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Uniform description of polymer ejection dynamics from capsid with and without hydrodynamics

J. Piili, P. M. Suhonen, and R. P. Linna”
Department of Computer Science, Aalto University, P. O. Box 15400, FI-00076 Aalto, Finland
(Received 15 February 2017; published 26 May 2017)

We use stochastic rotation dynamics (SRD) to examine the dynamics of the ejection of an initially strongly
confined flexible polymer from a spherical capsid with and without hydrodynamics. The results obtained using
stochastic rotation dynamics (SRD) are compared to similar Langevin simulations. Inclusion of hydrodynamic
modes speeds up the ejection but also allows the part of the polymer outside the capsid to expand closer to
equilibrium. This shows as higher values of radius of gyration when hydrodynamics are enabled. By examining
the waiting times of individual polymer beads, we find that the waiting time #,, grows with the number of ejected
monomers s as a sum of two exponents. When ~ 63% of the polymer has ejected, the ejection enters the regime
of slower dynamics. The functional form of 7, versus s is universal for all ejection processes starting from
the same initial monomer densities. Inclusion of hydrodynamics only reduces its magnitude. Consequently, we
define a universal scaling function /& such that the cumulative waiting time ¢ = Nyh(s/Ny) for large Ny. Our
unprecedentedly precise measurements of force indicate that this form for z,,(s) originates from the corresponding
force toward the pore decreasing superexponentially at the end of the ejection. Our measured 7, (s) explains the
apparent superlinear scaling of the ejection time with the polymer length for short polymers. However, for

asymptotically long polymers, #,,(s) predicts linear scaling.

DOI: 10.1103/PhysRevE.95.052418

I. INTRODUCTION

Packaging and ejection of macromolecules in confinements
are of high interest due to the potential technological and med-
ical applications, such as drug delivery and gene therapy [1].
The basic understanding of these processes is important also
due to the relevant fundamental biological processes, the most
prominent of which is the viral packaging in and ejection from
bacteriophages [2—-10]. The theoretical treatments of polymer
ejection are strictly based on fully flexible chains [2,8,9], in
spite of the experimental studies being almost solely done on
semiflexible double-stranded DNA. This makes sense, since
theoretically ejection from confinements is most intriguing
when the spring force of the semiflexible polymer does not
dominate over the more subtle mechanisms. Besides, the
ejection of fully flexible polymers is highly relevant outside
the purely theoretical realm due to many important polymers,
such as proteins, single-stranded DNA, and RNA, belonging
to this class.

In our previous study, we showed that the blob-scaling
picture used as a basis for analyzing the ejection dynamics
from strong confinement is not valid. The blob picture pre-
sumes semidilute conditions, which does not hold for in vivo
encapsulated polymers. In computer simulations, polymers are
far too short to justify the blob-scaling assumption. In spite of
these shortcomings, the blob-scaling has been used to explain
the apparent scaling of the ejection time 7 with the length of the
polymers Ny. Indeed, if only the ejection time t as a function
of Ny is measured, T seemingly scales superlinearly with Nj.
However, by inspecting the waiting times #,,(s), we showed that
there is in fact no such scaling. #,,(s) is defined as the time it
takes for a monomer labeled s to translocate after the previous
monomer s — 1 has translocated. From our simulations using
a hybrid method consisting of molecular dynamics (MD) and
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stochastic rotation dynamics (SRD) [11,12], we obtained ¢,
that grows essentially exponentially with s [13].

Due to this exponential growth of 7,(s) conflicting the
theoretical predictions, some suspicion was cast on the sim-
ulation method. Accordingly, to be conclusive a confirmation
using a well-established method is called for. Toward that
end, we have implemented an identical capsid model in our
Langevin dynamics (LD) algorithm [14]. The LD algorithm
is a numerical implementation of a stochastic differential
equation describing Brownian motion of particles, so it can
be regarded as the most fundamental method available for a
dynamical simulation of polymer ejection. We present here a
thorough comparison of polymer ejection dynamics obtained
using LD and SRD.

Our main objective in the present paper is to establish
precise forms for #,,(s) in the absence and presence of hydro-
dynamic interactions, that is, to determine how the inclusion
of hydrodynamic modes changes the ejection dynamics. To
achieve this we use SRD, where hydrodynamic modes can
easily be switched on or off. Measuring #,(s) is the most
precise way of gaining detailed information on ejection
dynamics. The form of t#,(s) reflects the form of the force
f reduced to the pore during the ejection. We determine
f(s) with high precision using LD, which, due to it being
computationally more effective than SRD, allows us to gain
much better statistics than what was possible in our previous
study using only SRD [13]. This study reveals the surprisingly
strong influence of the local effects in the vicinity of the pore
on the overall ejection dynamics. Indications of this were
observed already in our earlier study on capsid ejection, where
a force applied to aligning a polymer close to the pore was
found to give an effective bias to the ejection [10].

The paper is organized as follows. The computational
models are described in Sec. II. The procedure for matching
the models based on LD and SRD is described at the end of
that section. Results are presented in Sec. III. In that section,
we first compare the results obtained by SRD and LD, after
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FIG. 1. Snapshots of an ejection simulation at different times.
The polymer ejects from a solid spherical capsid through a narrow
pore. (Image created using VMD [15] and POV-Ray [16].)

which we extract precise forms for #,,(s) from each model, thus
pinpointing the effect of hydrodynamics. We then present our
measurements of the radius of gyration of the polymer segment
outside the capsid and the force at the pore. By analyzing these
measurements, we are able to give an accurate account of the
prevailing mechanisms during polymer ejection. Finally, in
Sec. IV we summarize our results and present the conclusions
based on them.

II. THE COMPUTATIONAL MODELS

Here, we describe the computational models. The primary
computational method is stochastic rotation dynamics (SRD),
also called multiparticle collision dynamics, which allows
for the inclusion of hydrodynamics [11,12]. We validate
our SRD model by closely comparing it to the identically
implemented model (see Fig. 1) in our Langevin dynamics
(LD) algorithm. LD is based on a thoroughly analyzed and
understood stochastic differential equation and hence serves
as a perfect reference for our SRD model in the case in which
hydrodynamics is switched off [14]. LD also has the benefit of
being computationally much more efficient than SRD.

