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The divisibility of dynamical maps is visualized by trajectories in the parameter space and analyzed within
the framework of collision models. We introduce ultimate completely positive (CP) divisible processes, which
lose CP divisibility under infinitesimal perturbations, and characterize Pauli dynamical semigroups exhibiting
such a property. We construct collision models with factorized environment particles, which realize additivity
and multiplicativity of generators of CP divisible maps. A mixture of dynamical maps is obtained with the help
of correlated environment. The mixture of ultimate CP divisible processes is shown to result in a class of eternal
CP indivisible evolutions. We explicitly find collision models leading to weakly and essentially non-Markovian
Pauli dynamical maps.
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I. INTRODUCTION

The theory of open quantum systems studies dynamical
maps �t that naturally occur when the system in question inter-
acts with its environment. Dynamical maps are the key objects
in the analysis of quantum information transmission through
noisy channels [1] and quantum information processing in real
systems [2]. The effect of open system dynamics on quantum
entanglement and entanglement-based information protocols
is reviewed, e.g., in Ref. [3]. Over the last decade, quantum
dynamical maps were intensively studied with respect to
characterization of their non-Markovian behavior [4–6] and
its experimental observation [7–13]. Quantitative approaches
to non-Markovianity include nonmonotonic distinguishabil-
ity of states [14,15], different divisibilities of dynamical
maps [16,17], monitoring the volume of accessible states [18],
and others [19–22]. In particular, the divisibility approach is
based on the decomposition property �t+s = �t,t+s�t and
explores features of the intermediate map �t,t+s [23]. Various
types of divisibility induce alternative measures to quantify
non-Markovianity; however, one should be careful with the
physical interpretation of memory effects [24].

From a mathematical viewpoint, the open system dynamics
in the Schrödinger picture is given by the transformation
�(t) = �t [�(0)], where �t is the dynamical map (process)
that is a one-parameter family of completely positive trace-
preserving (CPT) maps, t � 0 is the evolution time, and
�0 = Id is the identity transformation. The dilation of the
dynamical map is

�t [�] = trenv{Ut (� ⊗ ξ )U †
t }, (1)

where Ut is the unitary evolution of the system and the
environment, and ξ is the initial state of the environment.

Complete positivity (CP) of �t means that the map �t ⊗
Idk is positive for all identity transformations Idk of k-level
ancillary systems, which can be potentially entangled with the
system in question. If �t,t+s is CP for all t and s � 0, then

the process �t is called CP divisible. Such a definition of CP
divisibility is a global-in-time property of the whole family
{�t }t�0. In contrast, to underline the time-local behavior, we
will refer to a process �t as CP divisible at time t0 if there
exists s0 > 0 such that �t0,t0+s is CP for all s ∈ (0,s0). If the
dynamical map �t is not CP divisible for all time moments t �
0, then �t is called eternal CP indivisible [25]. CP divisibility
of a bijective dynamical map was shown to be equivalent to the
distinguishability of states in the extended Hilbert space [26].

Replacing CP by any other property [viz. positivity (P),
k positivity, volume of accessible states, etc.] we obtain
definitions of the global and time-local divisibility properties
of the dynamical map �t . Processes which are not CP divisible
but are P divisible are also called weakly non-Markovian,
whereas P indivisible processes are called essentially non-
Markovian [27].

Since any linear map � between finite-dimensional spaces
can be defined by a set of real parameters λ = λ1, . . . ,λn,
any smooth process �t is then determined by a continuous
trajectory λ(t) in the parameter space. Such a trajectory
provides a pictorial representation of the dynamical map in
Rn, which is particularly visual in the case of qubit Pauli maps
given by three parameters (see, e.g., [25,28–31]). Analyzing
the process trajectory in the parameter space, one gets not
only an intuition about the quantum dynamics (for instance, by
observing the Bloch ball transformation for qubit dynamics),
but it also reveals its divisibility properties. The first goal of
this paper is to describe different forms of Markovian and
non-Markovian Pauli dynamical maps in terms of trajectories
in the parameter space.

A pictorial representation of some dynamical map �t in
the form of trajectory λ(t) raises a question of the stability
of the process with respect to a continuous (infinitely differ-
entiable) trajectory perturbation λ(t) → λ(t) + δλ(t), with the
perturbed map �t + δ�t being a valid quantum dynamical
evolution. A process �t , which is originally CP divisible
at time t0, may lose the property of being CP divisible at
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this time due to a time-local perturbation δλ(t) such that
δλ(t) = 0 if t � t0. If this is the case, �t is called ultimate
CP divisible at time t0. There exist processes �t that are
ultimate CP divisible for all time moments t � 0. We fully
characterize Pauli dynamical semigroups exhibiting such a
property.

In this paper, we show that the mathematical concepts
of divisibility are closely related with the underlying phys-
ical models of quantum dynamical maps. From a physi-
cal viewpoint, any dynamical map �t can be seen as a
simplified description of the system-environment evolution
with no regard to the environment structure and particular
microscopic interactions between environment quanta and
the system. Many dynamical maps can be derived under
some assumptions (weak coupling, low density, etc.) from a
microscopic system-environment Hamiltonian and particular
state of the environment [6,32]. In our analysis, we will resort
to the so-called collision models in which the motional and
internal degrees of freedom can be considered separately:
the motion Hamiltonian determines a sequence of collisions
with environment particles, and the system-environment in-
teraction Hamiltonian becomes significant during collisions
and affects internal degrees of freedom of the system and an
impacted environment particle. A relaxation mechanism via
such a “stirring” process was first considered in Ref. [33].
Thermalization, homogenization of the system to a particular
state, and pure dephasing were simulated via a collision model
with identical uncorrelated environment particles in [34–36].
Even if environment particles are uncorrelated originally, they
become partially correlated (entangled) with the system during
collisions, so such an environment exhibits memory effects
for further systems interacting with it [37–40]. Moreover,
environment particles may be initially correlated (quantumly
or classically) due to interactions between each other as it
takes place in solids and quantum gases, and such correlations
may result in non-Markovian dynamics [12,41–44]. Non-
Markovian effects also appear in collision models, where
the system can interact with the same environment particle
several times [45,46], or an environment particle impacted
by a system collides with another environment particle,
which later collides with the system [47–50]. The latter
scheme is equivalent to a scenario where the quantum system
in question is coherently coupled to an auxiliary system
interacting with the Markovian bath via collisions [51,52].
Collision models adequately describe a particle in semiquantal
spin gases [53,54], a micromaser [55], a two-level system
that interacts with spatiotemporal modes passing through it
only once [56], and more complex systems with involved
interaction graphs [57–59], as well as experiments with an
engineered environment in nuclear magnetic resonance [12]
and in photonic systems [11,60,61]. Collision models were
also exploited in the microscopic description of Landauer’s
principle [62].

