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Manipulation of acoustic wave fronts by thin and planar devices, known as metasurfaces, has been extensively
studied, in view of many important applications. Reflective and refractive metasurfaces are designed using
the generalized reflection and Snell’s laws, which tell that local phase shifts at the metasurface supply extra
momentum to the wave, presumably allowing arbitrary control of reflected or transmitted waves. However, as has
been recently shown for the electromagnetic counterpart, conventional metasurfaces based on the generalized
laws of reflection and refraction have important drawbacks in terms of power efficiency. This work presents
a new synthesis method of acoustic metasurfaces for anomalous reflection and transmission that overcomes
the fundamental limitations of conventional designs, allowing full control of acoustic energy flow. The results
show that different mechanisms are necessary in the reflection and transmission scenarios for ensuring perfect
performance. Metasurfaces for anomalous reflection require nonlocal response, which allows energy channeling
along the metasurface. On the other hand, for perfect manipulation of anomalously transmitted waves, local and
nonsymmetric response is required. These conclusions are interpreted through appropriate surface impedance
models which are used to find possible physical implementations of perfect metasurfaces in each scenario. We
hope that this advance in the design of acoustic metasurfaces opens new avenues not only for perfect anomalous
reflection and transmission but also for realizing more complex functionalities, such as focusing, self-bending,
or vortex generation.

DOI: 10.1103/PhysRevB.96.125409

I. INTRODUCTION

The interest in quasi two-dimensional devices capable
of manipulating waves revived with the formulation of the
generalized reflection and Snell’s laws [1], which shows a
possibility of tailoring the direction of reflected and transmitted
waves by introducing gradient phase shifts at the interface
between two media. The generalized laws of reflection and
refraction have been applied for controlling the direction
of transmitted and reflected waves in electromagnetism [2]
and acoustics [3–13]. By appropriately varying the phase
shift introduced along the metasurface between 0 and 2π ,
the propagation direction of the reflected/refracted wave can
be controlled. These approaches enable tailoring the energy
propagation direction, but with important restrictions of the
efficiency (the amount of energy that is sent into the desired
direction is smaller than the energy introduced in the system,
even for lossless metasurfaces).

Recently, it has been demonstrated that some additional
considerations about the power conservation can be applied
over the conventional generalized reflection and Snell’s laws
for ensuring full control of electromagnetic energy flow
[14–17]. This advance has attracted much attention due to
the possibility of dramatic improvements of conventional solu-
tions, especially for steep reflection or transmission angles. For
electromagnetic waves, the basis of this “second generation”
of gradient electromagnetic metasurfaces has been established
and numerically verified, and for reflective metasurfaces the
theoretical findings have already been confirmed experimen-
tally [18].

However, it appears that the synthesis tools for acoustic
metasurfaces do not benefit from the new knowledge. In the
acoustic reflection scenario, the generalized reflection law has
been experimentally demonstrated [4–8] using labyrinthine
unit cells which provide a phase-shift profile with the 2π span

in the reflection coefficient phase. However, in view of the
results of Refs. [14–17], the performance of these designs is not
optimal because significant energy is spread in unwanted direc-
tions. Theoretical studies based on inhomogeneous impedance
along the metasurface [5] show the coexistence of more than
one reflected wave. For perfect control of anomalous reflection
or, in other words, for allowing arbitrary changes of the
direction of reflected plane waves, we need to ensure perfect
steering of all the incident power into the desired direction,
avoiding the generation of parasitic waves propagating in other
directions or losses in the system.

On the other hand, the same approach based on the
generalized Snell’s law has been applied for the design of
refractive acoustic metasurfaces [9–13]. The direction of
the transmitted wave is controlled by linearly modulating
the local phase shift in transmission through the metasur-
face. For the design of unit cells, different topologies have
been used, including space-colling structures [9], slits filled
with different density materials [10], or straight pipes with
Helmholtz resonators in series [11,12]. One problem addressed
in the design of the refractive metasurface was the required
impedance matching of each meta-atom in order to obtain
total transmission. In this sense, substantial improvements in
the design of matched unit cells have been achieved by using
tapered labyrinthine units [13]. However, as has been recently
demonstrated for the electromagnetic scenario [14,15,19], by
ensuring perfect matching in the microscopic design of the
metasurface (individual design of each meta-atom) we cannot
obtain the proper macroscopic behavior of the metasurface.

