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In this paper, we study how, with the aid of impurity engineering, two-dimensional p-wave superconductors
can be employed as a platform for one-dimensional topological phases. We discover that, while chiral and
helical parent states themselves are topologically nontrivial, a chain of scalar impurities on both systems supports
multiple topological phases and Majorana end states. We develop an approach which allows us to extract the
topological invariants and subgap spectrum, even away from the center of the gap, for the representative cases of
spinless, chiral, and helical superconductors. We find that the magnitude of the topological gaps protecting the
nontrivial phases may be a significant fraction of the gap of the underlying superconductor.
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I. INTRODUCTION

The contemporary search for novel phases of matter is
beginning to employ a designer-matter approach. According
to the new paradigm, the restrictions of available materials in
nature no longer pose fundamental obstacles in realizing new
quantum phases of matter and emergent particles. By fabricat-
ing structures combining different materials and geometries
it is possible to access systems that are limited only by our
imagination and ability to manipulate materials. The efforts
to realize topological superconductors is a prime example of
engineering of novel quantum phases of matter [1–4].

Recent efforts in designing topological superconductors
have identified arrays of magnetic atoms on s-wave supercon-
ducting surfaces as a promising platform for one-dimensional
(1D) and two-dimensional (2D) topological superconductivity.
This mechanism is based on the fact that isolated magnetic
atoms induce Yu-Shiba-Rusinov states in the superconducting
gap [5–9]. A chain of magnetic moments form subgap
bands that may undergo topological phase transitions [10–20].
The necessary ingredients for nontrivial topology are an
appropriate magnetic texture of the chain and, in the case
of ferromagnetic chains, a spin-orbit coupling on the surface.

The need for magnetic structures arises from the well-
known robustness of conventional s-wave superconductors
to nonmagnetic impurities. While examples of conventional
superconductors are ample, the need for robust magnetic
textures might prove to be an obstacle. This can be circum-
vented by employing an unconventional superconductor where
scalar impurities induce subgap states. This has motivated
the recent interest in topological state engineering in p-wave
superconductors by potential impurities [21–24].

While various 2D p-wave superconductors are intrinsically
topologically nontrivial [25,26], a suitable patterning with
scalar impurities may lead to a zoo of nontrivial descendants
[21,23]. Also, as discussed below, 1D topological subsystems
and networks could offer better access to exotic Majorana
physics than the parent 2D topological phase, not least due
to the possibility for higher energy gaps. In this work,
we study p-wave superconductors decorated with pointlike
potential impurities arranged in a linear chain. We consider
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spinless and spinful chiral p-wave superconductors as well
as helical time-reversal invariant p-wave systems. We derive
a theoretical framework which allows us to calculate not
only the topological phase diagram but also the spectrum
of the full model for all subgap energies, in contrast to
Ref. [22]. Using this framework, we can reliably estimate
the topological energy gaps protecting the different phases.
We solve the topological phase diagram for a spinless p-wave
model and discover three nontrivial 1D phases distinguished
by the number of Majorana bound states (MBS) in finite
chains. While the topological phases for the spinless model
are the same that were previously found in Ref. [22], the phase
diagram has important qualitative differences. For spinful
models, we predict a novel topological phase diagram with five
different phases. The main result of the paper is the energy gap
diagram showing that the topological gap separating the MBS
from other states may be a significant fraction of the gap of the
underlying superconductor. This is crucial for the observability
of the topological phases. This feature is also in stark contrast
to the well-known MBS at the vortex cores of chiral p-wave
superconductors which are separated from the other states by
a minigap which is tiny in typical circumstances where the
pairing gap is small compared to the Fermi energy [27].

In Sec. II we formulate the problem of an impurity chain
on a spinless chiral p-wave superconductor and develop
the mathematical tools to solve the spectrum for all subgap
energies. In Sec. III we calculate the topological phase
diagrams and identify three different phases distinguished by
the number of MBS. The results for spinless fermions can be
readily generalized to chiral and helical superconductors with
spin, as explained in Sec. IV. Our findings are discussed and
summarized in Sec. V.