A. The polymer model

Polymers are modeled as chains of pointlike beads of mass
my. Adjacent beads are connected via the finitely extensible
nonlinear elastic (FENE) potential

K , r
Ur = __rmaxln 1- » ' < Tmax, (D
2 Fmax

where r is the distance between adjacent beads, and K and 7«
are potential parameters describing the strength and maximum
distance limit of adjacent beads. Each bead interacts with
all other beads via the (shifted and truncated) Lennard-Jones
potential

12 6
4.86[(1_) — (i) i| +1.2¢, r;j <20,
ULJ = Tij Tij
0, rij > V2o,
2
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where € and o are potential parameters and r;; is the distance

between beads i and j. The potential is truncated at r = 20
in order to model a good solvent. The potential parameters are
chosenas o = 1.0, ¢ = 1.0, K = 30/0?, and ryya = 1.50 in
reduced units.

B. The solvent and polymer dynamics

The polymer is immersed in a solvent modeled by stochastic
rotation dynamics (SRD) [11,12]. The SRD method was
chosen because it allows us to take both hydrodynamics and
Brownian motion directly into account in a computationally
feasible way. A particular benefit of the method is the
possibility to switch off hydrodynamics to better understand
its effects. This also allows us to verify the polymer escape in
SRD against that in Langevin dynamics.

The SRD solvent consists of pointlike particles whose
dynamics can be divided into streaming and collision steps. In
the streaming step, the solvent particles are moved ballistically,

r;(t + Ar) =r;(t) + v; (1) At, 3)

where 7 is the simulation time, At is the SRD time step, r; is
the position, and v; is the velocity of solvent particle i. If in
this step the solvent particle hits the capsid wall, it is bounced
back to the direction of incidence and its velocity is reversed.
In other words, the capsid wall constitutes a no-slip boundary
for the particle. No-slip boundary conditions ensure that the
flow velocity in the surface of a wall is zero [17].

In the collision step, the simulation space is divided into a
grid of cubic cells whose edges are of length 1.0. The inter-
actions between particles are modeled by rotating the random
part of particle velocities within each cell by the equation

Vi(t + At) = Ve (t) + Qv (1) — vem(®)], 4

where v, (¢) is the center-of-mass velocity of the particles in
the cell, and 2 is a rotation of angle 6 around a randomly
chosen axis. The rotation axis is drawn randomly for each cell
each time step. The rotation angle is chosen as 6 = 3w /4. It
can be used to adjust the viscosity of the solvent. The solvent
is kept at a constant temperature of k7 = 1.0 by scaling the
random part of particle velocities such that the equipartition
theorem holds at each time step [18]. The density of the SRD
solvent was chosen such that on average there are five particles
per unit volume. When hydrodynamics is included, n = 4.67
is obtained for the solvent viscosity in reduced units with the
chosen parameter values [19].

The polymer is coupled with the solvent in the collision step
where the velocities of polymer beads are updated similarly
to those of solvent particles; see Eq. (4). The collisions retain
the total momentum and energy within each cell. To maintain
Galilean invariance, the grid is shifted randomly at each time
step [20]. Hydrodynamic interactions can be switched off by
randomly permuting the solvent particles’ velocities after each
collision step.

The polymer performs molecular dynamics (MD). In the
velocity Verlet algorithm used for polymer dynamics, the time
step is chosen as §¢ = 0.0002. The SRD time step At = 0.5.
A relatively small 8¢ was used because with larger time
steps the numerical errors accumulate inside the capsid when
the polymer is tightly packed. The MD and SRD steps are
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performed in turns such that after Ar/§t = 2500 velocity
Verlet steps, a single SRD step is performed [including the
polymer in collision step of Eq. (4)]. The mass of the polymer
beads m; = 16 and the mass of the SRD particles m; = 4.

C. The simulation geometry and initial polymer conformations

The simulation geometry is depicted in Fig. 1. A polymer
ejects from inside a spherical capsid shell through a narrow
pore of radius 0.4. The inside of the capsid is referred to as
the cis side and the outside is referred to as the trans side. The
thickness of the capsid shell is 3. The radius Ry of the inner
shell of the capsid depends on the chosen initial monomer
density po and the initial number of polymer beads N inside
the capsid via

Ny
i_p3
3Ry

Po = )

Notice that in some publications volume fraction ¢y = 4/3mw g
is used instead. Also, the beads have often a hard-sphere
potential. In simulations using molecular dynamics, as in the
present study, soft sphere potentials must be used. Hence,
the values are not directly comparable. In effect, the largest
densities used here supersede the densities used in most earlier
studies (see [13]).

The capsid geometry is created using the constructive solid
geometry technique [21], which we have implemented for use
with the SRD and LD. In the method, intersections with the
polymer particles’ trajectories and capsid walls are traced, and
collisions are handled by slip boundary conditions. As stated
before, for the solvent particles no-slip boundary conditions
are applied instead. We use a pore of radius 0.8 for the solvent
particles, which is twice as wide as that for the polymer beads.
The larger pore for the solvent allows for a smoother fluid flow
in the pore, while the narrow pore for the polymer prevents
hairpinning.

The initial conformations are created by injecting polymers
inside the capsid through the pore with a large enough
packing force within the pore. Force is ramped up until
the polymer is packed. Different conformations result from
using different initial random generator seeds. Creating an
initial conformation also includes thermalizing the polymer
by scaling the bead velocities so as to have the polymer reside
at a temperature k7 = 1. Before ejection, a new SRD solvent
is initialized for the created polymer conformation, and the
polymer is allowed to equilibrate for 2000 time units before the
ejection is allowed to start. In this way, we create an ensemble
of random initial conformations. Inevitably, conformations
created this way may include knots that have been shown
to affect the ejection rate [22,23]. Identification of knots is
beyond the scope of the present study.

To estimate the effect of initial conformations on ejection
dynamics, we performed simulations in which polymers
having a bending potential [24] with a persistence length of
~20 were packed. This resulted in fundamentally different,
spooled conformations. After that we removed the bending
potential, which made the chains flexible and released them
for ejection. The ejection times measured and averaged
over multiple ejections starting from random and spool
conformations differed only slightly. This indicates that in
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our simulations, the details of initial conformations do not
significantly affect ejection dynamics. It should be pointed
out that the packing method, for example, whether allowing
for intermittent relaxation or not, does have some effect
on initial conformations and potentially ejection dynamics.
To our knowledge, these effects have not been thoroughly
investigated. The packing method we use here falls into the
category of generally used methods, and consequently in this
respect our study is directly comparable to previous studies on
polymer ejection.

