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We address some key conditions under which many-body lattice models, intended mainly as simulated
condensed-matter systems, can be investigated via immersed, fully controllable quantum objects, namely
quantum probes. First, we present a protocol that, for a certain class of many-body systems, allows for full
momentum-resolved spectroscopy using one single probe. Furthermore, we demonstrate how one can extract the
two-point correlations using two entangled probes. We apply our theoretical proposal to two well-known exactly
solvable lattice models, a one-dimensional (1D) Kitaev chain and 2D superfluid Bose-Hubbard model, and show
its accuracy as well as its robustness against external noise.
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I. INTRODUCTION

Cold atoms [1–3] in optical lattices stand as an almost
ideal experimental platform where several condensed-matter
models on lattice, such as the Hubbard and Heisenberg Hamil-
tonians, can be simulated efficiently [4–6]. These simulated
systems allow one to explore the properties of quantum many-
body models on lattice in a protected environment, where
lattice imperfections are absent. In this context it is possible to
implement quantum probing strategies for many-body systems
via a set of controllable and measurable systems able to extract
valuable information. Such quantum probes are conceived as
an alternative to more invasive traditional techniques and their
possible use has recently received a great deal of attention,
as experiments within atomic or spin impurities immersed in
optically trapped atomic gases have been performed [7–9].

A good body of literature is already available, showing
the advantages of such a novel approach when studying
optically trapped cold atoms [10–16]. Various schemes have
been proposed, to probe temperature [17], phononic excita-
tions [18], Luttinger physics [19], and genuine many-body
phenomena such as the orthogonality catastrophe [20–23].
Quantum probes [24–26] have also been shown to detect
critical phenomena [27] and signal phase transitions in trapped
ions [28,29] and spin models [30,31]. Other works have em-
ployed the quantum probing paradigm to analyze the spectral
properties of complex quantum networks [32], reconstruct
squeezed thermal states from an optical parametric oscillator
[33], and estimate the bound to the minimal length of quantum
gravity theories by performing measurements on a harmonic
oscillator [34]. The range of interest and applicability of
quantum probes is therefore very wide, although no general
theory of quantum probing has yet been formulated and many
questions regarding this approach remain still unanswered.

Some aspects of such a theory are strictly model dependent;
nevertheless, one may still wonder whether some general
and model-independent results can be derived. This is the
exact aim of this manuscript. We address two key points
of quantum probing from a more general perspective. First,
we discuss a minimal set of assumptions needed to develop

simple and yet general enough quantum probing protocols;
and, second, we analyze what kind of information regarding a
many-body system is accessible via such protocols. While the
first question will naturally lead to identify some physical
systems that are potentially good candidates for quantum
probing, the second focuses more on the trade-off between the
resources needed, such as, e.g., the number of probes needed,
and the type of information one can extract. In what follows,
by relying only on some fundamental quantum features of the
probe(s), such as the discreteness of their energy spectrum,
or the initial entanglement between two of them, we are
going to provide efficient tools to detect various properties of
a large class of many-body systems. We aim to investigate
two scenarios. First, we consider a single quantum probe,
typically an impurity of some sort, embedded in a lattice
many-body system, and demonstrate that one can perform
momentum-resolved spectroscopy of the many-body system.
This is achieved by tailoring the spectrum of the impurity and
measuring transitions probabilities between its energy levels,
with the probe sitting in different positions with respect to
the many-body system. The proposed method does not give a
solution to a previously unsolved task, but its novelty relies
on the different paradigm on which it is based. Contrary
to standard techniques, indeed, our approach is a good
candidate to perform full momentum-resolved spectroscopy in
a potentially less invasive way, avoiding direct measurements
performed on the many-body system. We then move to a
two-probe scenario, to show that the use of entangled probes
allows us to monitor the spreading of correlations throughout
the system by measuring one- and two-probe transition rates.
So far, entangled probes or entangled states in general have
been mainly employed in the field of quantum metrology as
a resource to improve the accuracy of parameter estimation
[35–38]. In this work, instead, we directly relate the transition
rates of entangled probes to two-point (spatial) correlations
characterizing the many-body system.

As we aim at probing the many-body system in the least
invasive way, we assume weakly coupled probes, so that
transition probabilities between their energy levels can be
expressed in terms of a thermally weighted Fermi golden rule.
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II. QUANTUM PROBING PROTOCOLS

A. Momentum-resolved spectroscopy

We start off by setting the general Hamiltonian of a many-
body system interacting with an impurity probe (h̄ = 1)

Ĥ = ĤMB + ĤP + gĤint, (1)

in which ĤP = ∑
n̄ εn|n̄〉〈n̄| and ĤMB are the free Hamil-

tonians for the impurity and for the many-body system,
respectively. Ĥint is the interaction Hamiltonian, which is
assumed to weakly perturb the many-body system while
inducing transitions between the probe energy levels:

Ĥint =
∑

εm̄>εn̄

|m̄〉〈n̄| ⊗ �̂[m̄,n̄] +
∑

εm̄<εn̄

|m̄〉〈n̄| ⊗ �̂†[m̄,n̄],

(2)

where �̂[m̄,n̄] ∝ ∑
k γ k

m̄,n̄b̂k (�̂†) describes the single-particle
absorption (emission) occurring into the modes of the many-
body system with amplitudes γ k

m̄,n̄, together with the transition
|n̄〉 → |m̄〉 for the probe. Such an interaction term is fairly
general, and can be related to various models employed so far
to study the non-Markovian dynamics of open systems of non-
interacting particles linearly coupled to thermal environments
[39].