In this paper, we present the foundations for the synthesis
of perfect acoustic metasurfaces, overcoming the fundamental
limitations of conventional designs. The study covers two
different scenarios: anomalous reflection and transmission of
acoustic plane waves. With the purpose of simplifying the
presentation and emphasizing the novelty of this approach, in
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FIG. 1. (a) Schematic representations of the desired metasurface
behavior for the anomalous reflection scenario. (b) Equivalent circuit
proposed for the analysis of reflective metasurfaces.

both cases the analysis starts with a comprehensive overview
of the known approaches based on the generalized reflection
and Snell’s laws. After identifying the weaknesses of current
designs, we propose new methods that ensure perfect control
of acoustic energy in reflection and refraction. Finally, we
interpret the theoretical findings in terms of the physical
properties of metasurface unit cells and give examples of
possible realizations.

II. ACOUSTIC METASURFACES FOR REFLECTION

In this section, the reflected wave front manipulation is
studied. Particularly, we focus the study on anomalous reflec-
tion of acoustic plane waves. This fundamental functionality
is the base of many interesting applications such as reflection
lenses, plane wave to surface wave conversion, or acoustic
retro-reflectors.

A. Design based on the generalized reflection law

In order to understand the current status of the synthesis
methods, we start with the analysis of reflective gradient
metasurfaces based on the generalized reflection law (we
use the same short-hand notation, GSL, for both generalized
Snell’s law and the generalized reflection law). If we consider
the scenario illustrated in Fig. 1(a), where the incident
and reflected waves propagate in a homogeneous medium
with density ρ and sound speed c, assuming time-harmonic
dependence ejωt , the incident and reflected pressure fields can
be written as

pi(x,y) = p0e
−jk sin θixejk cos θiy, (1)

pr(x,y) = Ap0e
−jk sin θrxe−jk cos θry, (2)

where p0 is the amplitude of the incident plane wave, k = ω/c

is the wave number in the background medium at the operation
frequency, θi and θr are the incidence and reflection angles, and
A is a constant which relates the amplitudes of the incident
and reflected waves. The velocity vectors associated with these
pressure fields (�v = j

ωρ
∇p) read

�vi(x,y) = pi(x,y)

Z0
(sin θix̂ − cos θiŷ), (3)

�vr(x,y) = pr(x,y)

Z0
(sin θrx̂ + cos θrŷ), (4)

where Z0 = cρ is the characteristic impedance of the back-
ground medium.

Assuming that the field beyond the metasurface is zero (an
impenetrable metasurface), the system can be conveniently
modeled by the equivalent circuit shown in Fig. 1(b), where
the impedance Zs models the specific impedance of the
metasurface. GSL designs are based on the assumption
that a linear gradient phase shift [ ∂�x

∂x
= k(sin θr − sin θi)] is

introduced by the metasurface. In other words, the metasurface
is characterized by the local reflection coefficient with the unit
amplitude, which can be written as

�(x) = e−jk sin θrx

e−jk sin θix
= ejk(sin θi−sin θr)x = ej�x , (5)

where the reflection phase is defined as �x = k(sin θr −
sin θi)x. The reflection coefficient is related with the surface
impedance as � = Zs−Zi

Zs+Zi
, where Zi = Z0/ cos θi represents

the specific acoustic impedance of the incident wave at the
metasurface. From this expression, the impedance which
models the metasurface can be found as

Zs(x) = j
Z0

cos θi
cot(�x/2). (6)

Figure 2 presents a numerical study of the conventional
designs based on the GSL. The surface impedance modeled
by Eq. (6) is purely imaginary [see Fig. 2(c)], so lossless imple-
mentations are possible for this kind of reflective metasurfaces.
Actual implementations of the desired impedance profiles can
be obtained by using simple rigidly terminated waveguides
with different lengths or, exploiting the longitudinal character
of acoustics waves and so the absence of cutoff frequency,
“space-colling” particles with labyrinth channels [4–8]. In
these cases, each meta-atom has to be carefully tailored for
individually implementing the required surface impedance
profile and producing the required local phase shift. For the
purposes of this study, we assume that the required impedance
profile has been realized and model the metasurface (using
COMSOL software) as an impedance boundary described by
Eq. (6). Figures 2(a) and 2(b) show the results of numerical
simulations when the metasurface is illuminated normally
(θi = 0◦) and the reflection angles are θr = 30◦ and θr = 70◦,
respectively. From the comparison of these two examples, it
is easy to see two important issues: First, the “quality” of the
reflected wave decreases when the reflection angle increases,
due to parasitic reflections in other directions; second, the
amplitude of the reflected wave changes with the reflection
angle, although this behavior is not contemplated in the design
statement (A = 1). Clearly, the simple design philosophy
described by Eq. (6) does not ensure the perfect conversion
of energy between the incident and reflected plane waves and
it cannot be considered as an accurate method for the design
of metasurfaces for large values of the reflection angle.