In the appropriate continuous limit of infinitesimal inter-
action time τ → 0, the collision model describes a smooth
dynamical map �t [57,63]. Even if we consider simple interac-
tion graphs, when the system interacts with each environment
particle only once, collision models successfully simulate dy-
namical processes �t with different divisibility properties [41].
So we resort to a collision model with generally correlated

environment particles, with the correlations being attributed to
prior interactions among environment constituents.

The second goal of this paper is to demonstrate that the
divisibility property of the dynamical map �t is closely
related with the collision model describing it. Clearly, any
CP divisible dynamics can be obtained with uncorrelated
(factorized) environment states. We fully characterize ultimate
CP divisible Pauli dynamical semigroups and corresponding
collision models. CP indivisible dynamics necessarily involves
correlations among environment particles.

Surprisingly, a convex sum p1�
(1)
t + p2�

(2)
t + · · · of CP

divisible processes �
(1)
t ,�

(1)
t , . . . can exhibit eternal CP indi-

visibility; for instance, this takes place for the convex sum of
two dephasing dynamical maps [24,25]. We provide families
of eternal CP indivisible processes and construct a collision
model with correlated environment, which simulates them.

In contrast to a convex sum of dynamical maps, a coni-
cal (weighted) combination αL(1)

t + βL(2)
t of time-dependent

generators L(1)
t and L(2)

t does not necessarily represent a valid
generator [64,65] unless master equations ∂�

∂t
= L(1)

t [�] and
∂�

∂t
= L(2)

t [�] both define CP divisible processes. When the
latter condition is fulfilled, we demonstrate a collision model
realizing the master equation ∂�

∂t
= αL(1)

t [�] + βL(2)
t [�] for

arbitrary non-negative weight coefficients α and β.
The paper is organized as follows. In Sec. II, we review

divisibility properties of Pauli dynamical maps in pictorial
representation. In Sec. III, ultimate CP divisible semigroups
are studied. In Sec. IV, we provide a general collision model
for ultimate CP divisible Pauli processes. In Sec. V, we
demonstrate collision models that realize multiplicativity and
additivity of time-local generators for CP divisible processes.
In Sec. VI, we construct a correlated environment which
leads to a mixture of CP divisible processes. In Sec. VII, a
two-parameter family of eternal CP indivisible Pauli maps is
presented. In Secs. VIII and IX, we review P divisible and
P indivisible processes, respectively, as well as the physics
of underlying collision models. In Sec. IX D, we provide a
constructive collision model for an arbitrary Pauli dynamical
map �t . In Sec. IX E, we discuss dynamical maps which
continuously shrink the volume of accessible states, but are
not P divisible. In Sec. X, brief conclusions are given.

II. DIVISIBILITY OF PAULI MAPS IN PICTORIAL
REPRESENTATION

A trajectory λ(t) becomes particularly visual for Pauli qubit
processes �t : B(H2) �→ B(H2) that are characterized by three
real parameters λ1(t),λ2(t),λ3(t) as follows:

�t [�] = 1

2

⎛
⎝tr[�]I +

3∑
j=1

λj (t)tr[σj�]σj

⎞
⎠, (2)

where σ1,σ2,σ3 is a conventional set of Pauli operators. The
map �t is known to be positive if −1 � λ1(t),λ2(t),λ3(t) �
1 (cube in the parameter space) and completely positive
if 1 ± λ3(t) � |λ1(t) ± λ2(t)| (tetrahedron in the parameter
space) [66,67]. In the case of a general physical evolution �t

with initially factorized system and environment, the trajectory
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FIG. 1. (a) Physical Pauli processes correspond to curves inside
the set of completely positive maps. The direction of the vector κ

given by Eq. (6) defines the properties of Pauli dynamical maps:
(b) CP divisibility, (c) P divisibility, and (d) monotonic shrink of the
volume of accessible states.

λ(t) can be an arbitrary smooth curve inside the tetrahedron
1 ± λ3(t) � |λ1(t) ± λ2(t)| [see Fig. 1(a)].

Suppose the map �t is invertible and s tends to zero; then,

�t+s[�(0)] = �t [�(0)] + s�̇t [�(0)]

= �(t) + s�̇t ◦ �−1
t [�(t)] = �t,t+s[�(t)], (3)

where �̇t = ∂
∂t

�t . From Eq. (3), it follows that

�t,t+s = Id + s�̇t ◦ �−1
t (4)

as s → 0.
The map �̇t ◦ �−1

t defines a direction in the parameter
space in which the process progresses. Using the explicit form
of Eq. (2), we get

�̇t ◦ �−1
t [X] = 1

2

3∑
j=1

λ̇j (t)

λj (t)
tr[σjX]σj , (5)

which identifies the vector

κ(t) =
(

λ̇1(t)

λ1(t)
,
λ̇2(t)

λ2(t)
,
λ̇3(t)

λ3(t)

)
(6)

representing the dynamical map in the parameter space of
qubit unital channels. Let us stress that κ(t) is not a tangent
line to the trajectory λ(t). Such vector κ(t) can be drawn at
any time moment t for a sufficiently smooth trajectory λ(t)
in the parameter space, making the divisibility property more
apparent.

In particular, if s → 0, then the map �t,t+s is completely
positive if and only if the vector κ(t) drawn from the corner
(1,1,1) of the parameter space points inside the tetrahedron of
completely positive maps in Fig. 1(b), i.e., the scalar products
of κ(t) with vectors (−1,1,1), (1,−1,1), and (1,1,−1) are all

nonpositive:

− κ1(t) + κ2(t) + κ3(t) � 0, (7)

κ1(t) − κ2(t) + κ3(t) � 0, (8)

κ1(t) + κ2(t) − κ3(t) � 0. (9)

Analogously, if s → 0, then the map �t,t+s is positive if
and only if the vector κ(t) drawn from the corner (1,1,1) of
the parameter space points inside the cube of positive maps in
Fig. 1(c), i.e., the scalar products of κ(t) with vectors (1,0,0),
(0,1,0), and (0,0,1) are all nonpositive:

κ1(t) � 0, κ2(t) � 0, κ3(t) � 0. (10)

For the uniform measure of qubit states inside the Bloch
ball (metric induced by Hilbert-Schmidt distance [67]), the
volume of accessible states for the Pauli map is V (t) =
|λ1(t)λ2(t)λ3(t)|. The map �t,t+s shrinks the volume of
accessible states if and only if

∏3
i=1(1 + sκi(t)) � 1, which

in the limit s → 0 transforms into requirement

κ1(t) + κ2(t) + κ3(t) � 0. (11)

Here we have taken into account that if κ1 + κ2 + κ3 = 0
and at least one κi �= 0, then κ1κ2 + κ2κ3 + κ3κ1 = − 1

2 (κ2
1 +

κ2
2 + κ2

3 ) < 0, which implies
∏3

i=1(1 + sκi) < 1. Geometri-
cally, the vector κ(t) has nonpositive scalar product with the
vector (1,1,1), i.e., the vector κ(t) drawn from the corner
(1,1,1) in parameter space points to a specific half space
separated by the plane λ1 + λ2 + λ3 = 3 [see Fig. 1(d)].