A key point, here, is the complete knowledge of the
eigensystem of ĤP , which we label {εn̄,ψn̄(x)}, as well as
the ability to tune it via some external control parameters. To
move forward in the derivation, we (i) select two eigenstates of
the probe, namely |ḡ〉 and |ē〉, whose transition frequency ν is
tunable, (ii) assume weak coupling between the impurity and
the many-body system, and (iii) assume the total system at the
initial time to be of the form ρ(0) = |ḡ〉〈ḡ| ⊗ e−βĤMB /ZMB ,
where the many-body system is in thermal equilibrium, with
inverse temperature β.

1. Fermi golden rule

Within the above assumptions the total time-dependent
transition probability from |ḡ〉 to |ē〉 can be written (see
Appendix A for the explicit derivation)

	ḡ→ē(t) = g2
∫ t

0
dt1

∫ t

0
dt2〈�̂†[ḡ,ē](t1)�̂[ē,ḡ](t2)〉

× e−iν(t1−t2) + O(g4). (3)

For the sake of concreteness we make two further assumptions
usually satisfied in experiments with cold atoms. We focus our
attention on (iv) systems characterized by a (known) lattice
structure. Formally, this allows us to characterize our system in
terms of Bloch functions wk(x), with corresponding frequency
ωk and ladder operators b̂k. We also make the standard
assumption of confining the dynamics to the lowest Bloch
band. Any Bloch function, in turn, can be expanded in terms of
site-localized Wannier functions as wk(x) = ∑

r γke
ik·rWr(x).

We also assume the amplitudes γ k
m̄,n̄ to be proportional to the

overlapping integrals, γ k
m̄,n̄ = ∫

dx ψ∗
ē (x)ψḡ(x)wk(x), where

ψē/ḡ(x) are the probe wave functions.
Finally, (v) we assume the probe to be local, so that the

interaction is localized on one lattice site, say 0 = (0,0,0), and

the only relevant overlapping integral is that one involving the
corresponding Wannier function, W0(x).

The time-rescaled transition rate then reads

	̃ḡ→ē(t) ≡ 	ḡ→ē(t)/g2t2

=
∑

k

|J0γk|2 sinc2

[
(ν − ωk)t

2

]
nk, (4)

in which J0 = ∫
dx ψ∗

ē (x)ψḡ(x)W0(x) and nk is the average
number of thermal excitations at ωk. When measuring the
transition rate Eq. (3) as a function of the probe frequency, one
will observe resonance peaks revealing the (single-particle)
excitation spectrum of the many-body system. The amplitudes
of such peaks read, according to Eq. (4), A2

k = dk|J0γk|2nk,
where dk is the kth mode degeneracy.

The position of the peaks gives a direct measure of the
excitation frequencies of the system; but, in order to fully
reconstruct the dispersion relation of the many-body system,
the correct k has to be associated to each ωk. We have
found that this can be achieved by repeating the protocol
while changing the position of the probe and comparing the
corresponding transition rates. In particular, we show below
through some specific examples that the number of different
measurements that we need to perform is related to the
dimensionality of the system to be probed; therefore, we label
the different measurement sets with the index i = 1, . . . ,d.
The ratio between the amplitudes of the resonant peaks
obtained from these extra measurements and those of the first
one is found to satisfy the relation

A2
k
i

A2
k

=
∣∣∣∣ Ji

J0

∣∣∣∣
2 ∑

k|ν=ωk

Gi(k), i = 1, . . . ,d, (5)

where Ji = ∫
dx ψ∗

ē (x − ai)ψḡ(x − ai)W0(x) and Gi(k) are
functions of the momentum that can be deduced from geomet-
ric considerations (see Appendix A). In order to observe the
resonant peaks the time of measurement should be larger than
the typical time scale associated to the low-energy portion of
the spectrum and, on the other hand, short enough to guarantee
the validity of the perturbative approach. An optimal choice

of this time lies in the range [max[ 4π

	vk· 	VR

],1/g], in which 	vk

and 	VR are the group velocity and the volume of the first
Brillouin zone. For instance, in the simple case of phonons in
a one-dimensional (1D) lattice, the lower bound is 4πNsa/cs ,
with cs being the speed of sound and a the lattice parameter.

Once the ratio Ji/J0 is measured, Eqs. (5) should be inverted
to associate each momentum k to the corresponding frequency
ωk. This procedure will be exemplified in the following
section, where we apply the protocol to two different physical
models, and show its properties and study its robustness against
noise.