The conclusions extracted from the analysis of the numeri-
cal simulations can be understood as an impedance mismatch
problem. Although the metasurface provides the desired phase
response, the incident and reflected waves have different
specific impedances, so part of the energy cannot be redirected
into the desired direction. Since the metasurface is assumed to
be lossless, part of the incident energy has to be reflected into
other directions (into 0◦ and −70◦ in the example of Fig. 2).
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FIG. 2. Real part of the scattered pressure field for a metasurface
designed according to Eq. (6) when: (a) θi = 0◦ and θr = 30◦; (b) θi =
0◦ and θr = 70◦. (c) Surface impedance described by Eq. (6) when
θi = 0◦ and θr = 70◦. (d) Efficiency of the GSL gradient metasurfaces
as a function of the reflection angle.

The reflections into parasitic directions can be estimated
introducing reflection coefficient calculated in terms of the
respective impedances:

R = Zr − Zi

Zr + Zi
= cos θi − cos θr

cos θi + cos θr
. (7)

Because the metasurface is an impenetrable boundary, the
total pressure of the incident and reflected waves (1 + R) is
equal to the pressure of the wave redirected into the desired di-
rection (AGSL), in analogy to transmission of electromagnetic
waves through electric-current sheets [20]:

AGSL = 1 + R = 2 cos θi

cos θi + cos θr
. (8)

We can now define the efficiency of the metasurface as the
ratio between the incident power and the power reflected in
the desired direction. The acoustic power can be expressed in
terms of the intensity vector

�I = 1
2 Re[p�v∗], (9)

where “∗” represents the complex conjugate. Due to the
periodicity of the system, only the normal component of the
intensity vector will take part in the power balance. The normal

component of the incident power is

Pi = n̂ · �Ii = −p2
0

Z0
cos θi. (10)

The normal component of the power carried in the desired
reflection direction can be calculated as

Pr = n̂ · �Ir = A2 p2
0

Z0
cos θr, (11)

and the efficiency reads

η = |Pr|
|Pi| = A2 cos θr

cos θi
. (12)

Substituting the wave amplitude A from Eq. (8) we can finally
estimate the efficiency of conventional metasurfaces as

ηGSL =
(

2 cos θi

cos θi + cos θr

)2 cos θr

cos θi
. (13)

Figure 2(d) represents the efficiency estimation given by
Eq. (13) and its comparison with the numerical results. To find
the power efficiency from numerical results, we calculate the
amplitude of the reflected plane wave into θr, ACOMSOL. This
amplitude can be calculated as

ACOMSOL = 1

D

∫ D

0
pr · ejk sin θrx dx, (14)

where D is the metasurface period, and the efficiency is
obtained using Eq. (12). It is possible to see how the efficiency
of the generalized reflection law metasurfaces dramatically
decreases when the reflection angle increases.

B. Lossy metasurfaces for anomalous reflection

As we have seen, the amplitude of the reflected wave in the
conventional design is not equal to the amplitude of the inci-
dent plane wave (AGSL �= 1). If we design a metasurface which
arbitrarily changes the direction of the reflected wave keeping
the amplitude A = 1, the pressure field at metasurface can be
written as

ptot(x,0) = p0(1 + ej�x )e−jk sin θix. (15)

The corresponding total velocity at the metasurface reads

�vtot(x,0) = p0

Z0
(sin θi + sin θre

j�x )e−jk sin θix x̂+ (16)

p0

Z0
(− cos θi + cos θre

j�x )e−jk sin θix ŷ. (17)

At this point, we have to satisfy the boundary condition at the
metasurface. We can do that by defining the surface impedance
which models this metasurface as

Zs(x) = ptot(x,0)

−n̂ · �vtot(x,0)
. (18)

Introducing the expressions for the desired total pressure
(15) and velocity [Eq. (17)] into this equation, we find the
impedance which models such metasurfaces:

Zs(x) = Z0
1 + ej�x

cos θi − cos θrej�x
. (19)

125409-3



A. DÍAZ-RUBIO AND S. A. TRETYAKOV PHYSICAL REVIEW B 96, 125409 (2017)

FIG. 3. Real part of the scattered pressure field for a metasurface
designed according to Eq. (19) when: (a) θi = 0◦ and θr = 30◦

and (b) θi = 0◦ and θr = 70◦. (c) Surface impedance described by
Eq. (19) when θi = 0◦ and θr = 70◦. (d) Efficiency of the gradient
metasurfaces for A = 1 as a function of the reflection angle.