II. MODEL AND THE SPECTRAL PROBLEM

In this section, we study a problem of potential impurities
on a spinless chiral p-wave superconductor. In Sec. IV, we
generalize our conclusions to the system including spin and
make use of the results obtained here.

A. Subgap spectrum of spinless p-wave model

The studied system, depicted in Fig. 1, consists of electrons
on a 2D superconductor with N scalar impurities. This system
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FIG. 1. One-dimensional wire formed by a chain of potential
impurities fabricated on top of a p-wave superconductor. The
topological nature of the wire is reflected in the Majorana end states.

is described by the Bogoliubov-de Gennes (BdG) Hamiltonian

H = ξkτz + �(kxτx − kyτy) + U
∑

i

τzδ(r − ri), (1)

where ξk = k2/(2m) − k2
F /(2m) is the kinetic energy of the

electrons with effective mass m and Fermi wave number kF ,
and the terms proportional to � represent the chiral p-pairing
of electrons into Cooper pairs in the angular momentum
channel Lz = 1. The matrices τx,τy , and τz correspond to Pauli
matrices in particle-hole space throughout this paper. The last
term arises from the potential impurities with strength U which
could be attractive or repulsive. The Hamiltonian is expressed
in the Nambu basis �(r) = (ψ(r),ψ†(r))T . The spectrum of
the system can be solved from the BdG equation H� = E�,
which becomes

[E−ξkτz−�(kxτx − kyτy)]�(r) = U
∑

j

τzδ(r−rj )�(rj ),

(2)

where we have isolated all impurity terms to one side. Now we
pass to momentum space using �(r) = ∫

[dk/(2π )2]eik·r�k
and obtain

[E − ξkτz − �(kxτx − kyτy)]�k = U
∑

j

e−ik·rj τz�(rj ).

(3)

Multiplying by [E − ξkτz − �(kxτx − kyτy)]−1 from the left
and defining

JE(r) = U

∫
dk

(2π )2
[E − ξkτz − �(kxτx − kyτy)]−1eik·r

(4)
we can go back to real space and evaluate the equation at ri to
obtain

[1 − JE(0)τz]�(ri) =
∑
j �=i

JE(rij )τz�(rj ), (5)

where rij = ri − rj and where we have separated the term
j = i from the sum. Thus we have re-formulated the original
BdG eigenvalue problem as an eigenvalue problem for N

coupled 2 × 1 spinors. We will restrict the chain of impurities
to the x direction by simply setting y = 0 in the obtained
expressions. As seen in Appendix A, upon defining γ =
1 + �2

v2
F

, β = �2k2
F − γE2, and �̃ = �2 kF

vF γ
, the expressions

reduce to

JE(x = 0) ≈ α√
β

[�̃τz − E] (6)

JE(x �=0) ≈ α

[−E√
β

Re (�0)+
(

�̃√
β

Re (�0)− 1

γ
Im (�0)

)
τz

− i� sgn(x)

γ

(
1

vF

[
2

π
−Re (�1)

]

+ kF√
β

Im (�1)

)
τx

]
, (7)

where α = πν0U characterizes the strength of the potential
and �n = In(x�) − Ln(x�), with � = 1

γ
(
√

β

vF
+ ikF ). Here

In(x) and Ln(x) are the modified Bessel and Struve functions
of the first kind, and vF is the Fermi velocity.

Taken together, Eqs. (5)–(7) define a nonlinear system of
equations for the energy and wave functions, similarly to
what is typically obtained for Yu-Shiba-Rusinov systems. In
previous works on that type of system, this has usually been
circumvented by approximating to dilute chains and linear
order in energy [12,18,23]. In order to obtain an accurate
value for the energy gaps, important to experimental imple-
mentations, different methods are required. An exception to the
general trend of approximating can be seen in Refs. [28–31],
where similar problems have been solved outside the dilute
low-energy limit through various methods. In this paper, we
will use an approach comparable to that in Ref. [30] to obtain
a more general description of the system considered. After
inserting Eqs. (6) and (7) into Eq. (5) and writing it in a matrix
form, we obtain