2. Master equation and thermodynamic limit

The protocol, as outlined above, appears not to be prac-
tically feasible if the the many-body system under scrutiny
is too large. Indeed, in this case, the resonance peaks would
become increasingly closer, making the probe tunability rather
challenging if not impossible. However, in the thermodynamic
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limit and for a gapless energy spectrum, Eq. (4) still does give
the correct transition rates provided that the sum is replaced
by an integral, in the continuum limit

∑
k ωk → ∫

dk. In this
case, using standard open quantum system approaches within
the Born-Markov approximation, one can derive a master
equation describing the dynamics of the probe. Assuming the
probe is resonant with some excitation energy of the system,
ν = ω(k), we have

dρP

dt
= g2|J0γ (k)|2

[
[1 + sn(ν)]

(
σ−ρP σ+ − 1

2
{σ+σ−,ρP }

)

+ n(ν)

(
σ+ρP σ− − 1

2
{σ−σ+,ρP }

)]
, (6)

in which we have neglected the Lamb and Stark contributions,
s = ±1 distinguishes between bosonic and fermionic baths,
and σ̂± are the two-level system ladder operators. When
the probe is initialized to ρP (0) = |ḡ〉〈ḡ|, simple solutions
are found for both bosonic and fermionic environments,
respectively,

ρēē(t) = n(ν)

2n(ν) + 1
(1 − e−γB t ), (7)

ρēē(t) = n(ν)(1 − e−γF t ), (8)

in which γB = g2d(k)|J0γ (k)|2[2n(ν) + 1] and γF =
g2d(k)|J0γ (k)|2. The information about the momentum is
encoded into these decay rates, and the ratio needed in Eq. (5)
can be obtained by means of an extra set of measurements, as
outlined in the previous subsection.

3. Bloch functions spectroscopy

We conclude this section by showing that the scheme
discussed so far also allows, at least in principle, for the
reconstruction of the Bloch functions, provided that the probe
can be placed at a varying distance s from its initial position.
Indeed, for a displacement s of the probe, the amplitude |Ak|
of the resonant peak reads

|Ak|
(dknk)

1
2

=
∣∣∣∣
∫

dx ψ∗
ē (x − s)ψḡ(x − s)wk(x)

∣∣∣∣
= |ψ ∗ wk|(s), (9)

where ψ(x − s) ≡ ψ∗
ē (x − s)ψḡ(x − s) and ∗ denotes the

convolution integral. If both ψ and wk are real functions, then
the Fourier transform of Eq. (9) gives Ak(p) = ψ(p)wk(p).
Since the eigenstates of the probe are known, it is possible to
extract wk(p) from the measurements. By transforming back
to real space, the Bloch function wk(x) can be finally obtained.
Notice that, due to the symmetry of the lattice, Ak(s) needs to
be sampled in a fraction of the first Brillouin zone only.

B. Probing of quantum correlations

In the previous section we showed that a single quantum
impurity with a discrete and tunable energy spectrum allows
for a complete reconstruction of the dispersion relation of a
certain class of many-body systems. Having more than a single
controllable probe at our disposal, and assuming that entangled

states can be prepared, correlation properties of the many-body
system can be extracted.

In what follows, we show how the spreading of two-point
correlations in the many-body system can be mapped onto
a simple function of the impurity transition rates in a two-
entangled-probe setting. Let us assume that two identical
impurities, say A and B, are placed on xA and xB , respectively.
The total system+probe Hamiltonian reads

Ĥ = ĤE + ĤPA
+ ĤPB

+ gĤint, (10)

with an interaction Hamiltonian analogous to the one used
above,

Ĥint =
∑
n̄,m̄

|n̄〉A〈m̄|A ⊗ �̂[m̄A,n̄A]
xA

+
∑
n̄,m̄

|n̄〉B〈m̄|B ⊗ �̂[m̄B ,n̄B ]
xB

, (11)

in which �̂[m̄,n̄]
xA|B are now the many-body observables whose

correlation function we are interested in. We consider two-level
impurities prepared in the Bell state |
0〉 = 1√

2
(|ḡA,ēB〉 +

|ēA,ḡB〉). The combined initial state of the impurities and
of the many-body system is therefore ρ(0) = |
0〉〈
0| ⊗
e−βĤMB /ZMB . As we demonstrate in detail in Appendix B, the
spreading of correlations in the many-body system following
the embedding of the impurities are captured by the following
combination of one- and two-impurity transition rates, that we
compute as in Eq. (3):

	 = 	
(2)
|
0〉→|ēA,ēB 〉 −

∑
P=A,B

1

2
	

(1)
|ḡP 〉→|ēP 〉

= g2

2

∫ t

0
dt1

∫ t

0
dt2

∑
i,l=A,B

i �=l

〈
�̂[ēi ,ḡi ]

xi
(t1)�̂[ḡl ,ēl ]

xl
(t2)

〉
eiν(t1−t2).