Figure 3 presents the results of a numerical study of acoustic
metasurfaces based on Eq. (19). As in the previous case,
Figs. 3(a) and 3(b) show simulated results for the metasurface
illuminated normally and designed for the reflection angles
θr = 30◦ and θr = 70◦, respectively. The results confirm the
required performance of metasurfaces that anomalously reflect
a perfect plane have with the same amplitude as the incident
wave. The surface impedance given by Eq. (19) is a complex
number as it is shown in Fig. 3(c) for θi = 0◦ and θr = 70◦.
The real part of the impedance takes positive values (modeling
losses) over all the period showing that these metasurfaces
are necessarily lossy, which is a condition for keeping the
amplitude of the reflected wave equal to the incident wave. To
illustrate this behavior, we can analyze the efficiency of the
metasurface found from Eq. (12) when A = 1:

ηA=1 = cos θr

cos θi
. (20)

This expression is represented in Fig. 3(d) as a function of
the reflection angle for θi = 0◦. Numerical results have been
calculated in the same way as before, using Eq. (14). We
can see that the efficiency dramatically decreases when the
reflection angle increases. When the reflection angle increases,
the power sent into the desired direction decreases and all

FIG. 4. Real part of the scattered pressure field for a metasurface
designed according to Eq. (23) when: (a) θi = 0◦ and θr = 30◦

and (b) θi = 0◦ and θr = 70◦. (c) Surface impedance described by
Eq. (23) when θi = 0◦ and θr = 70◦. (d) Amplitude of the reflected
wave for perfect anomalous reflection (red symbols) compared with
conventional designs based on GSL (blue line).

the remaining energy is absorbed in the metasurface. On the
other hand, if θi > θr, the real part of the surface impedance
becomes negative (gain), meaning that additional energy has
to be introduced in the system in other to obtain the desired
performance.

C. Active-lossy scenario and lossless non local realization

Obviously, the design approach defined by Eq. (19) presents
important drawbacks in terms of power efficiency, although
there are no parasitic reflections into unwanted directions. For
perfect anomalous reflection where all the impinging energy
is sent into the desired direction, we have to ensure η = 1.
From Eq. (12) it is easy to find the amplitude coefficient which
corresponds to the perfect performance: For perfect anomalous
reflection the amplitude of the reflected wave has to be A =√

cos θi/ cos θr. Figure 4(d) shows a comparison between the
required amplitude for perfect performance and the amplitude
of conventional designs based on GSL when θi = 0◦. The
difference between both approaches increases with the angle of
reflection, confirming our previous conclusion about the poor
efficiency of conventional design for large differences between
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incident and reflected angles. In this scenario, the acoustic
impedance of the metasurface can be calculated writing the
pressure field

ptot(x,0) = p0

(
1 +

√
cos θi

cos θr
ej�x

)
e−jk sin θix (21)

and the velocity at the metasurface

�vtot(x,0)

= p0

Z0

(
sin θi +

√
cos θi

cos θr
sin θre

j�x

)
e−jk sin θix x̂

+ p0

Z0
(− cos θi +

√
cos θi cos θre

j�x )e−jk sin θix ŷ. (22)

Finally, the corresponding surface impedance reads

Zs(x) = Z0√
cos θi cos θr

√
cos θr + √

cos θie
j�x

√
cos θi − √

cos θrej�x

. (23)

In Fig. 4, the numerical results obtained with Eq. (23) are
represented. Figures 4(a) and 4(b) show numerical results for
metasurfaces illuminated normally when the design reflection
angles are θr = 30◦ and θr = 70◦, respectively. We can see
how the amplitude of three reflected waves changes with the
reflected angle according to the theory. The surface impedance
defined by Eq. (23) is a complex number [see Fig. 3(c)]
whose real part takes positive (loss) and negative (gain) values.
Obviously, the averaged over one period normal component of
the total power is zero, meaning that the macroscopic system
is lossless.

Although active acoustic metamaterials have been studied
in the literature [3], in general, the use of active and
lossy elements is not desired in actual implementations
for practical reasons. In order to simplify the design and
implementation, the active-lossy behavior can be understood
as a phenomenon of energy channeling, so it is not necessary
to include active or lossy elements for implementing these
metasurfaces, and a lossless implementation can be found.
To overcome the fundamental deficiency of all conventional
reflective metasurfaces and implement the required “gain-loss”
response defined by Eq. (23), the metasurface has to receive
energy in the “lossy” regions, guide it along the surface, and
radiate back in the “active” regions. The energy channeling
along the metasurface corresponds to a nonlocal response. In
nonlocal metasurfaces, the behavior of each element of the
metasurface depends on the interaction with the neighbors,
so traditional techniques based on the individual design of
each meta-atom cannot be used. As was demonstrated in
Ref. [17] for electromagnetic metasurfaces, properly designing
the inhomogeneous impedance of a lossless metasurface, it
is possible to obtain the required nonlocal response. The
operating principle is similar to leaky waves antennas [21,22],
where periodical perturbations allow coupling between guided
waves and propagating waves in free space.