D. Matching the LD and SRD models via friction

Our LD algorithm is implemented as derived by Ermak [25].
LD is a stochastic method in which solvent particles are not
explicitly simulated but the polymer resides in a Brownian
heat bath satisfying the Langevin equation

dp;
d—‘j(t) = —Epi(t) + mi (1) + £ (1), ©)

where &, p;(t), and 7;(¢) are the friction constant, momentum,
and random force of the bead i, respectively. f;(¢) is the sum of
all forces exerted on the bead i. ;(¢) is a zero mean §-correlated
Gaussian process, with (9;(¢) - 9;(t")) = 26kTm8(t — t').

To make the LD simulations comparable with the SRD sim-
ulations, the polymer model, potential parameters, simulation
geometry, and simulation temperature were chosen the same.
However, LD allowed us to use a larger time step 6z = 0.001
than SRD due to it being a more efficient thermostat. Only the
friction parameter & in LD does not have a direct mapping to
the friction in SRD. To choose an appropriate value for £ in the
LD capsid ejection model, we performed two straightforward
simulations for different values of &.

Figure 2 shows the measured diffusion constant of a
polymer of length Ny = 10 in free solvent. Theoretically, the
diffusion constant D = kT /(Nom&) [26], which is close to

0.005
0.0048
0.0046 |
0.0044 |
0.0042 |

Q 0004 |
0.0038 |-
0.0036 |
0.0034 |
0.0032 |

0.003

DLangevin

éusedé égcorresponding

13 14 15 16 1.7 1.8 1.9 2
§

FIG. 2. Diffusion constants D of free polymers measured for
different friction £ in LD simulations. The polymer length Ny = 10.
For SRD without hydrodynamics, we measured a diffusion constant
of Dspp = 0.003796 £ 0.000 057 that corresponds to the friction
constant value & = 1.63 (depicted by the purple dashed line). The
friction was set at £ = 1.58 in the LD capsid ejection simulations
(depicted by the double-dashed brown line). This value was chosen
as it was found to slightly speed up the ejection times to better
correspond to those of SRD without hydrodynamics.
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FIG. 3. Measured terminal velocities v of polymers of length
No = 100 dragged at an end bead by a constant force fyng. In
simulations using SRD without hydrodynamics and LD, the terminal
velocities follow v = fire /(€ my, No) quite accurately. LD simulations
were performed for £ = 1.58. According to this measurement, the
SRD simulation without hydrodynamics corresponds to & = 1.65.
(& =~ 0.50 when hydrodynamics is included in SRD.)

the value in our LD simulations. D in LD and SRD was found
to coincide when & = 1.63. This is depicted by the dashed
line in Fig. 2. The double dashed line depicts the value of
& = 1.58 that we chose for the capsid ejection simulations.
The slightly smaller value for & was chosen because it resulted
in a better correspondence of the total capsid ejection times T
from simulations using LD and SRD without hydrodynamics.
In other words, for some reason t were found to be larger for
LD for the same values of friction parameter £. Even with the
choice & = 1.58, the ejection times are consistently larger in
LD simulations.

To gain more confidence in the proper mapping of the cor-
respondence between Langevin simulations and SRD without
hydrodynamics, we performed simulations in which a polymer
of length Ny = 100 is dragged by a constant force fug at the
end bead. In the absence of hydrodynamics, we expect the
terminal velocity to follow

V= fdrag
EmyNo’

(7

which can be obtained from Eq. (6) by averaging over a long
time, summing over all beads, and assuming that %(r) =0at
terminal velocity. Figure 3 shows v measured for different
fdrag- In these LD simulations, & = 1.58. By fitting, we
obtain the values &sgp, noup = 1.65 and &srp, up = 0.50 for
SRD without and with hydrodynamics, respectively. Observe,
however, that £srp, up is not well defined for SRD with hydro-
dynamics since Eq. (7) is not accurate when hydrodynamics is
included. Nevertheless, it is a good estimate on the effect the
hydrodynamics has on the effective viscosity. The diffusion
constant and terminal velocity measurements show that LD
and SRD without hydrodynamics are in reasonable agreement
for these basic systems.

E. On polymer lengths and capsid volumes

In this section, we comment on relating the length and
time scales in the simulations to the corresponding real-world
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scales. The fairly generic model in the present study is
appropriate for validating the SRD method for simulating
the capsid ejection model and for characterizing the effect
of hydrodynamics.

Since we use the fully flexible chain model, the persistence
length of the polymer is A, = %b, where b is the polymer
segment length. In our simulations, the equilibrium distance
between consequent beads is 0.97, which we take as the
(average) segment length. A, is of the order of 4 nm for
ssDNA [27] and 50 nm for dsDNA [28]. Consequently, if we
were to model ssDNA, one simulation unit would correspond
to about 8 nm. For dsDNA, a simulation unit would correspond
to about 100 nm.

In our simulations, the capsid radii vary from 1.6 (N = 25,
po = 1.5) to 5.1 (N =283, pg = 0.5). Thus, the persistence
length is always an order of magnitude smaller than the capsid
radius. For ssDNA, the capsid radii would correspond to a
range from 12.8 to 40.8 nm. For dsDNA, the corresponding
range is from 160 to 510 nm. A polymer of length Ny = 200
would correspond to an ssDNA of length 1600 nm having about
4324 bases, since a single base is about 0.37 nm long [29]. For
dsDNA, a polymer of length Ny = 200 would correspond to
a strand of length 20 000 nm with 59 000 base pairs (using
0.34 nm/bp).

If we expect for ssDNA w ~ 1 nm, then A, ~ 8w. dsDNA
width w is about 2 nm. So, for dsDNA, A, ~ 25w. In our
simulations, the repulsive LJ potential has an interaction
distance of ~1, which can be taken as the approximate width
of our flexible chain. Hence, A, ~ 0.5w, falling short even
for the ssDNA that the flexible chain in principle models.
For maximum correspondence of coarse-grained polymers
modeling real-world polymers in confinements, the ratio A, /w
has to be adjusted via the bending potential. We will look into
this more closely in a forthcoming paper.