(12)

By tracking the time evolution of 	 , two-point correlations can
be monitored. Given its model independence, this protocol
can be also applied to many-body systems with long-range
interactions, which break the Lieb-Robinson bound [40,41].

III. APPLICATIONS

In this section we apply the one- and two-probe protocols
described above to two examples. First we consider probing
a 1D long-range fermionic hopping model that has recently
attracted an increasing interest as its exact solvability makes it
a good candidate to explain qualitatively the physical behavior
behind the propagation of correlations in systems with long-
range interactions [42]; then we discuss the probing of a 2D
Bose Hubbard model in the superfluid phase. In particular,
in the second example, the experimental implementation of
the momentum-resolved spectroscopy protocol in a cold atom
platform is discussed in some details, and compared to other
available methods.

A. 1D Kitaev chain

Recently, long-range hopping models have been receiving
a renewed attention due to their experimental realizability,
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FIG. 1. (a) Sketch of a probe overlapping with either one or two lattice sites of a 1D chain. Measurements in both of the positions are
required to perform momentum-resolved spectroscopy. (b) Transition probabilities (dimensionless) corresponding to the two probe positions,
displayed in black and purple, respectively. (c) Reconstructed spectrum, where the momentum is expressed in units of 1/a and a being the
lattice parameter. The purple dots are the frequencies extracted from the transition probabilities data, while the black ones are the exact values.
Here the source of error is given by the finite sampling in the probe frequency ν. An additional random 2% error has been added to the
ratios of the peaks, and g′/g has been estimated by summing over them. The agreement is very good, although two points are missing in the
dispersion relation. The corresponding frequency is clearly visible in the transition probability, but the errors hinder the estimation of the proper
momentum. (d) Quantum correlation function (dimensionless) with a clear light-cone structure emerging while it spreads across the lattice. All
the plots are drawn for J/� = 5, α = 0.3, and Ns = 51. Everywhere, � is the energy and inverse time unit.

demonstrated in solid-state systems. As an example, the so-
called helical Shiba chains made of magnetic impurities on an
s-wave superconductor have been implemented [43,44]. On
the other hand, these models share some features with long-
range Ising models, experimentally realizables with trapped
ions and cold atoms [45,46], where also long-range tunneling
has been observed [47].

Here, we consider a 1D lattice model for spinless fermionic
excitations to prove both the usefulness and the robustness of
our protocols. The many-body Hamiltonian has the form of a
generalized Kitaev ring with long-range hopping [42,48,49]

Ĥ =
Ns∑

l �=j=1

Jlj ĉ
†
l ĉj + �

∑
j=1

ĉ
†
j ĉ

†
j+1 + H.c., (13)

in which � and Jlj = J |π/(Ns sin[π (l − j )/Ns])|α are the
pairing and long-range tunnelling coefficients, respectively.
We choose a two-level probe, ĤP = νŜz, for which we assume
the following interactions for the first and second step of the
momentum-resolved spectroscopy:

Ĥ I
int = gσ̂+ ∑

k

cos(θk/2) ˆ̃ck + H.c., (14)

Ĥ II
int = gσ̂+ ∑

k

[1 + cos(k)] cos(θk/2) ˆ̃ck + H.c. (15)

These Hamiltonians are precisely of the form given in
the general formulation above, with �̂[ē,ḡ] = �̂[1,0] =∑

k cos(θk/2) ˆ̃ck . Furthermore, Ĥ I
int and Ĥ II

int correspond to
the two measurement configurations required to achieve

momentum-resolved spectroscopy in 1D, as illustrated in
Fig. 1. The energy and momentum-resolved spectrum ex-
tracted from the transition rates are displayed in Fig. 1,
where we also assumed a nonperfect control of the coupling
constants, thus introducing some systematic error (see cap-
tion). These plots demonstrate the accuracy and robustness
of the protocol for the momentum-resolved spectroscopy,
showing that it is possible to reconstruct a nonmonotonic (but
nondegenerate) energy spectrum.

As for the probing of correlations, we consider two
probes placed on sites l and j , and assume now an explicit
position-dependent interaction. We make the replacement∑

k cos(θk/2) ˆ̃ck → ĉl , in order to get a clearly position-
dependent observable. Nonetheless, the previous interaction
can be obtained from this new one if a rotating wave
approximation is applicable.

The 	 function then reads

	 = g2

2

∫ t

0
dt1

∫ t

0
dt2〈ĉ†l (t1)ĉj (t2) + ĉ

†
j (t1)ĉl(t2)〉eiν(t1−t2).

(16)

The time-evolved correlations, as extracted from 	, are also
displayed in Fig. 1.