In what follows, we present a proof of concept of a nonlocal
design with high efficient performance when θi = 0◦ and
θr = 70◦. For designing the nonlocal acoustic reflector, we
use as a first approximation the imaginary part of the complex
impedance described by Eq. (23). This approach allows one

FIG. 5. Non-local design of an anomalous reflector for θi = 0◦

and θr = 70◦ with 95% of efficiency: Real part (a) and magnitude
(b) of the scattered field. (c) Bandwidth analysis for an actual
implementation of the anomalous reflector designed at 3400 Hz.

to design an array of lossless elements by using conventional
techniques, which will produce a local phase shift according to
� = j Im(Zs)−Zi

j Im(Zs)+Zi
. Particularly, each element is implemented by

a rigidly ended waveguide whose impedance can be calculated
as

Zstub = −jZ0 cot(kln) (24)

where ln is the length of the n-th element. Once the length of
each stub has been fixed (15 particles in the example presented
in this work), we run a numerical optimization setting as a goal
full reflection in the desired direction. The objective of this
optimization is to tailor the coupling effects between particles,
using the evanescent fields as a mechanism for channeling
the energy. After the optimization process, the lengths of
the stubs are 0.1304λ, 0.1480λ, 0.0103λ, 0.1519λ, 0.1511λ,
0.1397λ, 0.1541λ, 0.1750λ, 0.2389λ, 0.2390λ, 0.1558λ,
0.1283λ, 0.1252λ, 0.3203λ, and 0.3135λ, respectively. The
efficiency of the optimized metasurface is 95%. Figure 5(a)
shows the real part of the scattered field, where we can see
the plane wave reflected in the desired direction. Figure 5(b)
represents the magnitude of the scattered field. In the vicinity
of the metasurface, strong evanescent fields are created, as is
required for theoretically perfect performance. The corrugated
surface can be considered as a lossless interface able to receive
power in some regions, guide it by surface waves excited in
the metasurface, and radiate the energy back into the desired
direction.
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FIG. 6. (a) Schematic representations of the metasurface behavior
for the anomalous transmission scenario. (b) Equivalent circuit for
refractive metasurfaces.

For a more complete analysis of the nonlocal anomalous
reflector, we study the efficiency as a function of frequency.
In particular, we consider the previous design of the nonlocal
metasurface when the operation frequency is 3400 Hz. The
results of this analysis are summarized in Fig. 5(c). We
obtain the maximum efficiency at the design frequency. The
efficiency is defined as the power redirected into the first
diffracted mode (n = 1), which corresponds to θr = 70◦ at
the design frequency. The efficiency remains higher than 0.5
from 3350 Hz to 3550 Hz (≈6% of the operating frequency).

III. ACOUSTIC METASURFACES FOR ANOMALOUS
TRANSMISSION

A. Design based on the generalized Snell’s law

As in the above study of reflective metasurfaces, we start
with the analysis of the conventional refractive gradient index
metasurfaces based on the generalized Snell’s law. If we
consider the scenario illustrated in Fig. 6(a), the pressure field
above and beyond the metasurface can be written as

pI(x,y) = p0e
−jk sin θixejk cos θiy, (25)

pII(x,y) = Ap0e
−jk sin θtxejk cos θty, (26)

where p0 is the amplitude of the incident plane wave, θi and
θt are the incidence and transmission angles, respectively, k =
ω/c is the wave number at the operation frequency, and A

is the coefficient which relates the amplitudes of the incident
and transmitted waves. The velocity vectors at both sides of
the metasurface can be expressed as

�vI(x,y) = pI(x,y)

Z0
(sin θix̂ − cos θiŷ) (27)

�vII(x,y) = pII(x,y)

Z0
(sin θtx̂ − cos θtŷ) (28)

with Z0 = cρ being the characteristic impedance of the
background medium. Pressure and velocity at both sides of
the metasurface can be related by using the specific impedance
matrix as[

pI(x,0)
pII(x,0)

]
=

[
Z11 Z12

Z21 Z22

][−n̂ · �vI(x,0)
n̂ · �vII(x,0)

]
. (29)

FIG. 7. (a) Schematic representations of the metasurface
topology (b) Equivalent circuit for the proposed meta-atoms.