III. ULTIMATE CP DIVISIBILITY
OF SEMIGROUP DYNAMICS

Consider a semigroup dynamics �t = eLt , where L :
B(H2) �→ B(H2) is a time-independent generating map of the
form [68,69]

L[�] = −i[H,�] +
∑

k

γk

(
Ak�A

†
k − 1

2
{�,A

†
kAk}

)
, (12)

where H is Hermitian and γk � 0. It follows that for semigroup
dynamics, the identity �t+s = �t ◦ �s holds for all t,s � 0.
Consequently, �t,t+s = �s = eLs , and hence, the semigroup
dynamics is always CP divisible.

The time evolution of the density operator is given by
equation

∂�

∂t
= L[�]. (13)

Consider now an infinitesimal perturbations of Eq. (13),

∂�

∂t
= (L + δLt )[�], (14)

where δL0 = 0. The term δLt describes an infinitely differ-
entiable deviation from dynamics (13) and can be attributed
to, e.g., a slightly modified environment or a fluctuating
interaction between system and environment. By definition,
we say that a semigroup dynamics is ultimate CP divisible if
it becomes CP indivisible under some perturbation δL.
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For qubit unital semigroup processes (2), we have λj (t) =
e−�j t and, consequently, the vector κ(t) = −� is time in-
dependent and we used � = (�1,�2,�3). By definition, the
perturbations δLt are introducing only minor changes and the
deviated vector κ + δκ would satisfy Eqs. (7)–(9) whenever
these inequalities for the unperturbed case κ are strict. It turns
out that qubit unital semigroup dynamics can be ultimately
CP only if κi + κj − κk = 0 for some permutation of indexes
i,j,k ∈ {1,2,3}. In fact, in such case, there exists an infinitesi-
mal perturbation δLt resulting in a dynamical map �t + δ�t

violating Eqs. (7)–(9). Taking into account the definition of
κ , we find that the condition κi + κj − κk = 0 translates into
differential equation d

dt
ln(λiλj ) = d

dt
ln(λk) with the solution

λi(t)λj (t) = cλk(t), where the constant c can be found from
the initial condition λ1(0) = λ2(0) = λ3(0) = 1. In conclusion,
c = 1 and ultimate CP divisible unital processes satisfy the
identity

λi(t)λj (t) = λk(t) . (15)

A general qubit unital semigroup evolution (up to unitary
freedom) takes the form

L[�] = −1

2

3∑
j=1

�j tr[σj�]σj = 1

2

3∑
j=1

γj (σj�σj − �), (16)

where �−1
j are experimentally measurable time scales of

decoherence processes and γj are dissipator rates given by
the formula⎛

⎝γ1

γ2

γ3

⎞
⎠ = 1

2

⎛
⎝−1 1 1

1 −1 1
1 1 −1

⎞
⎠

⎛
⎝�1

�2

�3

⎞
⎠. (17)

The conditions of ultimate CP divisibility on κ imply �i +
�j − �k = γk = 0 (for some permutation of indexes i,j,k). It
follows that the generator for the ultimate CP divisible Pauli
semigroup contains at most two terms,

L[�] = γi

2
(σi�σi − �) + γj

2
(σj�σj − �), (18)

and the trajectory in the parameter space is λi = e−γj t , λj =
e−γi t , λk = e−(γi+γj )t . The class of time evolutions for ultimate
CP divisible Pauli semigroups is illustrated in Fig. 2. In the
next section, we will provide a physical realization of the
generator (18).

Physical examples of ultimate CP divisible processes
include the following:

(i) pure phase damping process, when λi(t) = 1, λj (t) =
λk(t) = e−�t and corresponding to the choice of dissipation
rates γj = γk = 0 (green lines in Fig. 2);

(ii) generalized amplitude damping process with high-
temperature environment ([70], Sec. 8.3.5), i.e., a spontaneous
decay with equal probabilities of energy absorption and
emission, when λi(t) = λj (t) = e−�t and λk(t) = e−2�t in a
Markov approximation ([32], Sec. 10.1),

L[�] = �(σ+�σ− + σ−�σ+ − �), (19)

where σ± = 1
2 (σi ± iσj ) are excitation creation and annihila-

tion operators. This process is illustrated as the bottom red
line in Fig. 2 and corresponds to the choice of dissipation rates
γi = γj and γk = 0.

FIG. 2. Ultimate CP divisible semigroups among Pauli dynamical
maps. Green (thick straight) lines correspond to pure dephasing pro-
cesses. Red (thick curved) lines correspond to generalized amplitude
damping processes with infinite temperature of the environment.

Any Pauli channel � with parameters λ1,λ2,λ3 inside the
body determined by ultimate CP divisible processes in Fig. 2
can be obtained as a result of some semigroup dynamics with a
particular generator L and time period t , i.e., � = eLt . More-
over, even if the parameters of the generator L in Eq. (16) are
time dependent but with positive decoherence rates (so-called
time-dependent Markovian dynamics [16]), then achievable
channels �t still belong to the body in Fig. 2. Assigning
equal weights to all Pauli channels, the fraction of semigroup-
achievable quantum channels equals Vbody

Vtetrahedron
= 3

32 = 9.375%,
which is comparable with the numerical estimations of
general (nonunital) qubit semigroup-achievable channels (2%)
and general (nonunital) qubit channels achievable by time-
dependent Markovian dynamics (17%); see Ref. [16].

