(2) symmetry is therefore preserved, the Lieb-
Mattis theorem holds [28]. However, should the mass ratio
be different from one m,/m # 1, the ground state could be
interpreted as a few-body counterpart of a ferromagnetic phase
separation [23].

At the same time the different degenerate states have
different symmetries. A fully antisymmetric state, which
corresponds to a horizontal line in the spectrum (compare
with Fig. 4), has a density profile corresponding to Ny + 1
noninteracting fermions for both impurity and a majority
component (see Fig. 6). For a finite value of g > 0, the
degeneracy is lifted and the energy is bounded from above by
the fully antisymmetric state and from below by the molecular
state in which in the impurity is localized in the center.

Some of the features are also preserved in the double-well
potential. Here, for a high barrier, all particles are localized
in the two wells. For strong attraction gp — —oo, this

063603-4



COHERENT OSCILLATIONS IN SMALL FERMI-POLARON ...

1.0
0.8
0.6
0.4
0.2
0.0
—0.2

FIG. 7. Off-diagonal correlation matrices of the polaron
pWV(x,x") with Ny =3 background polarized fermions. Row (a)
shows a harmonically trapped system and row (b) a double-well
confinement. Rows (¢) and (d) show the correlation matrices of
the polarized gas p™(x,x") for a harmonic trap and double-well
potential, respectively. In the strong repulsion case we can see distinct
peaks along a diagonal corresponding to the Friedel oscillations of
the density. Higher intensities (brighter colors) correspond to higher
values of the one-particle density matrix. In each panel, axis ranges
for both x and x’ vary from —4§&, to 4&,.

localization is even more prominent than in the noninteracting
case, with very little tunneling between the wells. The differ-
ence from the harmonic-oscillator case is that the molecule
can no longer stay in the center of the trap, resulting in a
degeneracy between the impurity staying in the left and the
right well. For strong repulsion g;p — +00, on the other
hand, the particles approach the fermionization limit and the
densities add up to a total density of N4y + 1 = 4 noninteracting
fermions seen as two Friedel oscillations of the density in
each well. The ground-state spin-resolved densities remain,
however, different for the two components, as was the case
for the harmonic trap. Similarly to the harmonic-oscillator
case, there is a degeneracy between different states with their
energy bound from above by the constant energy of the fully
antisymmetric state.

Further understanding of the strongly interacting regime is
obtained by inspecting the full one-particle reduced density
matrices. Since the Hamiltonian (7) conserves the number
of particles for each spin separately and therefore (1//1 Yy) =

0, the total density matrix of the system equals p™M(x,x") +
oW (x,x’). In the off-diagonal terms of one-particle density
matrices pM(x,x’) and pV)(x,x’) reported in Fig. 7 and in
oM (x,x") 4+ pW(x,x") reported in Fig. 8 one can clearly see
the difference between the fermionized impurity and a system
of N4 + 1 noninteracting fermions.

PHYSICAL REVIEW A 96, 063603 (2017)

pl+pt

FIG. 8. Total one-particle density matrices ™M (x,x") +
pW(x,x") for (a) a harmonic trap and (b) a double-well potential.
The correlation matrices of a noninteracting Fermi gas are shown
for (c) a harmonic trap with Ny =3, (d) a harmonic trap with
N; =4, (e) a double well with Ny = 3, and (f) a double well with
N, = 4. The off-diagonal elements reveal the difference in behavior
of the strongly repulsive impurity interacting with Ny = 3 polarized
fermions and N; =4 noninteracting Fermi gas. Axis ranges the
same as in Fig. 7.

In the case of gip = 0 the correlation function of the impu-
rity can be simply calculated as p™V(x,x") = @i (x)go(x’) and
of the polarized Fermi gas as p"(x,x") = nNLEI @) Pa ().
We plot it for comparison with the total one-particle density
matrix of the interacting system in Figs. 8(c)-8(f).

It is clear that the structure of the off-diagonal elements of
a total of one-particle density matrix p"(x,x’) + p¥(x,x’) is
different from that of N4 + 1 noninteracting fermions. These
are signatures of the distinguishability between the strongly
repulsive impurity and the majority fermions.