The estimated volume fraction inside the bacteriophage
lambda is

VbNA _ 48502 7 (1 nm)20.34 nm
$7(27.5 nm)?

- 0.6. 8)
Vcapsid

This is in the same range as volume fractions in our
simulations.

III. RESULTS

In what follows, we refer to the SRD method with
hydrodynamics as “with hydrodynamics” or “HD.” The model
in which SRD is used but without hydrodynamic interactions
is referred to as “without hydrodynamics” or “noHD.” The LD
method used as a reference does not include hydrodynamic
interactions. The presented results are obtained by averaging
over typically 50 runs. For waiting time profiles, 500 ejections
were simulated.

A. Ejection time

Polymer translocation processes are typically characterized
by how the translocation time 7, here also called the ejection
time, depends on the polymer length Ny. For the case
of translocation through a nanometer-scale pore from one
semi-infinite space to another, it is established that T ~ Noﬂ .
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TABLE I. The exponents 8 of the fits to the apparent relation
T~ N(’)S plotted in Figs. 4(a), 4(b), and 4(c) for different initial
monomer densities py. The errors of the fits are of the order 0.04.

o) HD noHD Langevin
0.50 1.30 1.36 1.37
0.75 1.26 1.33 1.33
1.00 1.25 1.29 1.28
1.25 1.22 1.30 1.29
1.50 1.22 1.29 1.27

Ejection time measurements would suggest that such a scaling
relation would describe also polymers’ ejection from capsids.
In our previous study using SRD without hydrodynamics, we
showed that actually § — 1 as Ny increases [13]. As this
contradicts with the available theoretical treatments for the
capsid ejection starting from moderate monomer densities
0o [2,8,9], a verification using a more established method is
called for. We make a close comparison of the polymer ejection
models based on SRD and the well-established LD. t versus
Ny for the three different models are shown in Figs. 4(a)—4(c).
The exponents extracted for the apparent relation 7 ~ N('f are
given in Table I. LD and SRD without hydrodynamics are
seen to give essentially identical scaling. Hydrodynamics is
seen to reduce B, as has been found also for driven polymer
translocation [30]. In both cases, hydrodynamic interactions
reduce the effective friction the polymer experiences outside
the pore. Consequently, the effect of the pore friction, largely
caused by the geometry, increases when hydrodynamics is
included. Increasing this friction local to the pore with respect
to the total friction takes the polymer translocation and ejection
toward the linear dependence t ~ Ny, which explains the
reduction of 8 due to hydrodynamics.

Analogously to the case of driven translocation, where
translocation time depends on the driving pore force f; as
T ~ f;%, the ejection time decreases with increasing initial
density as T ~ p,“; see Figs. 4(d)—4(f) and Table II. For
both LD and SRD, o« — 1 as N, increases. Inclusion of
hydrodynamics decreases ¢, again in analogy with driven
translocation [30]. This is accounted for by the hydrodynamic
interactions decreasing the effective length of the polymer due
to increased correlation length along the polymer.

TABLE II. The exponents « of the fits v ~ p,* plotted in
Figs. 4(d), 4(e), and 4(f) for different polymer lengths Ny. The errors
of the fits are of the order 0.1.

No HD noHD Langevin
25 0.77 0.89 0.83
35 0.85 0.89 0.82
50 0.94 0.96 0.90
71 0.98 1.00 0.97
100 0.96 1.00 1.03
141 0.99 1.08 1.01
200 0.96 1.05 1.07
283 1.00 0.99 0.98
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In summary, mere ejection time measurements would seem
to confirm previous results on 7 scaling with polymer length
Ny. Also, the dependence of T on the initial monomer density
po would seem to corroborate the scaling behavior. Results
using SRD and LD are essentially identical. The theoretical
arguments have typically been corroborated by ejection time
measurements alone. However, inspection of the measured
waiting time profiles changes the conclusions completely.

B. Waiting times

In this section, we extract the waiting time profiles #,,(s) for
the different models. We obtain a more precise form for #,,(s)
than in our previous study [13] and find that it is universal for
all models.

t,(s) is defined as the time it takes for the bead s to eject
the capsid after the ejection of the previous bead s — 1,

tw(s) = 1(s) —t(s — 1), €))

where ¢(s) is the time when the bead s exits the capsid for the
last time, that is, the cumulative waiting time. #,,(s) plotted
as a function of s € [1,Ny — 1] is the waiting time profile.
For the process to be genuinely scale-invariant with respect to
the polymer length, both #(s) and #,(s) should scale with s.
Figures 5(a)-5(c) show #(s) obtained for the three models.
For all the models, the end points #(Ny — 1) scale with Ny
in accordance with the apparent scaling relation t ~ N(’)S .
However, ¢(s) do not scale with s.

Figures 5(d)-5(f) show the waiting time profiles #,/(s)
for the three different models. #,(s) is seen to be of the
common form

2.8 10.8
ty(s) = Al exp FS + exp T(S —0.625Ny) | |,
0 0

(10)

where A =45, 42, and 32 for LD, SRD without hydrody-
namics, and SRD with hydrodynamics, respectively. Hence,
for all the models, polymer ejection slows down exponentially
with the length of the ejected segment s. At a definite stage
when approximately 63% of the polymer has been ejected,
the ejection slows down more strongly with s. Presumably, the
transition corresponds to s = 5o when the monomer density in-
side the capsid is so low that internal pressure no longer exerts
force on the ejecting polymer; see Sec. III C. The exponential
form ¢, ~ exp(Cs) can only lead to a linear dependence of
the ejection time with Ny for long polymers [13]. This is true
also for the sum of two exponential functions as in Eq. (10).
Consequently, for sufficiently long polymers there is a scaling
function % such that #(s) = Noh(s/Np). In the present case,