IV. COLLISION MODELS OF ULTIMATE
CP DIVISIBLE SEMIGROUPS

Physically, the evolution ∂
∂t

� = L[�] with dissipator (18) is
achievable as a result of sequential interactions of the system
qubit with environment qubits (collision model, Fig. 3). Let all
environment qubits be in the same state ξ = 1

2I (Fig. 4). The
system qubit and the nth environment qubit interact pairwise
during the time period τ , with the interaction Hamiltonian

FIG. 3. Physics of collision model.
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FIG. 4. Collision model for Pauli dynamical maps with ultimate
CP divisible semigroup property.

being

Hint = 1
2 (g1σx ⊗ σx + g2σy ⊗ σy). (20)

The system qubit and the nth environment qubit experience
the unitary transformation

Uτ = exp(−iHintτ )

= cos
g1τ

2
cos

g2τ

2
I ⊗ I − i sin

g1τ

2
cos

g2τ

2
σx ⊗ σx

− i cos
g1τ

2
sin

g2τ

2
σy ⊗ σy

+ sin
g1τ

2
sin

g2τ

2
σz ⊗ σz. (21)

As a result of such an interaction, the system state � transforms
as follows:

� −→ �τ [�] = trn
{
Uτ

(
� ⊗ 1

2I
)
U †

τ

}
, (22)

where trn denotes the partial trace over the nth environment
qubit. Some algebra yields the single interaction elementary
map �τ , which is unital, does not depend on n, and
reads

�τ [�] = 1
2 (tr[�]I + cos(g2τ )tr[σx�]σx + cos(g1τ )tr[σy�]σy

+ cos(g1τ ) cos(g2τ )tr[σz�]σz). (23)

Since the system qubit always interacts with a fresh envi-
ronmental particle, after t

τ
interactions we get the dynamical

map

�t = (�τ )t/τ , (24)

with parameters λ1(t) = [cos(g2τ )]t/τ , λ2(t) = [cos(g1τ )]t/τ ,
and λ3(t) = λ1(t)λ2(t). In the stroboscopic limit [39,57,71]
τ → 0, g2

1τ → 2γ1, g2
2τ → 2γ2, we get the continuous dy-

namics λ1(t) = e−γ2t , λ2(t) = e−γ1t , and λ3(t) = e−(γ1+γ2)t .
Thus, parameters λ1(t), λ2(t), and λ3(t) satisfy condi-
tion (15) and the induced dynamics is ultimate CP
divisible.

This proves that ultimate CP divisible dynamics with the
dissipator (18) can be realized in the stroboscopic limit of
the collision model with the elementary pairwise Hamiltonian
H = giσi ⊗ σi + gjσj ⊗ σj , where the coefficients gi and gj

satisfy gi

gj
=

√
γi

γj
. Trajectories of ultimate CP divisible Pauli

semigroups are depicted in Fig. 2.

V. MULTIPLICATIVITY AND ADDITIVITY OF
GENERATORS IN COLLISION MODELS

Any CP divisible process �t can be realized stroboscopi-
cally via a collision model with the arbitrary chosen precision.
In fact, since �t,t+s is a valid dynamical map for all t and s, its
dilation (unitary operator Vt,t+s and environment state ξt,t+s)
is continuous with respect to t and s [72]. Fixing s = τ , we
get a sequence of environment states,

ξ0,τ ,ξτ,2τ , . . . ,ξ(n−1)τ,nτ , . . . , (25)

and a sequence of unitary operators acting on the system and
nth environment particle,

V0,τ ,Vτ,2τ , . . . ,V(n−1)τ,nτ , . . . , (26)

such that the dynamics �t [�] coincides with the
simulation �sim

nτ [�] = trenv[V(n−1)τ,nτ · · ·Vτ,2τV0,τ (� ⊗ ξ0,τ ⊗
ξτ,2τ ⊗ · · · ⊗ ξ(n−1)τ,nτ )V †

0,τ V
†
τ,2τ · · · V †

(n−1)τ,nτ ] at time mo-
ments t = nτ . Thus, there exists a collision model with
factorized environment which simulates master equation ∂�

∂t
=

Lt [�] for the generator Lt = �̇t ◦ �−1
t if �t is CP divisible.

Analogously, if we replace the generator Lt by αLt with
some positive α, then the resulting evolution is still CP divisible
and can be realized stroboscopically at the same time moments
t = nτ (each collision increments time by τ ) with a modified
sequence of environment states,

ξ0,ατ ,ξτ,(1+α)τ , . . . ,ξ(n−1)τ,(n−1+α)τ , . . . , (27)

and a sequence of unitary operators acting on the system and
nth environment particle,

V0,ατ ,Vτ,(1+α)τ , . . . ,V(n−1)τ,(n−1+α)τ , . . . . (28)

Note that such an apparent construction of a collision
model for multiplicative generator αLt is valid only if the
original process �t is CP divisible. If this is not the case,
the modified master equation ∂�

∂t
= αLt [�] may lead to

nonphysical solutions, with the example being presented in
Ref. [65].

Consider two CP divisible processes �
(1)
t and �

(2)
t de-

fined via master equations ∂�

∂t
= L(1)

t [�] and ∂�

∂t
= L(2)

t [�],

respectively. Each dynamical map �
(i)
t can be simulated

stroboscopically with a sequence of environment states
{ξ (i)

(n−1)τ,nτ } and unitary operators {V (i)
(n−1)τ,nτ }, i = 1,2. If the

system interacts during time τ alternatively with particles
from the first and second sequences, i.e., with particles from
the first environment at odd collisions and with particles
from the second environment at even collisions (Fig. 5),
then the resulting dynamics simulates the master equation
∂�

∂t
= 1

2 (L(1)
t + L(2)

t )[�] at times t = 2nτ . In a more general
physical situation, when the system interacts independently
with two types of environments, the effective generator reads
p1L(1)

t + p2L(2)
t , where p1 and p2 are the probabilities of

encountering a particle from the first and second environment,
respectively. Therefore, additivity of generators can be realized
in a stroboscopic model if those generators lead to CP divisible
dynamics. When the latter condition is violated, the addition
of generators may also lead to nonphysical solutions [64].
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FIG. 5. Simulation of generator 1
2 (L(1)

t + L(2)
t ) for CP divisible

dynamical maps governed by master equations ∂�

∂t
= L(1)

t [�] and ∂�

∂t
=

L(2)
t [�].

VI. MIXTURES OF CP DIVISIBLE PROCESSES

Consider a dynamical map which is a mixture of CP
divisible processes,

�t =
M∑

m=1

pm�
(m)
t , (29)

where {pm} are the probabilities with which CP divisible
dynamical maps {�(m)

t } contribute to the map �t , pm � 0 and∑M
m=1 pm = 1. Note that this situation is substantially different

from the weighted sum of generators since Lt = �̇t ◦ �−1
t �=∑M

m=1 wm�̇
(m)
t ◦ (�(m)

t )
−1 = ∑M

m=1 wmL(m)
t , in general.

Surprisingly, even if all the processes �
(m)
t are CP divisible,

�t can still be CP indivisible. The prominent example is the
mixture

�mix
t = p1e

L1t + p2e
L2t + p3e

L3t (30)

of purely dephasing maps eLi t with Li[�] = γ (σi�σi − �).
In Ref. [24], the region of simplex (p1,p2,p3) is found, for
which �mix

t is not CP divisible for all t > t∗. If only one of
the probabilities p1,p2,p3 equals zero, then �mix

t is eternal CP
indivisible.