In the most general linear case and assuming reciprocity
(Z12 = Z21), the relation between the acoustic field at both side
of the metasurfaces can be modeled by the equivalent circuit
represented in Fig. 6(b). Conventional refractive metasurfaces
are designed in such a way that each meta-atom introduces a
local phase-shift in transmission according to

t = pII(x,0)

pI(x,0)
= ej�x , (30)

where �x = k sin θix − k sin θtx is the linearly-varying phase
of the local transmission coefficient t . In the known de-
signs, symmetric meta-atoms (Z11 = Z22) are used for the
implementation of the desired transmission coefficient at
every point of the metasurface. The relation between the
Z-matrix elements and the local transmission coefficient can
be expressed as [23]

Z11 = Z22 = Zi
1 + t2

1 − t2
= j

Z0

cos θi
cot(�x), (31)

Z12 = Zi
2t

1 − t2
= j

Z0

cos θi

1

sin(�x)
. (32)

These impedances define the behavior of conventional designs.
We can see that the impedances are purely imaginary, meaning
that lossless implementations are possible [9–13].

In this paper, and as a proof of concept, we propose a
simple implementation of the meta-atoms based on clamped
rectangular membranes. Each membrane can be modeled as
a series LC-resonator controlled by its acoustic mass and
compliance [21,22]. Particularly, each meta-atom consists of
three membranes separated by distance l [see Fig. 7]. The
period of the metasurface is divided into N unit-cells (the
width of the meta-atoms is D/N ) and rigid walls are introduced
between the meta-atoms to avoid coupling between them and
prevent excitation of guided modes between membranes. By
independently tuning the response of each membrane we can
obtain the desired response of the meta-atoms.

The equivalent circuit for the proposed implementation is
shown in Fig. 7(b), where the membranes are modeled as
reactive impedances in series. For designing the membranes
we need to know the relation between their sheet impedances
and the Z matrix. The response of a meta-atom can be
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expressed in terms of the transmission matrices of membranes
and empty spacings between them:[

pI(x,0)

−n̂ · �vI(x,0)

]
=

[
A B

C D

][
pII(x,0)

−n̂ · �vII(x,0)

]
, (33)

where [
A B

C D

]
= MZ1MT MZ2MT MZ3 (34)

with

MZi =
[

1 Zi

0 1

]
, i = 1,2,3 (35)

and

MT =
[

cos(kl) jZ0 sin(kl)

j 1
Z0

sin(kl) cos(kl)

]
. (36)

The three elements of the ABCD matrix needed for the
definition of meta-atoms are

A = cos2(kl) − sin2(kl)

(
1 + Z2Z1

Z2
0

)

+ j cos(kl) sin(kl)

(
2Z1 + Z2

Z0

)
(37)

C = j2Y0 cos(kl) sin(kl) − Z2

Z2
0

sin2(kl) (38)

D = cos2(kl) − Z3Z2

Z2
0

sin2(kl)

+ 2j
Z3 + Z2

Z0
cos(kl) sin(kl). (39)

On the other hand, we can write the desired response modeled
by the Z matrix in terms of the ABCD matrix [23] as[

A B

C D

]
=

[
Z11
Z21

|Z|
Z12

1
Z12

Z22
Z12

]
(40)

with |Z| = Z11Z22 − Z2
12. Finally, equating each element of

both ABCD matrices, we can obtain the relations which define
the membranes:

Z1(x) = Z11 + Z12 + jZ0 cot(kl), (41)

Z2(x) = j2Z0 cot(kl) − Z2
0

Z12

1

sin2(kl)
, (42)

Z3(x) = Z22 + Z12 + jZ0 cot(kl). (43)

Figure 8 shows the results of the numerical analysis for
an acoustic metasurface based on the generalized Snell’s law.
Particularly, the study has been done for θi = 0◦, θt = 70◦, and
l = λ/4 assuming 20 elements per period. The impedances of
the membranes are represented in Fig. 8(b). The response of the
metasurface for normal illumination is illustrated in Fig. 8(a)
where we can see that the wave front of the transmitted wave
is not perfect and some perturbations due to parasitic waves
appear.
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FIG. 8. Refractive metasurface based on a linear phase gradient:
(a) Real part of the total pressure field for a conventional metasurface
when θi = 0◦ and θt = 70◦; (b) Impedance which model the three
membranes of the meta-atoms; (c) Bandwidth of the metasurface
designed for 3400 Hz.