1√
β

(
(ε− 1)A B

B (ε+ 1)A

)
� =

(
C − α−1 D

D α−1 − C

)
�,

(8)

where ε = E/�̃, �T = [�(x1)T . . . �(xN )T ] is a 2N × 1
spinor, and the N × N Hermitian submatrices A,B,C,D are
given in Appendix A. The 2N × 2N matrix structure appears
due to the N impurity sites each supporting two-component
BdG spinors. This is a long-range tight-binding problem
expressed as a nonlinear eigenvalue problem, where the hop-
ping elements between different impurity sites decay asymp-
totically as exp(−r/ξE)/

√
kF r for coherence length ξE =

γ vF /
√

β. We note that for low energies ξE ≈ γ vF /(|�|kF ) ≡
γ ξ . The full solution to the matrix eigenvalue problem (8)
consists of 2N energy states with corresponding eigenspinors.

B. Solution to the nonlinear eigenvalue problem

In this section, we will solve the eigenvalue problem given
by Eq. (8). By considering a periodic lattice of impurities, we
can make use of reciprocal space and make analytical progress.
To this end, we define Fourier transforms of the submatrices,
given by

ak =
∑

j

Aij e
ika(i−j ), (9)

with analogous expressions for bk,ck, and dk .
The earlier separation of energy dependence into fac-

tors outside the submatrices makes the transformation into

184512-2



ENGINEERING ONE-DIMENSIONAL TOPOLOGICAL . . . PHYSICAL REVIEW B 95, 184512 (2017)

reciprocal space straightforward; the resultant equation is
practically identical to Eq. (8):

1√
β

(
(ε−1)ak bk

bk (ε+1)ak

)
ψk =

(
ck−α−1 dk

dk α−1−ck

)
ψk

(10)

with the submatrices replaced by their Fourier transforms as
defined above. It is, however, now possible to re-express the
eigenvalue equation in a more tractable form. By moving
the right-hand-side matrix to the left-hand side, we obtain
an equation of the form G−1ψk = 0, with

G−1 =
(

(ε−1)ak−
√

β
(
ck− 1

α

)
bk−

√
βdk

bk−
√

βdk (ε+1)ak+
√

β
(
ck− 1

α

)).

(11)

As detailed in Appendix B, the energy bands can be solved
from the condition detG−1 = 0. This provides a closed form
equation for the energy bands Ek in the form

P2,kβ(Ek) + P1,k

√
β(Ek) + P0,k = 0, (12)

where the coefficients Pi are given in the Appendix. In addition
to the explicit Ek terms in Eq. (12), there is an additional
energy dependence through Pi hidden in the notation, which
ultimately originates from �n(x�) in Eq. (7). Fortunately, this
energy dependence turns out to be negligible for the energy
bands, which can be solved by treating Eq. (12) as a polynomial
for Ek with Pi → Pi(E = 0). The process can be iterated using
the resultant energies but converges so fast that any corrections
are essentially negligible, as discussed in Ref. [30]. This allows
an accurate evaluation of the energy gaps of the system, giving
a method of estimating the robustness of topological phases,
which cannot readily be obtained in the typical low-energy
formulation. As expected from particle-hole symmetry, the
two solutions for each k come in pairs ±Ek which in Eq. (12)
follows from the fact that β is a function of the square of Ek .

In Fig. 2 we have plotted the minimum of the positive energy
solution mink Ek as a function of the dimensionless impurity
strength α = πν0U and kF a, where a is the lattice constant of
the impurity lattice. This shows that the 1D system is generally
gapped and that there exist distinct regions separated by gap
closing transitions. One peculiar feature of the spectrum is
that in the limit α−1 → 0±, marking an infinite repulsion or
attraction depending on the sign, the spectrum is continuous.
This counterintuitive feature follows from the properties of
the single-impurity bound states which coincide for infinite
repulsion and attraction [32,33]. Another interesting feature
which can be seen in Fig. 2 is that the energy gap even
in the nontrivial phases can reach a sizable portion of the
superconducting energy gap, up to about 0.5�kF . This is
generic to the system, being observable for a wide range
of parameters as long as the low-gap areas near topological
phase transitions are avoided. Notably, this places it well
outside the values for which low-energy approximations are
valid and, more importantly, is high enough to be appreciable
even with allowances for the generally low predicted p-wave
superconducting gaps.