In what follows, we will design a collision model simulation
of a general mixture �t = ∑M

m=1 pm�
(m)
t of CP divisible

dynamical maps. Suppose each �
(m)
t is realized by a collision

model with environment states ξ
(m)
1 ,ξ

(m)
2 , . . . ,ξ (m)

n and elemen-
tary unitary transformations U

(m)
1 = exp(−iH

(m)
1 τ ), U

(m)
2 =

exp(−iH
(m)
2 τ ), . . . ,U (m)

n = exp(−iH (m)
n τ ). The whole envi-

ronment of the mth process reads �(m) = ξ
(m)
1 ⊗ ξ

(m)
2 ⊗ · · · ⊗

ξ (m)
n = ⊗n

k=1 ξ
(m)
k . In a probabilistic sense, the mixture can be

realized as a mixture of collision models for each individual
�

(m)
t ; however, such implementation is not “operationally

faithful” because in each run of the experiment a randomly
chosen but different CP divisible process �

(m)
t is realized.

We will present an alternative realization of such mixtures
and design a collision model with a correlated state of
the environment implementing the desired mixture in each
individual run of the experiment.

In particular, consider the following initial state of the
environment:

� =
M⊕

m=1

pm�(m) =

⎛
⎜⎜⎜⎝

p1�
(1)

p2�
(2)

. . .
pM�(M)

⎞
⎟⎟⎟⎠

= =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p1

n⊗
k=1

ξ
(1)
k

p2

n⊗
k=1

ξ
(2)
k

0

. . .

0
pM

n⊗
k=1

ξ
(M)
k

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(31)

which does not have the tensor product structure with respect
to collisions, i.e., � �= ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξn. Let us note that
this state is correlated, but not entangled. Also, note that
the Hermitian operator H

(m)
k is an interaction Hamiltonian

between the system and the kth particle of the mth environ-
ment, so H

(m)
k acts nontrivially on vectors in the subspace

Hsys ⊗ H(m)
k only. In other words, H

(m)
k involves degrees

of freedom of the system and the kth particle of the mth
block of matrix (31). Consequently, H (m)

k H
(m′)
k = 0 if m �= m′.

The combined Hamiltonian Hk = ∑M
m=1 H

(m)
k generates the

unitary evolution operator,

Uk = exp (−iHkτ ) =
∞∑
l=0

(−iτ )l

l!
(Hk)l =

∞∑
l=0

(−iτ )l

l!

×
M∑

m=1

(
H

(m)
k

)l =
M∑

m=1

exp
( − iH

(m)
k τ

) =
M∑

m=1

U
(m)
k ,

(32)

where the support of U
(m)
k = exp(−iH

(m)
k τ ) is Hsys ⊗ H(m)

k , so

U
(m)
k U

(m′)
k = 0 if m �= m′. The sequence of n collisions results

in the evolution operator

Un · · ·U2U1 =
M∑

m=1

U (m)
n · · ·U (m)

2 U
(m)
1 , (33)

where U (m)
n · · ·U (m)

2 U
(m)
1 does not vanish on vectors involving

the system and the mth block of matrix (31).
The dynamical map after n collisions reads

�[�] = trenv[Un · · · U2U1 � ⊗ � U
†
1U

†
2 · · · U †

n]

=
M∑

m=1

pm trenv
[
U (m)

n · · ·U (m)
1 � ⊗ �(m)U

(m)†
1 · · ·U (m)†

n

]

=
M∑

m=1

pm�(m)[�]. (34)

Therefore, the correlated environment (31) enables realiza-
tion of the mixture of dynamical maps (29).
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FIG. 6. Collision model with correlated environment, which
realizes the deterministic mixture of CP divisible processes.

Example 1. Consider a mixture of pure dephasing qubit
channels, given by Eq. (30), M = 3. The deterministic
collision model of such a dynamics is achieved with the
environment composed of n six-level systems (Fig. 6). The
classically correlated state of n environment particles is

�=
(

p1

n⊗
k=1

1

2
I (1)

)⊕(
p2

n⊗
k=1

1

2
I (2)

)⊕(
p3

n⊗
k=1

1

2
I (3)

)
,

(35)

which assigns probability p1 (p2,p3) to the occurrence of
collision with the first (second, third) pair of levels within
the six-level system.

Elementary unitary transformations U
(m)
k coincide for all

collisions k = 1, . . . ,n and represent a generalization of a
controlled-unitary operation, where the system is a controlled
qubit, and the mth qubit within the triple serves as a controlling
qubit,

U
(m)
k = eigτσm ⊗ |0m〉〈0m| + e−igτσm ⊗ |1m〉〈1m|. (36)

In the stroboscopic limit [39,57,71], τ → 0 and g2τ →
2γ , Eq. (35) leads to the dynamical map �mix

t = p1e
L1t +

p2e
L2t + p3e

L3t with Li[�] = γ (σi�σi − �).

VII. ETERNAL CP INDIVISIBILITY

Eternal CP indivisible dynamical maps �t are those that
are not CP divisible for any time t > 0. It was shown
recently that eternal CP indivisibility is quite a general
property for approximate master equations describing spin-
boson systems [73]. Known examples of eternal CP indivisible
Pauli dynamical maps include nontrivial convex combinations
pi�

pdi
t + pj�

pdj
t of pure dephasing processes �

pdi
t and �

pdj
t

(in the basis of eigenstates of operators σi and σj , respectively),
i,j = x,y,z, i �= j [24,25]. In what follows, we extend this
one-parameter family (since pi + pj = 1) to a wider class,
namely, a two-parameter family of eternal CP indivisible maps.
The underlying idea is to consider such smooth trajectories
λ(t) in the parameter space λ1,λ2,λ3 that do not belong to
the geometrical body in Fig. 2. These trajectories are beyond
ultimate CP divisible processes, and as a result the κ vector
always points beyond the tetrahedron in Fig. 1(b).

To start with, let us focus on three ultimate CP divisible
semigroup processes:

(i) �
(1)
t = eL

(1)t with the dissipator L(1)[�] =
γi

2 (σi�σi − �) + γj

2 (σj�σj − �), i �= j , γi,j > 0, which

describes a “skewed” amplitude damping process towards a
completely mixed state 1

2I via contact with a high-temperature
environment;

(ii) �
(2)
t = eL

(2)t with the dissipator L(2)[�] =
γi

2 (σi�σi − �), which is a pure phase damping process
in the basis of eigenstates of σi ; and

(iii) �
(3)
t = eL

(3)t with the dissipator L(3)[�] =
γj

2 (σj�σj − �), which is a pure phase damping process
in the basis of eigenstates of σj .