B. Bose-Hubbard: Superfluid 2D

1. Bosonic environment and mean-field theory

Before moving to the second application of our protocol,
we first show, in general terms, how the momentum-resolved
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protocol can be applied in the experimentally relevant case
of an interacting gas of cold bosons. The starting point is to
consider that also the probe will interact with the Bose gas via
a density-density interaction, which can be described with the
usual assumption of a contact potential. Denoting by �̂(x) the
many-body field operator, we can write

Ĥint =
∑
n̄,m̄

∫
dx ψ∗

m̄(x)ψn̄(x)|m̄〉〈n̄| ⊗ �̂†(x)�̂(x). (17)

Loosely speaking, with such a probe-system interaction, the
probe transition probability will show a resonance every
time the energy difference between its levels matches the
energy difference between the modes of the many-body system
(provided the transition is allowed, thanks to a nonvanishing
overlapping integral).

By adopting a mean-field description for the lattice many-
body system, the field operator can be written as �̂(x) =
�0(x) + ˆδ�(x), with ˆδ�(x) describing linear fluctuations
around the mean-field value �0(x). Given the lattice struc-
ture of the many-body system, we can expand δ�(x) =∑

k wk(x)b̂k, in which wk(x) are lattice Bloch functions.
Neglecting contributions that are quadratic in the fluctuations,
the interaction Hamiltonian reads

Ĥint =
∑
n̄,m̄

∫
dx ψ∗

m̄(x)ψn̄(x)|m̄〉〈n̄|

⊗
{

�2
0 + �0

∑
k

[wk(x)∗b̂†k + wk(x)b̂k]

}
. (18)

Using the same preparation and measurement procedures
discussed in general terms in Sec. II, the rescaled transition
rate analogous to that in Eq. (4) reads

	ḡ→ē(ν,t) = g2

{
	0(ν,t) +

∑
k

	−
k (ν,t) + 	+

k (ν,t)

}
, (19)

where

	0(ν,t) = |γ0|2�4
0 sinc(νt), (20)

	−
k (ν,t) = �2

0|J0γk|2 sinc2

[
(ν + ωk)t

2

]
[1 + n(ωk)], (21)

	+
k (ν,t) = �2

0|J0γk|2 sinc2

[
(ν − ωk)t

2

]
n(ωk), (22)

with γ0 = ∫
dx ψ∗

ē (x)ψḡ(x). For large enough measuring
times, resonant peaks appear in the ν-dependent transition
rates, whose amplitudes read A2

k = dk|J0γk|2nk, if ν > 0.
By repeating the measurement with the probe in different

positions, as described in Sec. I, the analogous of Eq. (5) can
be obtained, from which the momentum-resolved spectrum
can be finally extracted, as discussed in detail below for the
case of a 2D Bose-Hubbard model.

2. 2D superfluid

Let us now present the second application of our protocol.
To this end, we consider a gas of cold bosonic atoms in the
lowest-energy band of a 2D optical potential. This system is

very well described by the Bose-Hubbard model [50–53]:

Ĥ = −J
∑
〈l,j〉

ĉ
†
l ĉj + U

2

∑
j

n̂j (n̂j − 1) − μ
∑

j

n̂j . (23)

In the limit J 
 U , the system is in the superfluid phase,
with a low-energy spectrum due to phononic excitations above
a uniform Bose-Einstein condensate [54]. These excitations
have been successfully resolved in energy using techniques
such as magnetic gradients [55] and lattice depth modulation
[56]. Furthermore, a full momentum-resolved spectroscopy
has been performed using two-photon Bragg spectroscopy
in [57,58]. Although quite successful, such methods strongly
interfere with the dynamics of the gas and are therefore very
invasive. We apply our quantum probe protocols, in this case,
by assuming the probe immersed in the lattice to be an atomic
quantum dot trapped in a 3D harmonic potential, with energy
states ψn̄(x) = ψ (νx )

nx
(x)ψ

(νy )
ny

(y)ψ (ν)
nz

(z). As shown in Ref. [13],
the density-density interaction typical of cold atoms, when
applied to the case of a superfluid BEC in the mean-field
approach, gives rise to a linear coupling of the impurity to
density fluctuations in the many-body system.

To start the reconstruction procedure, we evaluate the tran-
sition probability between impurity states along the direction
orthogonal to the lattice, say, e.g., the z axis, 	̃0̄→(0,0,nz) as a
function of the probe trapping frequency in that direction, νz.
As a matter of fact, 	̃0̄→(0,0,nz) depends on νz as well as on the
overlap between the lattice Wannier states and the unperturbed
eigenfunctions of the impurity. For the first measurement, we
find that the transition rate is given by exactly the same expres-
sion reported in Eq. (4), but with the prefactor now given by

J0γk =
∫

dx ψ2
nx=0(x)W 2

0 (x)
∫

dy ψ2
ny=0(y)

×W 2
0 (y)(−1)nz

√
m

γ
1/2
nz

γ
1/2
0

π

√
νzβk. (24)

As depicted in Fig. 2, and as discussed briefly in general
terms above, the reconstruction of the single-particle excitation
spectrum for a 2D lattice system requires two further measure-
ments, with the probe placed in different positions. Thus the
overall protocol develops in three subsequent steps with the
probe placed as in Fig. 2 (a), I), II), and III), during which the
rates 	I, 	II, and 	III are extracted.