FIG. 2. (a) Lowest positive energy eigenvalue as a function of
kF a and α−1. The values used for the coherence length is ξ = 20a,
with �/vF = 1/(kF ξ ). For this plot, we have set vF = 100. (b) Same
as in (a) except for a narrower range of kF a values. (c) Same as in (a)
and (b) but for a different parameter range; here ξ = 20a, vF = 15.

III. TOPOLOGICAL PROPERTIES

When studying the topological properties of a system, it is
convenient to use the Hamiltonian for the system. Since we
have formulated the problem in terms of a nonlinear eigenvalue
problem, it is not obvious what our Hamiltonian should
be. However, following Refs. [30,31], the topological phase
diagram of an impurity chain can be extracted by identifying
an effective Hamiltonian possessing the same topological
properties as our system. This Hamiltonian can be obtained
from Eq. (11) by defining H̃k ≡ G−1(0). This immediately
gives

H̃k =
[
ãk + |�|kF

(
c̃k − 1

α

)]
τz + [|�|kF d̃k − b̃k]τx. (13)

Here we have defined ãk = limE→0 ak for all ak, . . . ,dk . The
effective Hamiltonian in Eq. (13) has a few key properties that
make it useful for our purposes. Due to the above construction,
the gap closings of the effective Hamiltonian coincide exactly
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with those of the parent model and can easily be calculated
from Eq. (13). Additionally, in the limit of an infinite system,
any zero-energy edge modes in the original system will be
reproduced exactly in the effective model. The two systems
are thus topologically equivalent. So while H̃k does not yield
the correct energy spectrum or states of the system, it is still
useful in studying all its relevant topological features.

A. Winding number and Z2 phases

To extract the topological phase diagram of the 1D chain,
we need to identify the relevant symmetries of the model. Since
we are studying a superconductor, the particle-hole symmetry
that is built in the BdG formalism is naturally present. This
symmetry puts the system in the Altland-Zirnbauer class D
which supports a Z2 classification [34,35], distinguishing
phases with different fermion parity [36]. However, a reduction
of the original 2D model (1) into an effectively 1D model gives
rise to additional chiral symmetry [12,17,28]. Chiral symmetry
manifests as the anticommutation property {H̃ ,C} = 0 with
the chiral symmetry operator C = τy . With the additional
symmetry, the 1D model belongs to the BDI class, supporting
a Z-valued winding number invariant [34,35]. We adopt the
BDI classification below but also plot the Z2 phase boundaries
which serve as an additional consistency check for the results.

The topological winding number of a 1D system [25] can
be obtained through the formula

ν = i

4π

∫ π/a

−π/a

dktr[CH−1∂kH ]. (14)

As discussed earlier in this work, we can obtain the correct
result by simply inserting the effective Hamiltonian H̃ in the
above equation. In Fig. 3 we have plotted the winding number
(14) as a function of the relevant system parameters. We
find values ν = 0,1,2 describing three topologically distinct
phases. In accordance with general principles, the topological
phase transitions can occur only when the energy gap of the
systems closes. Below, we will verify that the winding number
is directly related to the number of the Majorana end states in
finite wires.

The Z2 invariant, measuring the fermion parity, can change
its value only when the energy gap closes at the points k = 0
and k = π/a. The Z2 phase boundaries can be calculated from
the gap-closing condition of the effective Hamiltonian (13).
Thus, keeping other parameters constant, the gap closings can
be parametrized as a curve (kF a,α). Due to the antisymmetric
nature of the submatrices B,D, the Fourier transformed
coefficients b̃k,d̃k vanish identically at k = 0,π/a, and the
phase boundary condition becomes

α−1 =
(

ãk

|�|kF

+ c̃k

)
y

∣∣∣∣
k=0,π/a

(15)

which is plotted in Fig. 3 together with the Z-valued invariant.
The graphs provide an independent way of establishing the
phase boundaries between phases of different parity.