Let us demonstrate that any nontrivial mixture �t =
p1�

(1)
t + p2�

(2)
t + p3�

(3)
t with p1,2,3 > 0 is eternal CP in-

divisible. In fact, parameters of the unital map �t read

λi(t) = (p1 + p3)e−γj t + p2, (37)

λj (t) = (p1 + p2)e−γi t + p3, (38)

λk(t) = p1e
−(γi+γj )t + p2e

−γi t + p3e
−γj t . (39)

Calculation of the κ vector yields

κi(t) = − γj (p1 + p3)

p1 + p3 + p2e
γj t

, (40)

κj (t) = − γi(p1 + p2)

p1 + p2 + p3eγi t
, (41)

κk(t) = −γi(p1 + p2e
γj t ) + γj (p1 + p3e

γi t )

p1 + p2e
γj t + p3eγi t

. (42)

Since the inequalities

p1 + p2e
γj t

p1 + p2e
γj t + p3eγi t

>
p1 + p2

p1 + p2 + p3eγi t
, (43)

p1 + p3e
γi t

p1 + p2e
γj t + p3eγi t

>
p1 + p3

p1 + p3 + p2e
γj t

(44)

hold true for all t > 0, we conclude that κi + κj − κk > 0 and
one of inequalities (7)–(9) is violated. Thus, �t = p1�

(1)
t +

p2�
(2)
t + p3�

(3)
t is eternal CP indivisible.

Thus, we have constructed a two-parameter family (since
p1 + p2 + p3 = 1) of eternal CP indivisible processes as a
mixture of three ultimate CP divisible dynamical maps with
clear physical meaning. This family comprises the previously
known examples as a partial case when p1 = 0. Corresponding
trajectories in the parameter space are depicted in Fig. 7.
Note that the constructed family is a mixture of CP divisible
processes, so it can be realized by a collision model developed
in the previous section.

VIII. P DIVISIBILITY

In this section, we review the elementary operational
features of P divisible dynamical processes.

A. Probability of confusion

Consider a positive map �;1 then the quantum relative
entropy S(�‖σ ) = tr[�(ln � − ln σ )] is a monotone under

1A positive map is a linear map that transforms positive semidefinite
operators into positive semidefinite ones. Hereafter, we assume the
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FIG. 7. Trajectories of eternal CP indivisible Pauli dynamical
maps (thin blue lines), which are convex mixtures of pure dephasing
processes (thick straight green lines) and one of nontrivial ultimate
CP divisible maps (one of thick curved red lines).

positive maps [74], i.e.,

S(�[�]‖�[σ ]) � S(�‖σ ), (45)

for all density matrices � and σ . On the other hand, the quantum
analog of Sanov’s theorem [75] states that the probability of
confusing two quantum states � and σ after performing n

measurements on σ equals

Pn(σ → �) = e−nS(�‖σ ) if n � 1. (46)

Therefore, the probability of confusing two states � and
σ monotonically increases in P divisible processes [S(�‖σ )
monotonically decreases].

B. Distinguishability

The trace distance D(�,σ ) = 1
2‖� − σ‖1 between qubit

states � and σ is a monotone under qubit positive maps �

too, i.e.,

D(�[�],�[σ ]) � D(�,σ ). (47)

On the other hand, the trace distance quantifies the
probability of successful discrimination of quantum states �

and σ in a single-shot measurement. For P divisible processes,
this probability monotonically decreases.

C. Classical capacity

If the process �t is unital, then the map �t,t+s is also
unital. The classical capacity C of a qubit unital channel reads
C(�t ) = 1 − h2[ 1

2 (1 − max(|λ1(t)|,|λ2(t)|,|λ3(t)|))], where
h2(x) = −xlog2x − (1 − x)log2(1 − x). It is not hard to see
that all |λi(t)|, i = 1,2,3, monotonically decrease if �t,t+s is

dimensions of the input and the output spaces to be equal. Also, for
the sake of brevity, we will refer to positive trace-preserving maps as
positive.

positive for all t,s. Therefore, if the qubit unital process �t

is P divisible, then its classical capacity C(�t ) monotonically
decreases with time t .

D. Separability

If a positive map � is applied to a part of separable state R =∑
i πi�i ⊗ σi , πi � 0, then its separability is preserved since

(� ⊗ Id)[R] = ∑
i πi�[�i] ⊗ σi is a valid density operator.

Thus, if the process �t is P divisible, then its action on a
part of a composite system cannot result in the revival of
entanglement.

Suppose that by time t = tEB, the process �t becomes
entanglement breaking [76,77], i.e., �tEB is effectively a
measure-and-prepare procedure (quantum-classical-quantum
channel) of the Holevo form �tEB [�] = ∑

k tr[�Ek]�k , where
{Ek} is a positive operator-valued measure. If �t acts on
a part of a composite system (initially in the state R0),
then (�tEB ⊗ Id)[R0] is separable and the further P divisible
dynamics leaves this state separable.

Suppose the channel �t ⊗ �t becomes entanglement anni-
hilating [78,79] by time t = tEA, and �t is P divisible for t >

tEA. Then, (�tEA ⊗ �tEA )[R0] is separable and (�t ⊗ �t )[R0]
remains separable for t > tEA.

For instance, the Pauli channel � with parameters λ1,λ2,λ3

results in entanglement-annihilating channel � ⊗ � if and
only if λ2

1 + λ2
2 + λ2

3 � 1 [79]. The process �t = p1e
L1t +

p2e
L2t + p3e

L3t with dissipators Li[�] = γ (σi�σi − �) be-
comes entanglement annihilating if

p2
1 + p2

2 + p2
3 = 1 − e−γ tEA − e−2γ tEA

1 − e−γ tEA + e−2γ tEA
. (48)

Positive divisibility of the map �t guarantees separability of
(�t ⊗ �t )[R0] for all t > tEA.

E. Tensor power

Clearly, a map � ⊗ � can be nonpositive even if � is
positive [80,81]. Thus, even if �t is P divisible, �t ⊗ �t can
still be P indivisible. However, if �t ⊗ �t is P divisible, then
�t is CP divisible [65].

IX. COLLISION MODELS FOR P INDIVISIBLE
DYNAMICAL MAPS

P indivisible (essentially non-Markovian) dynamical maps
�t can exhibit properties opposite to those described in the
previous section, namely, the probability of confusion of two
states, distinguishability of states, and classical capacity can be
nonmonotonic functions of time. In the following sections, we
construct collision models of specific and general P indivisible
processes and present an example of the dynamical map, which
monotonically shrinks the volume of accessible states but is
not P divisible.