In a realistic experimental realization the in-plane trapping
frequencies, νx and νy , can be modified in order to achieve a
suitable wave-function overlap with the nearest-neighboring
sites, as necessary for the protocol. The information obtained
by using these three steps allows for the reconstruction of the
full dispersion relation ω(k). Indeed, by taking the ratios of
the second and third transition rates with respect to the first
one at each resonant peak, one obtains two relations that can
be inverted to extract the two components of the momentum
vector k = (kx,ky) associated to the selected peak frequency.
In our case, we have (see Appendix A for the details)

	̃II

	̃I
= 2

∣∣∣∣J1

J0

∣∣∣∣
2[

cos2

(
kxa

2

)
+ cos2

(
kya

2

)]
,

(25)
	̃III

	̃I
= 16

∣∣∣∣J2

J0

∣∣∣∣
2

cos2

(
kxa

2

)
cos2

(
kya

2

)
.
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FIG. 2. (a) Sketch of the probe positions in the three stages of the protocol. (b) Semilog plot of the low-energy transition probabilities
	̃(I,II,III) (dimensionless), rescaled by | Ji

J0
|2, for the three cases shown in (a), drawn in black, yellow, and purple, respectively, for a lattice of

Ns = 121 sites. (c) Reconstructed dispersion relation (purple dots) in units of J , where the momentum (in x and y direction) is expressed in
units of 1/a and a being the lattice parameter. (d) The correlation function defined in Eq. (26) for a square lattice of Ns = 1212 sites, displayed
at three different times. In each plot, the value of the correlation function (dimensionless) has been scaled to its maximum and J has been taken
as energy and inverse time units, with U = 0.1J .

These relations are easily numerically inverted, so that a vector
k is associated to each peak frequency ω found in the transition
rates, with the result reported in Fig. 2.

Finally, for measuring the correlation function, one needs
to use two entangled probes, located at sites l and j . Following
the line of the derivation given above, one obtains the collective
decay rate 	 analogous to that of Eq. (12). For this system we
show in detail in Appendix B that the following expression
holds:

	 = ḡ2

2

∫ t

0
dt1

∫ t

0
dt2〈n̂l(t1)n̂j (t2)

+ n̂j (t1)n̂l(t2)〉eiν(t1−t2), (26)

where ḡ is a new coupling constant containing the overlap
integral. Due to the density-density interaction of the impurity
with the boson gas, thus the function 	 contains information

about the density-density correlation function, whose behavior
can be extracted from the measured values of the transition
rates, as reported in Fig. 2.

Both the one- and two-probe protocols are in principle
feasible for a 2D superfluid with current technology [7,59–61].
In particular, it has been proven that the control of the position
of an impurity in an optical lattice can be achieved in different
ways. For example, using species-selective or spin-selective
optical lattice, by changing the polarization angle of the
laser beams generating the lattice it is possible to obtain
two spin-dependent potentials that split in opposite direction
[62]. Efficient control over a single spin at a specific site
of an optical lattice has been achieved recently, with the
further benefit of leaving the atom in the vibrational ground
state, that is the initial state of our probe [9]. Detecting the
locations of such impurities is nowadays in the grasp of the
experimentalists [63,64] as well as measuring the populations
of excited vibrational states [65,66].
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IV. CONCLUSIONS

We have demonstrated how global properties of a certain
class of many-body systems can be extracted by means of
controllable quantum probes. Our approach is rather general,
being only based on the assumptions of full control of the
probe position and of its interaction with the many-body
system. Within such framework, we have demonstrated that
it is possible to obtain the single-particle excitation spectrum
of the system and perform momentum-resolved spectroscopy
via energy-resolved measurements on a single quantum probe.
Moreover, the spatial profile of the unperturbed Bloch func-
tions can be reconstructed. By exploiting entangled probes that
locally alter the equilibrium configuration of the many-body
system, it is possible to monitor the spreading of correlations
across the latter.

Our description can be applied to diverse systems, and we
illustrated the probing procedures for (1) a 1D long-range
fermionic model and (2) an interacting boson gas in a 2D
lattice. In the second case, in particular, we have exploited the
advanced state of the art of the cold atom field to provide a more
detailed and experimentally feasible description. Our proposal
exemplifies the essence of the quantum probing approach,
wherein some of the typical complexity of a many-body system
can be imprinted onto the open dynamics of a smaller system,
and thereby locally extracted in a much less invasive way.
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APPENDIX A: SINGLE PROBE—TRANSITION
PROBABILITY

In this appendix, we sketch the perturbative approach lead-
ing to the Fermi-golden-rule–like equation used to describe the
momentum-resolved spectroscopy protocol. In general terms,
the probability for a ground- to excited-state transition, due
to the interaction with the many-body environment, can be
written as