For comparison, it is interesting to also analyze con-
ventional refractive metasurfaces based on a linear phase
gradient as a function of the frequency. Let us first consider
a refractive metasurface made of nondispersive elements
designed for implementing a linear phase gradient accord-
ing to Eq. (30). The theoretical response of the designed
structure as a function of the frequency can be calculated
by considering the change in the impedance due to the
change in the direction of the diffracted mode for different
frequencies θr(f ) = arcsin k sin θi+2π/D

k
. Following the same

approach as for reflective metasurfaces, we can calculate
the amplitude of the transmitted wave by analyzing the
impedance mismatch between the incident and transmitted
waves, T (f ) = 2 cos θi

cos θi+cos θr(f ) . Consequently, the efficiency of
the metasurface defined as the percentage of power sent into
the desired diffracted mode can be calculated as η(f ) =
T (f )2 cos θr(f )

cos θi
. This efficiency is represented in Fig. 8(c) with

the red line. In actual implementations, the dispersion of the
elements has to be taken into account in the analysis of the
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bandwidth. Figure 8(c) shows the results of a numerical study
of the bandwidth for a metasurface designed for operation
at 3400 Hz (yellow symbol) according to Eqs. (31) and (32)
and implemented with the three-membrane topology described
above. We can clearly see that the theoretical performance of
the metasurface is perturbed by the dispersive behavior of the
constituent elements reducing the bandwidth of the designed
metasurface.

B. Asymmetric acoustic metasurfaces for perfect
anomalous refraction

As it was explained for reflective metasurfaces, for a perfect
performance of the refractive metasurface we have to ensure
that all the energy of the incident plane wave is carried away
by the transmitted plane wave propagating in the desired
direction. This condition gives us the following relation:

p2
0

Z0
cos θi = A2 p2

0

Z0
cos θt. (44)

The amplitudes of the incident and transmitted waves have to
be different, and the relation between them reads

A =
√

cos θi

cos θt
. (45)

If we impose this amplitude for the transmitted wave and look
for a lossless reciprocal solution (Z11 = jX11, Z22 = jX22,
and Z21 = Z12 = jX21), the boundary conditions given by
Eq. (29) simplify to

1 = jX11
cos θi

Z0
− jX21A

cos θr

Z0
ej�x , (46)

Aej�(x) = jX21
cos θi

Z0
− jX22A

cos θr

Z0
ej�x . (47)

Separating the real and imaginary parts, we can write:

1 = X21A
cos θr

Z0
sin (�x), (48)

0 = X11
cos θi

Z0
− X21A

cos θr

Z0
cos (�x), (49)

A cos �(x) = X22A
cos θr

Z0
sin (�x), (50)

A sin �(x) = X21
cos θi

Z0
− X22A

cos θr

Z0
cos (�x). (51)

Solving this system of equations, we finally find the elements
of the corresponding Z matrix:

Z11 = j
Z0

cos θi
cot (�x), (52)

Z22 = j
Z0

cos θt
cot (�x), (53)

Z12 = j
Z0√

cos θi cos θt

1

sin (�x)
. (54)

The first difference as compared with the conventional design
is that the meta-atoms are not symmetric (Z11 �= Z22). This

0 0.5 1 1.5 2

-1

-0.5

0

0.5

1

-1.5

-1

-0.5

0

0.5

1

1.5

(a)

-0.5 0 0.5
-10

0

10

20

(b) (c)

FIG. 9. Asymmetric refractive metasurface. (a) Real part of the
total pressure field for a perfect metasurface when θi = 0◦ and θt =
70◦; (b) Impedance which model the three membranes of the meta-
atoms; (c) Bandwidth of the metasurface designed for 3400 Hz.

asymmetric response is comparable with the bianisotropic
requirements described for the electromagnetic counterpart
[14]. The same three-membrane topology can be used for
the implementation of this new design. However, as we
can see from Fig. 9(a) and 9(b), Z1 �= Z3, to realize the
required asymmetry, Fig. 9(a) shows the results of numerical
simulations when θi = 0◦, θt = 70◦. Clearly, the proposed
design generates a perfect plane wave in the desired direction.

Figure 9(c) shows the results of a numerical study of the
bandwidth and the comparison between a symmetric design
[according to Eqs. (31) and (32)] and an asymmetric design
[according to Eqs. (52), (53), and (54)]. The operational
frequency for both designs is 3400 Hz. The efficiency of the
asymmetric design is higher than of the GSL-based design
in the frequency range between 3315 Hz and 3470 Hz;
then the efficiency of the asymmetric design decrease faster.
The efficiency of the proposed design is higher than 0.5
in the frequency range between 3295 Hz and 3585 Hz (8.5%
of the operating frequency).