We note that our topological phase diagram in Fig. 3 for
the spinless p-wave model differs qualitatively from the one
presented in Fig. 3 of Ref. [22]. While the phase diagram in
Ref. [22] is restricted to values of attractive scalar potential
(corresponding to our α < 0 regime), the most pronounced

FIG. 3. (a)–(c) Winding number as a function of kF a and α−1

over the same parameter ranges as in Fig. 2. The red curve
corresponds to the analytical solution in k space for boundaries
between different parity phases, calculated using Eq. (15). The
apparent discrepancy between the boundary solution and the winding
numbers appears when the gap is extremely low and the numerical
winding number becomes unreliable; physically, the topological
phase in that parameter regime is in any case meaningless as the
vanishing gap essentially prevents any separation between phases.

difference is probably the fact that the result of Ref. [22]
suggests that the system is not topological in the large
potential limit |U | → ∞. This feature is difficult to reconcile
with the fact that in this regime the single-impurity bound
state [32] penetrates deep into the superconducting gap, with
nearly vanishing energy for the considered weak-coupling
superconductors with � � vF . The deep-impurity regime is
typically the most fruitful corner of the parameter space for
formation of nontrivial phases since only a weak hopping
is required to push the chain from the atomic limit into a
topological phase. This is in agreement with our findings
in Fig. 3(a), which illustrate how the nontrivial regime will
concentrate around the |U | → ∞ neighborhood when the
hopping (kF a) decreases (increases). In our work, and in the
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FIG. 4. (a) Dependence of the bulk and MBS energy in the
ν = 1 phase on the length N of the impurity chain in blue and
red, respectively. (b) Same as in (a), except for the ν = 2 phase.
(c) Localization of the MBS wave function in the ν = 1 phase, with
chain length N = 500. (d) Same as in (c), except for the ν = 2 phase,
and with chain length N = 800. Parameters used in the calculations
above are ξ = 20a, kF a = 8.5π ; (a) and (c) have α−1 = 0.2, while
(b) and (d) have α−1 = −0.2. In all cases, �/vF = 1/(kF ξ ).

previous works treating magnetic impurities (see for example
Ref. [12]), it is precisely the deep-impurity region which
supports nontrivial phases most effectively when hopping is
gradually weakened. In light of these physical arguments, it
seems plausible that the topological phase persists to large
impurity potentials in accordance with our results.

B. Majorana bound states

The observable difference between the distinct topological
phases becomes apparent in finite systems. The physical
significance of the value |ν| is the number of zero-energy
Majorana bound states localized at each end of the impurity
chain. The ν = 0 phase corresponds to the topologically trivial
phase with even-parity ground state and supports no end
states. In Figs. 4(a) and 4(b), we have plotted the lowest few
positive-energy eigenvalues of a finite system as a function of
chain length in the ν = 1 and ν = 2, respectively. As can be
seen in the figure, as the chain length increases, the expected
number of low-energy states separate from the bulk gap and go
to lower energies. We interpret these as MBS at the edges of
the chain. In Figs. 4(c) and 4(d) we have plotted the amplitude
of the corresponding MBS eigenstates at chain lengths 500 and
800, respectively. As seen in the figure, the states are localized
at the edges of the chain. We have omitted the second MBS in
(d), as it looks similar to the one already displayed.

As Fig. 4 implies, the Majorana wave functions are not
exponentially localized to the chain ends. While topological
end states are exponentially localized in models with a finite
hopping range, this property is absent for general long-range
hopping models. For distances shorter than the coherence
length of the bulk superconductor, the wave function of a
pointlike impurity state decays as 1/r1/2 on 2D substrates
appropriate here (or 1/r on 3D substrates) which give rise to

long-range hopping in the studied model. As in the magnetic
case [12,30], this gives rise to nonexponential decay of the
Majorana end states.

IV. INCLUDING SPIN

So far we have considered impurities on a spinless chiral p-
wave superconductor. In this section, we generalize the results
for representative models with spin. One way to parametrize
the different 2D p-wave models with spin is to write the BdG
Hamiltonian of the underlying SC in the Nambu basis � =
(ψ↑,ψ↓,ψ

†
↓,−ψ

†
↑)T as

H =
(

ξk �d · σ

�(d · σ )† −ξk

)
. (16)

Here the d vector determines the spin structure of the Cooper
pairs, and σ is a vector of Pauli matrices in spin space. In
this work, we will concentrate on two cases for the d vector,
which contains the information about the superconducting
triplet pairing.