	ḡ→ē(t) = TrMB〈ē|ρ(t)|ē〉 = TrMB〈ē|Û (t)ρ(0)Û †(t)|ē〉,
(A1)

where Û (t) is the time evolution operator in the interaction
picture. With the assumption of weak coupling we can
resort to an expansion in powers of g, so that Û (t) = 1 +
gÛ1(t) + g2Û2(t) + · · · . Truncating up to the first order in
g the relevant term is Û1(t) = −i

∫ t

0 dt1Ĥint(t1), so that the
transition probability takes the form

	ḡ→ē(t) � g2TrMB〈ē|Û1(t)ρ(0)Û †
1 (t)|ē〉 + O(g4)

= g2
∫ t

0
dt1

∫ t

0
dt2TrMB〈ē|

× Ĥint(t1)ρ(0)Ĥint(t2)|ē〉 + O(g4). (A2)

In a weak-coupling regime, this expression works very well
as its first correction would be of fourth order in g. For the

interaction Hamiltonian in Eq. (2) we get

	ḡ→ē(t) � g2
∫ t

0
dt1

∫ t

0
dt2

× TrMB{�̂[ē,ḡ](t1)ρβ�̂†[ḡ,ē](t2)}e−iνt2eiνt1

= g2
∫ t

0
dt1

∫ t

0
dt2〈�̂†[ḡ,ē](t1)�̂[ē,ḡ](t2)〉e−iν(t1−t2).

(A3)

In order to proceed further, we recall that �̂[m̄,n̄] ∝∑
k γ k

m̄,n̄b̂k, with which it is easy to obtain

	ḡ→ē(t) = g2
∫ t

0
dt1

∫ t

0
dt2

∑
k,q

γ k
ē,ḡγ

q∗
ē,ḡ〈b̂†kbq〉

× ei(ωk−ν)t1e−i(ωq−ν)t2

= g2
∑

k

∣∣γ k
ē,ḡ

∣∣2
nk

∣∣∣∣
∫ t

0
dt1e

i(ωk−ν)t1

∣∣∣∣
2

= g2t2
∑

k

∣∣γ k
ē,ḡ

∣∣2
nk sinc2

[
(ν − ωk)t

2

]
, (A4)

as reported in Eq. (4). However, to perform full momentum-
resolved spectroscopy we need to know the geometry of the
system we intend to probe. This information is crucial in order
to define the positions required for the different measurements
required by the protocol and the relations among them, which
are embodied in the functions Gi(k).

As an example, here we calculate the functions Gi(k) for a
simple square lattice in 2D. The k-dependent amplitudes are
assumed to depend on an overlapping integral that involves
the probe unperturbed eigenfunctions and on the Bloch
functions of the lattice system γ k

m̄,n̄ = ∫
dx ψ∗

ē (x)ψḡ(x)wk(x).
The Bloch functions can, in turn, be expanded in the Wan-
nier basis as wk(x) = ∑

r γke
ik·rWr(x). In a 2D scenario,

measurements in three different positions are required. The
optimal basis is represented by the following positions
{a0 = (0,0),a1 = (a/2,0),a2 = (a/2,a/2)}, where a is the
lattice parameter. In the first measurement the impurity is
exactly on top of a lattice site and the locality of the interaction
allows us to consider as relevant only the overlapping integral
that involves a single Wannier state [the one centered on
the site (0,0)]. In the two other cases, the nearest neighbors
contribute equally to the overlapping integral, giving two
further contributions for the second measurement and four
in the third one. These assumptions about the localization of
the probe allow one to replace the Bloch functions in the three
overlapping integrals in the following way:

wk(x) �

⎧⎪⎪⎨
⎪⎪⎩

γkW(0,0)(x)
γk(W(0,0)(x) + eikxaW(1,0)(x))
γk(W(0,0)(x) + eikyaW(0,1)(x)

+ eikxaW(1,0)(x) + eikxa+ikyaW(1,1)(x)).

(A5)

For a perfect and regular lattice, Wannier functions centered
on different sites have the same shape. The amplitudes
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associated to each transition are, then,⎧⎪⎨
⎪⎩

|J0γk|2,
|J1γk|22[1 + cos(kxa)],

|J2γk|2
[
16 cos2

(
kxa

2

)
cos2

( kya

2

)]
,

(A6)

where Ji = ∫
dx ψ∗

ē (x − ai)ψḡ(x − ai)W(0,0)(x), with i =
0,1,2. It is important to mention that each resonant peak
depends on all the transitions with equal energy; in other
words, it is a sum of the contributions from all the possible
transitions with the same energy. This approach takes into
account only the degeneracy given by the geometry. Thanks to
these considerations, we find

∑
k|ν=ωk

Gi(k) =
{

2 cos2
(

kxa

2

) + 2 cos2
( kya

2

)
, i = 1,

16 cos2
(

kxa

2

)
cos2

( kya

2

)
, i = 2.