IV. DYNAMICS
A. Oscillations in time

Since our system is small, it allows for a thorough numerical
investigation of its out-of-equilibrium properties, in particular
the tunneling dynamics of the polaron. To this end, we initialize
the system as a product state with the impurity localized mostly
on one side of the trap (in one of the wells in the case of the
double well), i.e., the impurity as a linear combination of
the two lowest-lying single-particle states (|0);, — |1) L)/\/E;
the majority of atoms are in their noninteracting ground state

L
V2

The system is then allowed to evolve with the full Hamiltonian
(7). For completeness and for comparison we also study the

linit) = —=(10);, — [1)}) ® [g:s.). )
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FIG. 9. Oscillations of (x,(¢)) in time. (a) Oscillations in a
harmonic trap. The faint green line shows the sum of (x(¢)) +
> i (xi (1)), i.e., the center-of-mass motion. As expected, it adds up to a
perfect harmonic oscillation with a trap frequency wy. (b) Oscillations
in a double-well potential, with much lower frequency due to a barrier
tunneling (Vy = Shiwy). In both cases the solid line corresponds to the
interaction gip = 0.4go. In (b) the dashed line represents g;p = 0 for
comparison.

same quench but for a polaron oscillating in a harmonic trap.
Figure 9(a) shows the mean position of the impurity (x(z))
as it evolves in time in a harmonic trap. The beats indicate the
interference of two frequencies. Indeed, the impurity mode
would be a combination of the center-of-mass motion with
frequency wp and the relative motion with frequency w;.
These two frequencies are responsible for beats observed in the
time evolution of (x(¢)), with frequencies of (w; + wy)/2 and
|wy — wol/2.Itis easy to extract w; carrying information about
the bath-impurity correlations. As a check, the center-of-mass
position ZZNZTI (xi) + (x,), shown with a faint line in Fig. 9(a),
corresponds to a harmonic oscillation with w = wy, i.e., the
Kohn mode [29]. In Fig. 9(b) we present the evolution of the
mean impurity position (x(¢)) in the double-well trap with
the same coupling strength as in Fig. 9(a), gip = 0.4go (the
dashed line shows the oscillations for g;p = 0). In this case,
the impurity oscillations are due to tunneling through a barrier,
therefore they are much slower and without beats.

In order to gain further insight into the frequency spectrum,
we perform a Fourier transform of the time series X (w) =
f dt e™'®(x, (1)) and extract the oscillation frequencies. We
start with the harmonic potential. The frequency spectrum
in this case is shown in Fig. 10(a) and contains two afore-
mentioned frequencies corresponding to the oscillation of the
center-of-mass and to the relative motion of the particles.
For attractive (repulsive) interactions, w, is larger (smaller)
than wy, since it requires more (less) energy to separate the
two species of particles, therefore increasing (decreasing) the
restoring force for the relative motion. It is worth noticing
that the signal for the out-of-phase mode is very sharp for the
attractive interaction, while it is much broader for the repulsive
one.

In the double-well trap [see Fig. 10(b)] the center-of-mass
motion does not perform harmonic oscillations and the system
has a single oscillation frequency. Again, the behavior with
respect to the noninteracting case [Fig. 10(b) for g = 0]
is opposite for attractive and repulsive interactions. In this

PHYSICAL REVIEW A 96, 063603 (2017)
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FIG. 10. Fourier transform of the time evolution of the state (9)
of Ny =2 for both (a) the harmonic trap and (b) the double-well
potential with V, = 5fiw,. The peaks seem broader in (b) than in (a)
because of the different scale of frequency range plotted. The vertical
green dashed lines show the oscillation frequencies d¢ calculated from
the exact diagonalization according to (a) Eq. (10a) and (b) Eq. (10b).
The red lines show the frequency estimate Q2_; [see Eq. (14)] for
F = X, (solid lines) and X | — X (dashed lines).

case, however, attraction (repulsion) corresponds to a lower
(higher) frequency, since the impurity tends to localize more
(Iess) in the single well, decreasing (increasing) the splitting
between the two lowest-energy levels. Finally, if the interaction
is very large, the oscillations lose their regularity and the
corresponding peak in the Fourier transform significantly
broadens.