A. Essentially non-Markovian dephasing process

As an example of P indivisible dynamics, consider a
correlated environment of n qubits (Fig. 8) in the state

� = 1
2

(|0⊗n〉〈0⊗n| + |1⊗n〉〈1⊗n|). (49)
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FIG. 8. Essentially non-Markovian (P indivisible) dynamics in
a collision model with correlated environment. Correlations are
encoded in color (upper and lower levels): either all environment
qubits are excited (red, upper level) or they are all in a ground state
(green, lower level).

The elementary unitary transformation Uk describes the
evolution of the system and kth environment qubit. Suppose
Uk = eigτσz ⊗ |0〉k〈0| + e−igτσz ⊗ |1〉k〈1|; then, after n = t

τ

collisions, we get

�z
t [�] = trenv[Un · · · U2U1 � ⊗ � U

†
1U

†
2 · · · U †

n]

= cos2(ngτ )� + sin2(ngτ )σz�σz

= cos2(gt)� + sin2(gt)σz�σz. (50)

Clearly, the resulting dephasing dynamics �t is P divisible
if 0 < gt < π

4 and P indivisible if π
4 < gt < π

2 . Then the
periods of P divisibility and P indivisibility alternate. The in-
formation about the initial system state � is stored in the
environment when the process is P divisible, and the backflow
of information occurs when the process is P indivisible.

B. Mixture of essentially non-Markovian dephasing processes

Similarly to the previous section, P indivisible dephasing
processes �x

t and �
y
t along the x and y axes of the Bloch

ball can be achieved by collision models. The mixture
�t = p1�

x
t + p2�

y
t + p3�

z
t can be realized with a correlated

environment made of n six-level systems in the state

� =
∑

m=1,2,3

pm

2

(|0⊗n
m

〉〈
0⊗n

m

∣∣ + ∣∣1⊗n
m

〉〈
1⊗n

m

∣∣), (51)

where m labels the pairs of levels (effective qubit states |0m〉
and |1m〉), and elementary unitary transformations

Uk =
∑

m=1,2,3

eigτσm ⊗ |0m〉k〈0m| + e−igτσm ⊗ |1m〉k〈1m|.

(52)

A pictorial representation of the resulting dynamical map,

�t = p1�
x
t + p2�

y
t + p3�

z
t

= cos2(αt)� + sin2(αt)
3∑

m=1

pmσm�σm, (53)

is a straight line in the parameter space λ1,λ2,λ3.
For instance, in the case p1 = p2 = p3 = 1

3 , we obtain a
depolarizing map Dp(t)[�] = p(t)� + (1 − p(t))tr[�] 1

2I with
p(t) = 1

3 (1 + 2 cos 2gt). In such a process, the Bloch ball
gradually shrinks to a point, then extends in inverted form
unless its radius equals 1

3 (the best approximation of universal
NOT operation), and then the process goes in the opposite
direction until the region of accessible states occupies the

whole Bloch ball again; after that, the process is continuous
from the very beginning.

C. Arbitrary pure dephasing process

In Sec. IX A, we considered a essentially non-Markovian
pure dephasing process with the coherence function cos(2gt).
In this section, we construct a collision model which results
in a pure dephasing process with the arbitrary continuous
real coherence function f (t) that is bounded (|f (t)| � 1) and
f (0) = 1.

We start with a dephasing process in the basis of eigenvec-
tors of σz, i.e., the density matrix transformation(

�11 �12

�21 �22

)
→

(
�11 f (t)�12

f (t)�21 �22

)
, (54)

which corresponds to a trajectory λ(t) = (f (t),f (t),1) in the
parameter space.

Consider a correlated environment in the state

� = 1
2 (|i1〉〈i1| ⊗ |i2〉〈i2| ⊗ · · · ⊗ |in〉〈in| ⊗ · · ·
+ |i1〉〈i1| ⊗ |i2〉〈i2| ⊗ · · · ⊗ |in〉〈in| ⊗ · · · )

= 1
2

⊗
k

|ik〉〈ik| + 1
2

⊗
k

|ik〉〈ik|, (55)

where either ik = 0 and ik = 1, or ik = 1 and ik = 0.
Elementary unitary transformations Uk = eigτσz ⊗ |0〉k〈0| +
e−igτσz ⊗ |1〉k〈1| result in the following dynamical map after
n = t

τ
collisions:

�t [�] = trenv[Un · · · U2U1 � ⊗ � U
†
1U

†
2 · · · U †

n]

= cos2{[n0(t) − n1(t)]gτ }�
+ sin2{[n0(t) − n1(t)]gτ }σz�σz, (56)

where n0(t) = ∑n
k=1 δik,0 and n1(t) = ∑n

k=1 δik,1 = n − n0.
Apparently, [n0(t) − n1(t)]τ = 2n0(t)τ − t and

f (t) = cos{2g[2n0(t)τ − t]}. (57)

Therefore, to get the desired dynamics, one needs to arrange
the number n0(t) of 0’s in indices ik of environment state (55)
in accordance with the formula

n0(t)τ = arccos f (t)

4g
+ t

2
. (58)

In the usual continuous limit τ → 0, gτ → const, the left-hand
side of Eq. (58) has the meaning of the integral n0(t)τ =∫ t

0 w0(t ′)dt ′, where w0(t) is the probability of encountering 0
at every collision in the first line of the environment state (55).
Finally,

w0(t) = − f ′(t)

4g
√

1 − f 2(t)
+ 1

2
. (59)

If f ′(t) = 0 when f (t) = 1, then the right-hand side can
be made non-negative and bounded from above by 1 for
sufficiently large g. If f ′(t) �= 0 when f (t) = 1 (as it takes
place, e.g., in Markov approximation), one has to resort to the
stroboscopic limit and replace g by g√

τ
, which enables one

to meet the requirement 0 � w0(t) � 1. Similarly, one can
construct the processes of arbitrary dephasing in the bases of
eigenstates of operators σx and σy .
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FIG. 9. Collision model simulating essentially non-Markovian
Pauli dynamical maps.

D. Arbitrary Pauli dynamical maps

In this section, we construct a collision model which is able
to reproduce any dynamics λ(t) satisfying the condition of
complete positivity of the corresponding Pauli dynamical map
�t . In other words, given a trajectory in the parameter space
[Fig. 1(a)], we construct a collision model leading to such a
trajectory.