) 1 2.8s
hl —)=A]—exp| —
NO 28 N()

b 108 0.625N) ¢
—¢C _ — L. — constg.
108 P N 0

Y

It is seen that hydrodynamics only reduces the mag-
nitude of the waiting time profile 7,(s) without changing
its form. In other words, the waiting times are related via
t1P(s) = (Tup/ Tuoun )11°MP(s) for the Ny and py selected. This
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0.5 0.75 1 125 15 0.5 0.75 1 125 15 0.5 0.75 1 125 15

Po Po Po

FIG. 4. (a)—(c) Ejection times t as a function of polymer length N, for different initial monomer densities py. Curves from top down:
po = 0.5,0.75, 1, 1.25, and 1.5. (a) LD. (b) SRD without hydrodynamics. (c) SRD with hydrodynamics. Each point is an average over 90-100
runs in (a) and 40-50 runs in (b) and (c). The lines are fits of the form 7 ~ Nf . The fitted exponents are tabulated in Table 1. (d)-(f) Ejection
times T as a function of initial density p, for polymers of different lengths Ny. Curves from top down: Ny = 283, 200, 141, 100, 71, 50, 35,
and 25. (d) LD. (e) SRD without hydrodynamics. (f) SRD with hydrodynamics. The lines depict the fitting of functions of the form v ~ py
to the data. The fitted exponents are tabulated in Table II. All figures on a logarithmic scale.

is reminiscent of the driven polymer translocation where LD aligns almost perfectly to that given by SRD without
hydrodynamics speeds up translocation and scales down the  hydrodynamics within the precision of the mapping of the two
length of the tensed segment [ on the cis side without changing models via the friction parameter; see Sec. II D. The polymer
the way the tension spreads on the polymer chain, that is, ejects slightly faster in SRD without hydrodynamics than in
the form of /(s) [31]. Furthermore, ¢, (s) obtained by using LD simulations even though LD has a slightly smaller friction

10° 10°
10* 10*
TS TS
102 £ 102 b
10° 10! 10> s 10 10! 10> s 10 10! 10> s

0 50 100 150 200 250 300350 s 0 50 100 150 200 250 300 350 s 0 50 100 150 200 250 300 350

FIG. 5. Cumulative and differential waiting times. From left to right: LD, SRD without hydrodynamics, and SRD with hydrodynamics.
Initial monomer density py = 1.0. Ny = 50, 100, 200, and 400. In (a)—(c) also Ny = 25 is included. (a)—(c) Cumulative waiting times # as a
function of the reaction coordinate s on a logarithmic scale. The dashed lines show the scaling of the end points. (d)—(f) Waiting times #,, and fits
of the form 7, = A{exp [(2.8/Ny)s] + exp [(10.8/Ny)(s — 0.625Ny)]}, where (d) A = 45, (e) A = 42, and (f) A = 32. Semilogarithmic scale.

052418-6



UNIFORM DESCRIPTION OF POLYMER EJECTION ...

(a) \ (b) ‘e
p o
! vy

2o .
\ -

Bead fixed
in_the middle
of the pore

Bead fixed
at the pore
entrance

FIG. 6. The two ways used to measure the force at the pore. The
force required to hold the monomer either (a) at the entrance or (b)
in the middle of the pore is measured.

parameter £ in free solvent, as measured in Sec. IID. This
would indicate that for high monomer concentrations, SRD
has enhanced correlations between polymer beads residing in
the same cell, which would decrease the effective friction.

C. Force measured at the pore

Thanks to the implementation of the capsid geometry using
constructive solid geometry, no explicit forces at the pore are
imposed. Hence, the ejection force results as far as possible
from the pressure of the polymer segment confined inside the
capsid. There remain contributions from local effects, such
as the sharp edges of the pore restricting polymer movement
at both openings, but these can be considered relevant also to
real pores.

We characterize the dynamic force at the pore by measuring
the force f for fully and partly equilibrated polymer confor-
mations for different reaction coordinate s. In SRD, polymers
of different lengths N, are packed to a random conformation
inside a capsid of inner volume V = 4/3x RS = Ny/po until
the bead s is at the pore entrance. Here py is the initial monomer
density of a corresponding capsid ejection.

In our previous study [13], the bead s was attached to a point
in the pore entrance via a FENE potential, and the average
force needed to keep the polymer in place was measured;
see Fig. 6(a). In response to the results from more precise
measurements using LD, reported in what follows, we change
here the measurement point to the middle of the pore; see
Fig. 6(b). In SRD, after attaching the bead at either the entrance
or the middle of the pore, we wait for a time foq = 2.2 x 104
before measuring the force over ¢, = 2 x 10* time steps, one
measurement per step, and averaging over them. For a few s,
we checked that setting the equilibration time 7q = 5 x 10*
did not change the measured average f. Hence, during the
measurement the polymer is at or very close to an equilibrium
conformation.

The measured force for equilibrated polymer conformations
is not equal to the dynamic force during ejection. To be able
to measure f for conformations that are not fully equilibrated,
we do the measurement in a slightly more complicated way in
the LD model. Here the polymer is initially packed inside the
capsid and then freed for a single bead to eject. The appropriate
bead is then pulled either to the pore opening or the middle of
the pore and held fixed for a time #.q, after which the harmonic
force that is needed to keep the bead fixed is measured for a
time #,, = teq. After this, the polymer is again freed for a single
bead to eject. In this way, force is measured for all s.

First we verify that the same equilibrium f is obtained
using SRD and LD. f(s) for fully equilibrated conformations
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measured in the SRD model and in the LD model using f.q =
t,, = 2000 are shown in Fig. 7(a). f(s) for both models are
seen to be identical. Force measured at the pore entrance fen(s)
is seen to be larger than force measured in the middle of the
pore fmia(s); it does not decay to zero even at the end of the
ejection. This is caused by the reduction of the degrees of
freedom at the pore entrance due to the measured bead being
held stationary there. This creates a bias toward the exit of the
pore. The surprisingly strong bias created by an asymmetry in
the pore was noticed already in [10].