The splitting between the low-lying energy levels of the
spectrum,

(10a)
(10b)

ﬁa)=€| — €,

ho =€ — €,

can give a good estimate of the oscillation frequency of the
impurity . Physically, it is similar to the oscillation of a
two-level system, whose time evolution is given by e/“’(]0) —
e'€1=<)|1))/+/2. Depending on the symmetry of oscillations
(center-of-mass or relative motion), splitting between relevant
energy levels should be considered. In Fig. 10 we show that
this level splitting coincides with the lowest frequency of the
Fourier spectrum (vertical green dashed lines).

B. Sum-rule approach

A powerful method to estimate and understand the fre-
quencies of different modes of a system is the so-called
sum-rule approach (see, e.g., [30] and reference therein for
its application to ultracold gases). The method is based on
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determining the frequency moments of the structure factor

SFE) =Y [nIFIno)l8(E +e—€) (11
n

for a certain operator F corresponding to the mode of interest.
In Eq. (11) E is the energy of the excitation, |n) are the
eigenstates of the full Hamiltonian in Eq. (2), H|n) = €,|n),
and |no) denotes its ground state. Since we are interested in the
position of the atoms, we consider F the operators of position
of the impurity and of the polarized gas,

X, = / " dxx vl (v (), (12)

or their combinations as a dipole and a center-of-mass operator,
Fiy =X, £X;. 13)

Within the sum-rule approach the oscillation frequency can
be estimated from the ratio of the moments as

EQ_l =‘/m1/m_1, (14)

where the moments of the structure factor are defined as

o0
my(F) = / Sr(E)E*dE. (15)
—00

For our operators F, m; = %([.7-' ,[H,F]]) does not depend on
the interaction and corresponds to the f-sum rule. On the other
hand, m_; is proportional to the susceptibility related to the
operators F. The behavior of the collective mode frequency
wp in a harmonic trap is easily explained, since m_;(F_) is
proportional to the spin susceptibility [31]. For an attractive
(repulsive) interaction the susceptibility decreases (increases)
with respect to its noninteracting value. Indeed, in Fig. 10 the
sum-rule approach for the operator F_ (red dashed line) gives
a good account of w;, showing that this frequency corresponds
to the out-of-phase mode, while the impurity motion (red solid
line) receives a contribution from both the center-of-mass and
the relative motion. On the other hand, our operator F_ is
not well defined in the double well, since the center-of-mass
and the relative motion are coupled. As expected, in this case,
the sum rule gives a better result when considering the single
impurity operator X .

V. RADIO-FREQUENCY SPECTROSCOPY

One of the most powerful methods to characterize the po-
laron experimentally is the radio-frequency (rf) spectroscopy
(see, e.g., [32] and references therein). With this method, the
spectral function I (E) of the impurity is measured by applying
an rf pulse to the impurity. This pulse changes its internal
(hyperfine) state. When a continuous signal is applied instead
of a pulse, it is possible to induce Rabi oscillations of the
impurity, which also carry information about the coherence of
the polaron and from which it is possible to extract information
similar to that obtained by measuring the spectral function
[6,7].

We consider a system where the impurity has two internal
states, which we label as || 2) and || 3), and we add a Rabi
coupling term to the Hamiltonian

Hao = %QR/dx o' (x)o, P(x), (16)
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with &(x) = (wu(x),lplg(x))T and o, the first Pauli matrix.
This term allows for oscillations of the impurity between the
state that interacts with the polarized gas and the noninteracting
state. Similarly to the case studied in previous paragraphs, we
may decompose the field operators into single-particle modes
V(X)) e =Y, QLan@n(x) witha = 2,3, where a, and a3 are
annihilation operators of the two internal states of the impurity.
In this basis, the new Hamiltonian reads

H= Z Ei(aLaTi + a;uazu + ll;[wﬂsu)
i

+ Z JijklaLa;UaNkaTl
ijki

1 .
)
+ 5% Z(aﬁ Ly adaz). (17)

We assume as an approximation that only one of the states of
the impurity, labeled here as || 3), interacts with the polarized
gas.