It is also interesting to consider the local transmission and
reflection coefficients in this scenario. Due to the asymmetry,
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FIG. 10. Schematic representation of the forward (a) and back-
ward (b) illumination scenarios. Forward (+) and backward (−)
local transmission and reflection coefficients for a perfect refractive
metasurface. (c) Forward reflection, (d) forward and backward
transmission, and (e) backward reflection.

the response of the particles when they are illuminated from
media I (forward illumination) and II (backward illumination)
will be different [see Figs. 10(a) and 10(b)]. Transmission and
reflection coefficients can be calculated using the impedance
matrix as follows:

R+ = (Z11 − Z0)(Z22 + Z0) − Z2
12

�Z
, (55)

T+ = T− = 2Z12Z0

�Z
, (56)

R− = (Z11 + Z0)(Z22 − Z0) − Z2
12

�Z
, (57)

where �Z = (Z11 + Z0)(Z22 + Z0) − Z2
12 and the ± signs

correspond to the forward and backward illuminations. Calcu-
lated results are plotted in Fig. 10. We can see how individually
the meta-atoms are not matched and generate forward and
backward reflections.

The above results demonstrate a possibility to change
the refraction angle θr when the metasurface is illuminated
normally. The method can be easily applied for other incidence
angles. Figure 11 illustrates two different designs for a
metasurface illuminated at θi = 10◦. In the first scenario
the incident plane wave is refracted into θr = −70◦. The
relation between the amplitudes of the incident and reflected
waves is defined by Eq. (45) being A = 1.69. The Z-matrix
components of this structure are represented in Fig. 11(c). We
can implement it by using the three-membrane topology as
it is shown in Fig. 11(a). The second designed metasurface
changes the direction of the transmitted wave from θi = 10◦ to
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FIG. 11. Anomalous refractive metasurface for θi = 10◦ and θr =
−70◦: (a) Real part of the total pressure field for the three-membrane
implementation and (c) Z-matrix components. Anomalous refractive
metasurface for θi = 10◦ and θr = 70◦: (b) Real part of the total
pressure field for the three-membrane implementation and (d) Z-
matrix components.

θr = 70◦. The relation between the amplitudes of the incident
and transmitted waves is the same as in the previous example,
and the Z-matrix components are represented in Fig. 11(d).
An important difference between both designs is the period of
the metasurface which equals D = λ/| sin θr − sin θi|.

IV. CONCLUSIONS

This work introduces a new approach for the synthesis
of acoustic metasurfaces for anomalous transmission and
reflection. We have explained the main ideas of the method
by using a simple model based on the inhomogeneous
surface impedance of the metasurface. This model has allowed
direct comparison between conventional designs based on the
generalized reflection and Snell’s laws and the introduced new
approach, showing drastic improvements in power efficiency.
The fundamental advance introduced by our method is the full
suppression of parasitic reflections in undesired directions,
which reduce the total efficiency of the metasurface.

Applying the introduced design method to the reflection and
transmission scenarios, we have identified different physical
phenomena which need to be realized for the ideal perfor-
mance. Metasurfaces for controlling reflection must exhibit
nonlocal response, which allows energy channeling along
the metasurface. In contrast, for full control of plane-wave
transmission, local but asymmetric response is required for
each particle.
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Based on the general synthesis theory, we have identified
appropriate topologies of acoustic unit cells, which allow
realization of perfect reflection and refraction. For perfect
reflection, arrays of acoustical stubs can be used and, for
perfect refraction, one can use three-membrane unit cells. To
realize the required nonlocal properties of reflecting surfaces,
the unit cells in each supercell need to be optimized together,
including near-field couplings between the cells. We have
exemplified this procedure with the design of an acoustic
anomalous reflector with 95% efficiency when θi = 0◦ and
θr = 70◦. In the transmission scenario, the required asymmetry
of unit cells can be realized if all three membranes of each
unit cell are different. Since the proposed synthesis method
allows complete suppression of parasitic reflection, the only
factor which will limit the power efficiency is the power
dissipation due to inevitable losses in the materials from which
the metasurface is made.

We hope that this work will motivate future experimental
demonstrations of perfect anomalous reflective and refractive
metasurfaces. To conclude, let us stress the importance of this
advance for the improvement of other acoustic systems where
perfect performance in the sense of suppression of parasitic
scattering is desired. The proposed design methodology can
be extended for arbitrary manipulations of multiple plane
waves, allowing more complex functionalities. In general,
by designing amplitudes and phases of different waves and
ensuring the local conservation of the power, it will be possible
to overcome the efficiency drawbacks of the existing solutions
for arbitrary transformations of acoustic fields.
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