Eliminating the bias due to asymmetry imposed by the
measurement affects the dependence of f on s. Figure 7(b)
shows fiia(s) for polymers of different lengths in the LD
model together with f.n(s) for Ny = 400. Measurements are
done for feq = 1, = 2000, so these f are for conformations
that are close to equilibrium. For the initially large monomer
density p, that is, for relatively small s, all f show close to
exponential decay with s. This decay rate is very close to the
rate of the exponential increase of the waiting time #,, with
s for s < 0.625Ny; see the first exponential term in Eq. (10).
The lines in Fig. 7(b) show the function f o< exp[—(2.8/Np)s]
for the different Ny. For s < 0.625N, the ejection dynamics
is thus seen to result mainly from the exponential decay of the
pressure inside the capsid. Finally, as the pressure decreases
more abruptly, there is a crossover to a stronger exponential
increase of t,,; see Eq. (10).

The exponential decay of f coinciding with the exponential
increase of f,, for s < 0.625N,, that is, for the part of the
process in which the pressure resulting from packed monomers
drives the ejecting polymer, is in keeping with our previous
findings. For these densities and polymer lengths, the number
of beads per blob is very low, so the blob picture used in many
theoretical approaches is not relevant, but monomers interact
individually. The exponential dependence of the resulting
potential inside the capsid and hence the driving force has an
exponential dependence on monomer density and so s. This
can be obtained from the Flory-Huggins theory mixing free
energy in the limit of high density [13]. For large monomer
densities and small s, we also find that #,(s) ~ 1/f(s).
Observe that the small deviation from inverse proportionality
to a power-law relation #,(s) ~ 1/f(s)”, where y ~ 0.95,
leads to the slightly deviating exponent as a form of f(s) ~
exp (—%s}. This explains the slightly different exponent in
the force curves in Fig. 7(b).

The waiting time shows a stronger exponential for lower
monomer densities and large s; see Eq. (10). Figure 7(c)
shows force measured at the pore midpoint using LD and
allowing for the polymers to equilibrate for different times
feq = tm, as explained above. It is seen that the further the
polymer conformation is from the equilibrium, the more
abruptly the measured f falls off with increasing s similarly
to the corresponding stronger increase of f, with s for
s > 0.625N,. There are two potential reasons for this: First,
on the cis side at the final stage, tension may propagate
in the remaining polymer segment, which increases friction
and diminishes force measured at the pore. Second, on the
trans side monomers may crowd, thus possibly impeding the
ejection of the polymer. We have shown that crowding plays no
role in driven polymer translocation [32]. The force in the final
ejection stage is much smaller than in the driven translocation,
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FIG. 7. (a)Force f measured inthe SRD and LD models at the cis side entrance and the symmetrical midpoint of the pore as a function of the
translocation coordinate s. Ny = 200 and py = 1.0. (b) Force f(s) measured in the middle of the pore in the LD model for Ny = 25, 50, 100, 200,
and 400. The topmost curve shows f(s) measured at the pore entrance for N = 400. The lines plot f o exp[(—2.8/Ny)s] for the different Ny
(see text). (c) Force f(s) when the bead s at the pore opening was held at its place for time #.q after which f(s) was measured for time f,, = f¢q.

The curves are from top to bottom 7., = 2000, 125, and 62.5.

so here the effect cannot be ruled out offhand. The relevant
nonequilibrium mechanism is determined in Sec. IITF.

The greater statistics due our LD model enables us to
extract the dependence of the equilibrium force measured in
the middle of the pore on the monomer density inside the capsid
more precisely than using SRD. We find that the apparent
dependence on the polymer length arises from the inevitable
overlap of the repulsive monomer potentials with the capsid
wall. This overlap is proportionally larger for small capsids and
short polymers. We introduce the volume correction parameter
€ to take this into account. The effective monomer density then
becomes

N N (12)
PN, T Tr(Ret 0
where N is the number of monomers inside the capsid. The
data for the measured f versus p, for different Ny fall onto the
same curve when € = 0.3.

Figure 8 shows the measured pore force in equilibrium
as a function of the effective density inside the capsid p,
in natural and logarithmic scales. For large and intermediate
monomer densities, the force grows exponentially with p, in
keeping with the exponential decay of f with s. However, for
sufficiently small monomer densities, the exponential relation
does not hold precisely. This is due to the measured force
decaying to zero and even going slightly negative for extremely
small monomer densities.

In Fig. 8, we have fitted to the data the function f(s) =
Clexp (Bp,) — 1], which, unlike a pure exponential, has the
property that it decays to zero when the monomer density is
exactly zero. This function was chosen because we believe
that the negative force is an artefact caused by the local pore
geometry and the selected position for the force measurement.
In measurements at the cis entrance the force is always positive,
while in the midpore measurement the minimum force is
negative. This implies that there must be a measurement
position where the minimum force is exactly zero. The
relatively small offset in the force might seem like a minor
detail, but as an ejecting polymer spends the majority of its
time in the small force regime, the form of the force has a
considerable effect on ejection time.

The form of the pore force leaves some room for specula-
tion. For instance, it is also possible to describe the force in

the small p, regime as a power law f ~ ,oe2 due to the shifted
exponential and power law resembling each other in such a
short range. Cacciuto and Luijten [33] measured the scaling
of the excess free energy with the number of monomers in
the capsid as AF ~ N> for 0.2 < ¢ < 0.35, where ¢ is the
volume fraction. This would give f = —dAF/ON ~ N7,
which is approximately the scaling obtained here. In Fig. 8(b),
we have plotted the scaling of this form on a logarithmic
scale alongside with force measurements. However, the scaling
regime obtained here is for lower p and cannot be of the same

6 | (a) N[GXEGS p)-1] ——
51 Pe
4T
3 L
2b
1
0
-1 . . . . . . . .
0 0.1 02 03 04 05 06 0.7 08 0.9
Pe
10' F(b)

"y //

~[exp(3.6 pp)-1] ——
~ Pc2

Pe

FIG. 8. Force f as a function of the effective monomer density p,
inside the capsid for all s for polymer lengths Ny = 25, 50, 100, 200,
and 400 with pp = 1.0 (a) natural scale and (b) logarithmic scale.
Different scales and fits are shown to emphasize the exponential
dependence for higher effective densities and the potential scaling
relation for lower densities.
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origin as assumed in [33], namely the screening that steps in
at higher p.

The main observation here is that in our model we do find
a narrow interval at low p, where f for equilibrium confor-
mations may scale with p. However, the scaling exponent is
not of the same magnitude that could be derived using the
blob-scaling arguments. In addition, during the ejection the
conformations are out of equilibrium.