A. Chiral superconductor

The out-of-plane pairing with d = (0,0,kx + iky) is proba-
bly the experimentally most relevant case at the moment, since
it is the main candidate to describe pairing in Sr2RuO4. The
resulting Hamiltonian

Ha = ξkτz + �σz(kxτx − kyτy) + U
∑

i

τzδ(r − ri) (17)

corresponds to the pairing of antiparallel spins in the Lz = 1
channel, leading to a ground state with spontaneous broken
time-reversal symmetry. In this form we see that the matrix
structure is that of two spinless Hamiltonian blocks with
different signs of �.

Since the Hamiltonian Ha is diagonal in spin space, the
results for the spinless system have straightforward general-
izations. Indeed, the calculations for the spinful case proceed
largely identically, yielding an effective Hamiltonian

H̃a,k =
[
ãk + c̃k − 1

α

]
τzσz +

[
d̃k − 1

|�|kF

b̃k

]
τx, (18)

which can easily be seen by noting that the left term is
symmetric under the change � → −�, whereas the right
term is antisymmetric. Consequently we can define the chiral
symmetry operator as C = σzτy , and the winding number
Eq. (14) can immediately be seen as the sum of the two
blocks of spinless systems, resulting in a change ν → 2ν.
Hence, the topological phase diagram of an impurity chain on
chiral spinful system coincides with the spinless case with the
winding numbers doubled. With an additional interaction that
lifts the spin degeneracy without destroying chiral symmetry,
it is also possible to access the odd winding number phases
ν = 1,3. This could be accomplished by, for example, adding
an in-plane Zeeman field Bσx to Eq. (17). The unitary
transformation Ha → UHaU

†, with U = exp(i π
4 τzσy), only

acts nontrivially on the new magnetic field term and results in
a transformed Hamiltonian

Ha = (ξk + Bσz)τz + �σz(kxτx − kyτy) + U
∑

i

τzδ(r − ri).

(19)
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FIG. 5. The winding number for both the chiral and helical
superconductor with a Zeeman field of magnitude B. In the chiral
superconductor, it is parallel to the surface, while it is normal to the
surface in the helical superconductor. Here 2|B|m = 8 · 103/ξ 2 with
all other parameters being the same as in Fig. 3.

Hence in each block, the chemical potential is shifted by an
amount ±B, or, equivalently, there is a shift kF →

√
k2
F ± 2mB.

While the invariants of the two blocks are still to be simply
added together, their topological diagrams are now shifted
in parameter space with respect to each other, resulting in
the appearance of new, odd − ν phases. This behavior can be
seen in Fig. 5. We note that the choice of x direction on the
magnetic field here was arbitrary, and it can equally be in any
in-plane direction; an in-plane magnetic field with angle ϕ to
the x axis can be rotated back to the axis by application of
the unitary transformation exp(i ϕ

2 σz), which again commutes
with the remainder of the Hamiltonian.

B. Helical superconductor

Another important p-wave parent state for the impurity
chain is realized in the case of an in-plane d vector of the form
d = (kx,ky,0). The Hamiltonian for this model is

Hp = ξkτz + �τx(kxσx + kyσy) + U
∑

i

τzδ(r − ri) (20)

and describes a time-reversal invariant system THp(k)T −1 =
H∗

p(−k), where the time-reversal operator is T = iσyK with
K acting as a complex conjugation. The spin up and spin down
electrons condense in the opposite angular momentum chan-
nels Lz = ±1. This Hamiltonian describes a Z2 topological
superconductor with helical edge states [26].

With a change of the basis (ψ↑,ψ↓,ψ
†
↓,−ψ

†
↑)T →

(ψ↑,ψ
†
↑,ψ↓,ψ

†
↓)T , the in-plane Hamiltonian takes the form

Hp = ξkτz − �σz(kxτx + kyσzτy) + U
∑

i

τzδ(r − ri).