(A7)

In 1D, just two different positions are required, and the optimal
choice is given by the probe on top of a lattice site and between
two adjacent sites. With this choice it is easy to find under the
same assumptions of a local interaction∑

k|ν=ωk

G(k) = 4 cos2

(
ka

2

)
. (A8)

APPENDIX B: TWO PROBES—TRANSITION
PROBABILITY

In this Appendix, we derive the combined rate given in
Eq. (12) that allows one to probe spatial quantum correlations.
The starting point is to assume that the environment and the
two probes interact locally on two different sites

Ĥint =
∑
n̄,m̄

|n̄〉A〈m̄|A ⊗ �̂[m̄A,n̄A]
xA

+
∑
n̄,m̄

|n̄〉B〈m̄|B ⊗ �̂[m̄B ,n̄B ]
xB

,

(B1)

where �̂[m,n]
xA

and �̂[m,n]
xB

are the observables whose correlations
we want to study. We consider two entangled probes |
〉 =

1√
2
(|nA,sB〉 + |mA,rB〉), so that the total state of the system

reads

ρ̂tot = |
〉〈
| ⊗ ρ̂

= 1
2 (|nA,sB〉〈nA,sB | + |nA,sB〉〈mA,rB |
+ |mA,rB〉〈nA,sB | + |mA,rB〉〈mA,rB |) ⊗ ρ̂. (B2)

We calculate the transition probability 	(|mAsB〉) =
〈mA,sB |ρ̂tot(t)|mA,sB〉 resorting to an expansion of the time
evolution operator to the first order in g, as for the single
probe case. After a few straightforward steps, we find

	(|mAsB〉) � 1

2

∫ t

0
dt1

∫ t

0
dt2

〈
ei(νmA−νnA)t1

× �̂[mA,nA]
xA

(t1)ei(νnA−νmA)t2�̂[nA,mA]
xA

(t2)

+ ei(νsB−νrB )t1�̂[sB ,rB ]
xB

(t1)ei(νrB−νsB )t2�̂[rB ,sB ]
xB

(t2)

+ ei(νmA−νnA)t1�̂[mA,nA]
xA

(t1)ei(νrB−νsB )t2�̂[rB ,sB ]
xB

(t2)

+ ei(νsB−νrB )t1�̂[sB ,rB ]
xB

(t1)ei(νnA−νmA)t2�̂[nA,mA]
xA

(t2)
〉
.

(B3)

Combining the result with the transition probabilities obtained
in separate single probe experiments (ρ̂tot = |nA〉〈nA|ρ̂ and
ρ̂tot = |rB〉〈rB | ⊗ ρ̂) we get Eq. (12)

	 = 	(|mAsB〉) − 1

2
	(|mA〉) − 1

2
	(|sB〉)

= g2

2

∫ t

0
dt1

∫ t

0
dt2

× 〈
�̂[mA,nA]

xA
(t1)�̂[rB ,sB ]

xB
(t2)ei(νmA−νnA)t1ei(νrB−νsB )t2

+ �̂[sB ,rB ]
xB

(t1)�̂[nA,mA]
xA

(t2)ei(νsB−νrB )t1ei(νnA−νmA)t2
〉
. (B4)

If the two probes are identical, and choosing νmA − νnA =
νsB − νrB = ν in order to simplify the function 	, we have

	 = g2

2

∫ t

0
dt1

∫ t

0
dt2

〈
�̂[mA,nA]

xA
(t1)�̂[rB ,sB ]

xB
(t2)

+ �̂[sB ,rB ]
xB

(t1)�̂[nA,mA]
xA

(t2)
〉
eν(t1−t2). (B5)

Density-density correlation function

In this section, we explicitly derive the expression of 	

for the case in which the probes and the many-body system
interact via a density-density interaction, as that introduced in
the discussion of the probing of the superfluid,

g
∑
n̄,m̄

∫
dx ψ∗

m̄(x)ψn̄(x)|m̄〉〈n̄| ⊗ �̂†(x)�̂(x). (B6)

Assuming a probe to be localized in the site j , the auxiliary
operator is defined as

�̂[m,n]
xj

=
∫

dx ψ∗
m̄(x − xj )ψn̄(x − xj )�̂†(x)�̂(x). (B7)

Expanding the many-body field operator in terms of Wannier
functions,

�̂[m,n]
xj

=
∫

dx ψ∗
m̄(x − xj )ψn̄(x − xj )W ∗

i (x)Wl(x)ĉ†i ĉl ,

(B8)

we can take advantage of the localization of the probe, ensuring
that the only relevant overlapping integral is that involving
the Wannier functions of the site under the probe. Therefore,
we get

�̂[m,n]
xj

� γn̄m̄ĉ
†
j ĉj = γn̄m̄n̂j , (B9)

with γn̄m̄ = ∫
dx ψ∗

m̄(x − xj )ψn̄(x − xj )|Wj (x)|2, and with n̂j

being the density operator for site j . By inserting this result
into the general form of Eq. (B5), we obtain Eq. (26)

	 = ḡ2

2

∫ t

0
dt1

∫ t

0
dt2〈n̂l(t1)n̂j (t2) + n̂j (t1)n̂l(t2)〉eiν(t1−t2),

(B10)
where ḡ = gγn̄m̄.
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