D. First passage times derived from the pore force

In Ref. [13], we derived an analytical estimate for the
ejection time of the polymer under the assumption of a purely
exponential pore force. However, the presented treatment is
not accurate at the very final stage of the ejection if the
force is assumed to decay to zero in the end, as presented
in Fig. 8(a). This is because the ejection stalls completely if
the driving force vanishes. Thus, the ejection cannot complete
without the help of diffusion. Also, as the ejection slows down
considerably in the end, the final stage of ejection has a major
effect on the total ejection time. We can estimate the first
passage times #;(s) based on the pore force solely by using the
formula [34]

kT [° U y U
t(s) = f_m/o exp (—%)/V exp <%>dzdy,

(13)
where
Ues)=— [ fesyas = S| g =S 1 p
(S)——/0 f(S)S—E[ 06XP< No )+ S}
(14)

is the pore potential derived from the shifted exponential
pore force f(s) presented in Fig. 8(a). Here, we use p
instead of the effective density for simplicity. The integral
is not analytically solvable, but by numerical computation we
obtain a good correspondence with simulations in the regime
Ny < 400, as shown in Fig. 9(a). The parameters ém = 254.5
and kT = 5.23 in Eq. (13) were chosen such that a good
correspondence is obtained with all the presented curves, with
the emphasis on the end points.

The parameter £m describes the friction of both the solvent
and of the pore while k7" describes the friction of the solvent
multiplied by the temperature. Hence, we cannot expect to
obtain a direct mapping of the parameters from the Langevin
equation. The force parameter values C = 0.411and B = 2.70
were obtained from a fit to the force measured for a polymer
of length Ny = 200 at the initial density pg = 1.0.

Figure 9(b) shows the first passage time curves obtained
from the numerical integration of Eq. (13) in the logarithmic
scale. The end points of the curves reveal that the apparent
scaling of t versus Ny tends toward linear when Ny grows
extremely large. Therefore, we can safely assume that the
apparent scaling observed for Ny < 400 indeed is a finite-size
effect even for a strictly vanishing pore force.

When numerically integrating Eq. (13), we observed that
the obtained first passage times are extremely sensitive to the
choice of the force. A force that decays to negative values for
very small densities leads to exponentially growing ejection
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FIG. 9. (a) First passage times numerically computed from
Eq. (13) for Ny < 400 (solid line) and the corresponding first passage
times from LD simulations with py = 1.0 (dotted line). (b) First
passage times computed from Eq. (13) on a logarithmic scale for a
large range of Ny. The end points seem to scale for small Ny < 400
as N(}'3 while the apparent scaling tends toward linear with extremely
high Ny. The dashed line shows a power-law fit to Ny < 400 while the
dotted line is a power-law fitto Ny > 1 x 10°. We selected parameters
asém = 254.5and kT = 5.23 as they were found to give a fairly good
correspondence between the Langevin simulations and the model.

times. If the force remains above zero throughout the ejection,
including the end point s /Ny = 1, the formula leads to linear
scaling already with very small Ny. If in the end of the ejection
there is a finitely long regime in s / Ny where the force is exactly
zero, this diffusive region gives a scaling with the exponent 2.
The presented model where force decays to zero exactly at the
end of the ejection presents a special case in which it is not
evident beforehand what happens to the scaling. It also seems
to best describe the simulation results received, and to explain
why we obtain such a nice apparent scaling while everything
seems to imply linear scaling for very long polymers.

E. The radius of gyration

We have previously found that the radius of gyration of
the polymer segment on the trans side grows roughly as
R, ~ 506 which means that the ejecting polymer segment
is not far from equilibrium [13], unlike in the case of driven
translocation [30]. Here, using SRD we measure R, (s) for the
ejected polymer segment with and without hydrodynamics and
Ry oq for polymers of different lengths N = s at equilibrium;
see Fig. 10. It is seen that throughout the ejection, the ejected
polymer segment is slightly compressed compared to the
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FIG. 10. Radii of gyration R, outside the capsid during ejection
as a function of the reaction coordinate s with (HD) and without
(noHD) hydrodynamics. Initial monomer density py = 1.0 and
polymer lengths Ny = 50,100, and 200 depicted. For reference, the
corresponding radii of gyration in equilibrium R, .4 are also depicted.
They are measured from outside of a capsid of volume V = 200/1.0.
With hydrodynamics included, the polymer R, is generally larger
than without hydrodynamics, even though the ejection is faster with
enabled hydrodynamics.

equilibrium conformation, that is, R, < R,z .q. Hence, the
ejected polymer segment remains slightly out of equilibrium
throughout the ejection. R, is larger and closer to Rg oq when
hydrodynamics is included. So, hydrodynamics speeds up
the relaxation of a polymer even more than it speeds up the
ejection. The same observation was made concerning driven
polymer translocation [31].

The radius of gyration of the frans side polymer segment
manifests clearly one characteristic of the polymer ejection
that makes it impossible for the ejection waiting time to scale
with the reaction coordinate s. R, is seen to be smaller for long
polymers than for short ones. In other words, long polymers
are driven farther out of equilibrium than short polymers
starting from the same initial monomer density. The monomer
density p inside the capsid decays faster with increasing s
for a short polymer than for a long polymer. For example,
for a polymer of Ny = 50, p = 0 at s = 50, but not so for a
polymer of Ny = 100. Instead, p decays with s/ N, identically
for all Ny. So, since polymers of different lengths are driven
by different force at a same s, there can be no universal
scaling of the waiting time ¢#,, with s. For the same reason, the
longer the polymer, the farther out of equilibrium it is for any
given s > 0.

F. Modified models

From the above observations, it is evident that the poly-
mer ejection is inherently a nonequilibrium process whose
nonequilibrium characteristics are more enhanced for long
polymers. As stated in Sec. IIIC, the two nonequilibrium
mechanisms potentially affecting the ejection dynamics are
tension propagation on the cis side and crowding on the
trans side. In the case of driven polymer translocation, we
have shown that crowding has no effect, but the translocation
dynamics is in practice determined by the dynamics of tension
propagation [32]. For a wormlike chain in capsid ejection, it
has been shown that crowding slows down the ejection [35].
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FIG. 11. Waiting time t,,(s) for the full polymer (solid line, above)
and for a polymer where the beads on the frans side are removed
during ejection (dashed line, below) such that there are Ny =5
beads on the cis side. The straight line shows #,, ~ exp [(2.8/Ny)s].