The spectral function is related to the response of the system
to the term H, in the Hamiltonian, i.e., to the absorption of
the rf beam in the atomic cloud. The latter can be determined
by Fermi’s golden rule, taking the impurity to be initially in
the noninteracting state || 2). Therefore, the response of the
system to Hg = 1Q Y, aL’iau,i + H.c. reads

Sa(E) o< Y [(nHalno)I*8(E — €, + €0)

n

= Q% IP1(E), (18)
(aé NT =1, HO g =10.5g9
1 I 1 } |
g =1.0go
1 I 1 } |
g =2.0g9
b | 1 |
€n/hwy
] T T ; . ‘
(b) NT =2, HO g =0.5g0
fs | | | |
' g =109
i I i | |
g = 2.0q
| E ) |
€n/hwy

FIG. 11. Spectral function Sq [Eq. (18)] in a harmonic-oscillator
potential for (a) Ny = 1 and (b) N4 = 2. Only odd peaks are nonzero
due to the parity of the system and get exponentially suppressed
for higher energies. The red lines show the corresponding polaron
energies calculated with exact diagonalization (see Fig. 2).
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i T T T T :
(o) Ny =1, DW 9= 0.5
1 I I | |
g =1.0g9
! I I | |
g = 2.0go
| | L
0 1 2 3
6n/ﬁ(-"'}()
. T T T T T
(bjidV; = 2, DW g =0.5g
: — i i : |
g =1.0g9
| I : : |
g =2.0g9
b | 1 1 |
€n/hwy

FIG. 12. Spectral function (18) in a double-well potential for
(a) Ny =1 and (b) N; = 2. In the first case there are two peaks,
where the first one arises because the two lowest levels are almost
degenerate. In the latter case, the second peak is already farther
apart and thus exponentially suppressed. The red lines show the
corresponding polaron energies calculated with exact diagonalization
(see Fig. 3).

where |n) are the eigenstates of the Hamiltonian (17) with
Qg = 0 (the interacting eigenstates) and |ng) is the ground
state. The results are shown in Figs. 11 and 12. At gip =0,
there will be only one peak at zero energy, as the matrix
element in Eq. (18) will be proportional to §,,,. For an
interacting system the spectral function will in general be given
by a coherent polaron peak and an incoherent particle-hole
spectrum. For our small system and for a harmonic con-
finement, the spectral function is dominated by the coherent
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peak at the polaron energy reported in Fig. 2. For the double
well, a sort of closed-shell effect is present. For Ny =1
(aside from the polaron peak, which is very close to zero
and almost independent of the interaction due to the almost
degenerate symmetric and antisymmetric state) a second peak
appears corresponding to higher-energy excitations. Instead,
for Ny = 2, the scattering is with the closed 1 shell and the
impurity gives a spectral function completely dominated by the
polaron peak (see also Fig. 3). The predicted spectral function
should be accessible experimentally, also for our small system.

VI. CONCLUSION

We studied the tunneling properties of the Fermi polaron
and its Rabi oscillations in harmonic and double-well traps.
Using the LDA and exact diagonalization we obtained polaron
energies that agree well with the McGuire formula (4) general-
ized to nonuniform systems. Clear steps in the polaron energy
are a signature of a double-well potential and can be observed
experimentally. We also showed that the dynamics of tunneling
through a barrier can be inferred from the spectrum of the
system and from its structure factor. Finally, we calculated
the spectrum and Rabi oscillations of an impurity that has
two internal states. There is a possibility of an experimental
measurement of these quantities; such an experiment should
be feasible given the current progress in the field. This in turn
should contribute to our understanding of the physics of Fermi
polaron and interactions between fermions of two species.
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