(21)

Thus, in the new basis Hp differs from the chiral case (17)
only by the sign of � and the σz matrix multiplying the ky

term. The sign of � is mostly immaterial, so the relevant
difference arises from the ky term in Eq. (21). However, in
deriving the effective 1D model, the difference arising from
the ky term vanishes when the impurity chain is formed in
the x direction. Therefore, the effective 1D model is the same
as for the chiral case with the replacement � → −�. For
the same reasons as discussed above, the energy gap and the

topological phase diagram for the impurity chain on a helical
superconductor coincides with the spinless case, with the
winding number doubled ν → 2ν. Thus, the wire supports
three topologically distinct phases. Analogously to the chiral
case, odd-ν phases can be accessed by applying a magnetic
field to the system. However, for the helical superconductor,
this added field must be out-of-plane to preserve the requisite
symmetries. Under the change of basis detailed above, the
magnetic field term Bσz takes the form Bτzσz automatically,
and hence no additional unitary transformations are necessary.
The main difference to the chiral case is then the requirement
that the magnetic field be locked to the z axis rather than
being allowed to rotate in a plane.

V. DISCUSSION AND SUMMARY

In this paper we have studied the topological and spectral
properties of 1D chains formed by scalar impurities deposited
on 2D p-wave superconductors. The main contribution of the
paper is the formulation of the theoretical framework which
allows the solution of the spectrum and the topological phase
diagram of the 1D system. Our approach enables a calculation
of the topological energy gaps even when they are significant
compared to the substrate pairing gap. In finite systems,
the topological gap separates the Majorana end states from
the bulk states and is directly relevant to their experimental
observation. We found that the topological gap may be a
significant fraction of the pairing gap of the substrate. This
makes the direct observation of the midgap Majorana states
in 1D systems significantly more favorable compared to the
2D vortex core Majorana states that are separated from the
other quasiparticle states by a minigap (�kF )2/EF (where
EF = 1

2m
k2
F is the Fermi energy), which is very small in a

weak-coupling superconductor.
We found that 1D impurity wires on chiral and helical 2D

p-wave superconductors may display at least three different
topological phases. The fabrication of these 1D chains and
the observation of the topological end states could be carried
out by scanning tunneling microscopy methods that have been
used in studying magnetic chains [19]. Since the topological
phase depends on the lattice constant of the impurity chain,
the different phases could be accessed by fabricating chains
with different lattice constants. An abrupt change of the lattice
constant in the middle of a chain could realize a topological
phase boundary with localized domain-wall states.

The effective low-energy theory of a scalar impurity chain
is quite analogous to that of a magnetic chain, so the role of
disorder is expected to display similar features. In this picture,
missing impurity sites give rise to vacancy states below the
topological band edge and dilute vacancy states eventually
drive the system gapless [31]. However, a dilute concentration
of defects do not destroy the topological phases.

The most promising candidate for a chiral p-wave su-
perconductor at the moment is Sr2RuO4 which could be
employed as a substrate. One way to circumvent the need
for an intrinsic p-wave superconductor is to consider the
possibility of artificially engineered systems that display an
effective chiral p-wave nature. One example is a sandwich
structure [37] combining a ferromagnetic insulator and a two-
dimensional electron gas with proximity superconductivity
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which at energies small compared to the Zeeman-induced
gap can be described as chiral p-wave system. Artificial
topological matter is a rapidly developing field, and it is
likely that new effective p-wave candidates will be found in
the future. Although we considered particular models of p-
wave superconductors, it is plausible that qualitatively similar
physics takes place in different variants of p-wave dominated
systems. One can also regard the study of topology of a 1D
chain as a diagnostic tool to study the nature of the substrate.
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APPENDIX A: SPECTRUM AS A NONLINEAR
EIGENVALUE PROBLEM

Here we present how to bring the Bogoliubov-de Gennes
equation (5) into the form of a nonlinear 2N × 2N matrix
eigenvalue equation. The equation at hand is

[1 − JE(0)τz]�(ri) =
∑
j �=i

JE(rij )τz�(rj ), (A1)

where

JE(r) = U

∫
dk

(2π )2
[E − ξkτz − �(kxτx − kyτy)]−1eik·r.

(A2)
Inverting the matrix in the integrand, we can write the functions
JE in the form

JE(r) = U

∫
dk

(2π )2

E + ξkτz + �(kxτx − kyτy)

E2 − ξ 2
k − �2k2

eik·r. (A3)

The integral diverges at r = 0, ultimately because of the
limitations of the BCS model as a low-energy theory. We
will introduce an artificial cutoff by assuming k is close to the
Fermi level so that k ≈ kF + ξ/vF , as is standard in the field.
This will be done in the integrals throughout this section.