This result, however, cannot be generalized to the flexible chain
polymer model.

To determine the dominating nonequilibrium effect in the
polymer ejection from a capsid, we remove beads from the
trans side during ejection. We simulate ejection of polymers
of Ny =200 such that the maximum number of beads on
the trans side at any moment i Niqps = 5, 10, or 160. For
Nirans = 160, the waiting time profile #,,(s) is identical to that
of the full polymer ejection, where no beads are removed.
tw(s) for Niyas =5 and 10 deviate from ¢,,(s) for the full
polymer, deviation being greater for Nyans = 5. Figure 11
shows t,,(s) for the full polymer and for Ny = 5. #,,(s) for
Nuans = 5 is seen to be clearly smaller than 7,,(s) for the full
polymer, leading to the ejection time being 18% smaller with
Nirans = 5 than with the full polymer. This can only be due to
crowding not slowing down the ejection for Ny,s = 5. This is
in contrast to driven translation where the effect of crowding is
far less significant than the effect the tension propagation has
on the dynamics. In translocation with Ny = 200, the ejection
time with Nyans = 5 18 7.9% smaller with f; = 2 and 4.6%
smaller with f; = 8 than ejection times with the full polymer.
In the ejection process, tension can significantly propagate
only at the final stages of the process when the monomers are
less densely packed. Also the force driving the polymer has
decreased at this point, so tension propagation will be mild.
Under these circumstances, crowding, although weaker than in
the driven polymer translocation, shows up more prominently
in the resulting polymer ejection dynamics.

IV. CONCLUSION

We have studied the ejection of a fully flexible polymer
chain from a spherical capsid modeled using simplistic
boundary conditions. Hydrodynamic interactions were sim-
ulated using stochastic rotation dynamics (SRD) coupled with
molecular dynamics. We also used SRD with hydrodynamic
interactions switched off to better pin down effects due
to hydrodynamics. The less established SRD method was
compared to the thoroughly understood Langevin dynamics
(LD) to verify its suitability for simulations of this kind.
Results obtained using SRD without hydrodynamics were
found to be in good agreement with those obtained using
the LD model, whose friction was matched. Computational
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efficiency of LD allowed us to perform more precise force
measurements than before.

From measured ejection times t for different polymer
lengths Ny, the apparent scaling t ~ Né3 was obtained for
Ny < 400. The differences in the fitted effective exponents
obtained for different models make sense. Included hydrody-
namic interactions not only reduce the ejection time but also
reduce the B exponent, which is in line with results of forced
translocation [30,31]. This was addressed for hydrodynamic
correlations reducing friction proportionately less in the pore
region than outside it, which contributes toward linear scaling.
We showed, however, that basing the analysis solely on
ejection times, as in many previous studies, leads to an
incorrect characterization of the process.

The waiting time #,,(s) proved most valuable for under-
standing the polymer ejection dynamics. It describes how long
it takes for the individual polymer bead s to permanently exit
the capsid after the final exit of the bead s — 1. In the previous
study, we concluded that the waiting time #,,(s) is of exponen-
tial form [13]. The more precise measurements and analysis
conducted here reveal that #,,(s) is actually more accurately
described by a sum of two exponentials. After about 63% of the
polymer has ejected, the ejection starts to slow down even more
considerably and the second exponential starts to dominate
the waiting time. When hydrodynamics is included, #,,(s) is of
almost identical form to that without hydrodynamics, only by
a constant factor smaller in magnitude.

Remarkably, waiting times ¢,,(s) for polymers of different
lengths Ny starting their ejection at the same initial monomer
density po collapse when plotted as a function of the nor-
malized reaction coordinate s /Ny. This implies, by definition,
that the ejection times should scale linearly with Ny. Only
the final retraction of ¢, makes the scaling superlinear for
polymers of moderate length. However, the effect of the
final retraction becomes proportionately smaller for longer
polymers, ultimately vanishing for very long polymers. Hence,
linear scaling is approached for extensively long polymers, and
the cumulative waiting time is given by #(s) = Noh(s/Ny),
where h(s/Ny) is a scaling function.

Our LD model allowed us to investigate the force exerted
at the pore more carefully than in our previous study, due
to its computational efficiency. We found that the position
from where the force is measured has a large effect on the
measurements. The force measured at the pore entrance is very
accurately an exponential function of the monomer density
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inside the capsid. On the other hand, the force measured at the
middle of the pore is exponential only for densities exceeding
~0.4. To capture the form of the force more precisely, we
need to reduce a constant factor from the exponential. This
takes the force to zero for zero monomer density. This was
observed to significantly affect the ejection times. We also
found out that the force is a function of the effective density,
where the effective radius of the inside of the capsid is ~0.3
larger than the real radius used in the simulations. This is due
to the repulsive LJ potential overlapping with the capsid walls.
This effect diminishes as the capsid volume increases.

By inserting the measured exponential form for the force,
from which the offset term is reduced, into the first passage
time formula for arandom walk, we are able to quite accurately
reproduce the obtained first passage times from simulations.
The numerical integration of the formula also reveals that this
type of force leads to linear scaling for extremely large Nj.

The radius of gyration R, outside the capsid shows that the
part of the polymer on the trans side is more compact than the
corresponding polymer in equilibrium. When hydrodynamics
is included, the trans side is larger and therefore closer to
equilibrium R, than without hydrodynamics. This occurs even
though the faster ejection with hydrodynamics allows the
polymer conformation less time to expand. In a modified
model, where the number of monomers on the trans side
are kept constant by continually removing them, a polymer
ejects slightly faster than the corresponding full polymer.
Hence, crowding has a small effect on ejection dynamics
for the flexible polymer corroborating the findings from the
measurements of R,. Finally, hydrodynamics has a fairly
weak effect on capsid ejection, including the crowding.
Most importantly, it does not alter the universal form of
the waiting time versus the number of ejected monomers.
All evidence from our measurements goes to show that the
apparent superlinear scaling of the ejection time with the
polymer length 7 ~ N('Js tends to linear scaling for extremely
long polymers.
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