The requirement of complete positivity is automatically
fulfilled if the functions qj (t) that are defined through⎛

⎜⎝
q0(t)
q1(t)
q2(t)
q3(t)

⎞
⎟⎠ = 1

4

⎛
⎜⎝

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎞
⎟⎠

⎛
⎜⎝

1
λ1(t)
λ2(t)
λ3(t)

⎞
⎟⎠ (60)

satisfy qj (t) � 0 for all j = 0,1,2,3.
To get an arbitrary Pauli dynamical map with non-negative

functions q0(t),q1(t),q2(t),q3(t), one needs to combine three
(essentially non-Markovian) dephasing processes considered
in the previous section. This is achieved with the environment
composed of three types of qubits. Denote these types x,y,z;
then, the kth collision of the system qubit with the mth type
of environment qubits is described by the elementary unitary
transformation

U
(m)
k = eigτσm ⊗ |0〉k〈0| + e−igτσm ⊗ |1〉k〈1|. (61)

Qubits of the same kind are correlated, so the total environment
state reads

� =
⊗

m=x,y,z

⎛
⎝1

2

⊗
k∈{km}

|ik〉〈ik| + 1

2

⊗
k∈{km}

|ik〉〈ik|
⎞
⎠, (62)

where {kx}, {ky}, {kz} are subsequences of collision numbers
k ∈ N such that {km} ∩ {km′ } = ∅ if m �= m′ and {kx} ∪ {ky} ∪
{kz} = N. The physics of such collisions is depicted in Fig. 9.

The resulting map is

�t [�] = trenv[Un · · · U1(� ⊗ �) U
†
1 · · · U †

n] , (63)

where Uk = U
(m: km=k)
k . The intermediate map �t,t+τ =

�t+τ ◦ �−1
t between collisions realizes one of the infinitesimal

maps �
(x)
t,t+τ , �

(y)
t,t+τ , and �

(z)
t,t+τ . Collision with the kmth

particle results in the map �
(m)
t,t+τ . Clearly, for a fixed m, the

product
∏

km
�

(m)
kmτ,(km+1)τ = �

(m)
t is simply the dephasing map

in the eigenbasis of operator σm with dephasing function fm(t)

given by a modification of Eq. (57),

fm(t) = cos
{
2
[
n

(m)
0 − n

(m)
1

]
gτ

}
, (64)

where n
(m)
0 = ∑

km�n δikm ,0 and n
(m)
1 = ∑

km�n δikm ,1. All phys-
ical functions fm(t), m = 1,2,3, can be realized in the usual
continuous or stroboscopic limit as it was demonstrated for
a single dephasing map. Then a sequence of collisions with
different types of qubits during a short time dt (dt � τ ) results
in the product

�t,t+dt = �
(x)
t,t+dt�

(y)
t,t+dt�

(z)
t,t+dt . (65)

Note that all �
(m)
t,t+dt commute. Consequently, the pa-

rameters λ1(t), λ2(t), and λ3(t) of the map �t satisfy
differential equations λ′

1(t) = f ′
2(t) + f ′

3(t), λ′
2(t) = f ′

1(t) +
f ′

3(t), and λ′
3(t) = f ′

1(t) + f ′
2(t), from which it follows

that λ1(t) = f2(t) + f3(t) − 1, λ2(t) = f1(t) + f3(t) − 1, and
λ3(t) = f1(t) + f2(t) − 1. Finally, using Eq. (60), we find the
explicit form of the functions fm(t) = 1 − 2qm(t).

The algorithm for producing arbitrary dynamics λ(t) in
parameter space is the following. Calculate qm(t) by Eq. (60)
and fm(t) = 1 − 2qm(t). For each m, distribute 0’s and 1’s in
accordance with formula (64). Create the correlated state (62)
with the corresponding distributions of 0’s and 1’s in the
mth branch. Let the system qubit interact with environment
qubits of type m according to the elementary evolution
operator (61).

E. Dynamical maps shrinking the volume of accessible states

One more approach to the characterization of non-
Markovianity is based on the quantification of the volume of
accessible states [18]. Using the metric induced by the Hilbert-
Schmidt distance for qubit states, the volume of accessible
states of a qubit dynamical map �t is simply the volume of the
ellipsoid in the Bloch ball picture, which corresponds to the
domain of �t . For Pauli dynamical maps �t of the form (2),
the volume of accessible states V (t) = |λ1(t)λ2(t)λ3(t)|. A
process �t monotonically shrinks the volume of accessible
states if any intermediate map �t,t+s does so.

Let us present an example of the Pauli dynamical map
�t which monotonically shrinks the volume of accessible
states but is not P divisible. Let λ1(t) = e−2t (1 − 1

10 [1 −
cos 40t]), λ2(t) = e−2t (1 − 1

10 sin 40t), λ3(t) = e−4t ; then, �t

is a physical process indeed since all qi(t) � 0 and can be
realized via a collision model with correlated environment (see
the preceding section). It is not hard to see that the volume of
accessible states V (t) monotonically decreases, whereas both
λ1(t) and λ2(t) are not monotonic, i.e., the process is not P
divisible (see the trajectory and the corresponding κ vector in
Fig. 10).

X. CONCLUSIONS

We have studied the relation between different forms of
divisibility of dynamical maps and collision models that stro-
boscopically simulate such dynamical maps. Our findings are
illustrated by Pauli dynamical maps, which allow a particularly
visual pictorial representation of process trajectories in the
parameter space.
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FIG. 10. Trajectory of the Pauli dynamical map, which is not
P divisible but monotonically shrinks the volume of accessible
states. Arrows represent directions of the κ vector at particular time
moments.

A concept of ultimate CP divisible maps has been intro-
duced: ultimate CP divisible processes can be understood
as ultimate dynamical maps still simulable by collision
models with factorized environment. Ultimate CP divisible
semigroups of Pauli maps are fully characterized, with the
interaction Hamiltonian being specified.

Within the framework of collision models, we have
demonstrated additivity and multiplicativity of time-dependent
generators of CP divisible processes. The environment remains
factorized in this case. Roughly speaking, to realize a weighted

sum of generators of CP divisible maps, one has to shuffle
individual environments using a tensor product.

Using correlated environment states, we have explicitly
constructed a collision model realizing the mixture of CP
divisible maps. The latter technique was used to simulate a
two-parameter family of eternal CP indivisible maps. This
family represents a mixture of two pure dephasing processes
and a skewed version of the generalized amplitude damping
process. Continuing the rough analogy, a mixture of dynamical
maps corresponds to uniting individual environments via direct
sum operation.

Also, we have reviewed general properties of P divisible
dynamical maps. In particular, using a quantum analog of
Sanov’s theorem, we have noticed that the probability of
confusing two states monotonically increases in P divisible
processes. As far as P indivisible processes are concerned,
we have explicitly constructed collision models simulating
arbitrary Pauli dynamical maps.
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