For r = 0, the terms including kx and ky vanish under
angular integration, and the remaining terms are independent
of the angle, so we obtain, after linearization,

JE(0) = Uν0

∫ ∞

−∞
dξk

E + ξkτz

E2 − ξ 2
k − �2(ξk/vF + kF )2

. (A4)

This form lends itself to use of the residue formula, yielding

JE(0) = α√
β

[�̃τz − E], (A5)

where α = πν0U , β = �2k2
F − γE2 and �̃ = �2 kF

vF γ
with

γ = 1 + �2

v2
F

.
For nonzero r, the angular integral gives two Bessel

functions of the first kind:∫
dk

E + ξkτz + �(kxτx − kyτy)

E2 − ξ 2
k − �2k2

eik·r

= 2π

∫ ∞

0
dkk

(E + ξkτz)J0(kr) + ik �
r

(xτx −yτy)J1(kr)

E2−ξ 2
k −�2k2

.

(A6)

After linearization, use of a suitable representation for the
Bessel functions brings the remaining integrals into a form that
can readily be solved through residue integration, leading to

JE(x �=0) = α

[−E√
β

Re (�0) +
(

�̃√
β

− 1

γ
Im (�0)

)
τz

− i� sgn(x)

γ

(
1

vF

[
2

π
− Re (�1)

]

+ kF√
β

Im (�1)

)
τx

]
, (A7)

where we have set y to zero due to the one-dimensional
structure of the system, as in the main text. We have
here defined the function �n ≡ In(x�) − Ln(x�), where
� = 1

γ
(
√

β

vF
+ ikF ), and In(x) and Ln(x) are the modified

Bessel and Struve functions of the first kind, respectively.
After inserting the obtained expressions into the BdG

equation (5), we collect terms with the same prefactors and
define the submatrices

Aij = �̃
[
δij + (1 − δij ) Re �0

ij

]
(A8)

Bij = i(δij − 1)γ −1�kF

(
Im �1

ij

)x

r
(A9)

Cij = (δij − 1)γ −1 Im �0
ij (A10)

Dij = i(1 − δij )
�̃

�kF

(
2
π

− Re �1
ij

)x

r
(A11)

which are clearly Hermitian. Here we use the shorthand x ≡
xij ≡ xi − xj and r ≡ |xij |, and �n

ij ≡ �n(xij ) for the special
functions. We can thus bring the nonlinear eigenvalue equation
into the form (8).

APPENDIX B: SOLUTION TO THE SUBGAP SPECTRUM

In this Appendix, we derive an equation for the eigenvalues
of Eq. (10). We start out with G−1(Ek)ψk = 0, where

G−1 =
(

(ε−1)ak − √
β
(
ck− 1

α

)
bk − √

βdk

bk − √
βdk (ε+1)ak +√

β
(
ck− 1

α

)
)

.

(B1)

As noted in the main text, the energy dependence in the Fourier
transformed matrix elements has a negligible impact on the
solution of the nonlinear eigenvalue problem. Hence we can
set the energy in them to zero, which in the main text is denoted
by ak → ãk , but here we will forego that notation with no risk
of confusion. By calculating the determinant, we observe that
all remaining energy dependence outside of β is a single term
proportional to ε2. Since we can write this in terms of β =
�2k2

F − γ �̃2ε2, finding the zeros for the determinant reduces
to solving a quadratic equation in

√
β

P2β + P1

√
β + P0 = 0, (B2)
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where the coefficients Pi are given by the expressions

P2 = a2

γ �̃2
+ c′2 + d2

P1 = 2(ac′ − bd)

P0 = a2

(
1 − γ

v2
F

�2

)
+ b2.

The quadratic equation has two solutions, but it turns out that
for all relevant parameters, one of the solutions is negative,
which is not sensible for

√
β. The energy is then given by the

positive solution for
√

β through the relation

|Ek| =
√(

�2k2
F − βk

)
γ −1. (B3)
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