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Memory effects play a fundamental role in the study of the dynamics of open quantum systems. There exist two
conceptually distinct notions of memory discussed for quantum channels in the literature. In quantum information
theory quantum channels with memory are characterized by the existence of correlations between successive
applications of the channel on a sequence of quantum systems. In open quantum systems theory memory
effects arise dynamically during the time evolution of quantum systems and define non-Markovian dynamics.
Here we relate and combine these two different concepts of memory. In particular, we study the interplay
between correlations between multiple uses of quantum channels and non-Markovianity as nondivisibility of the
t-parametrized family of channels defining the dynamical map.
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I. INTRODUCTION

The theory of open quantum systems provides the necessary
means to describe and analyze the interaction of a principal
quantum system of interest with its surrounding environment
[1]. It is well known that the effects of this unavoidable
interaction are, in general, detrimental for critical quantum
traits present in the principal system, such as entanglement
in composite systems. The study of open quantum systems
has attracted considerable attention in recent years due to
the fact that the preservation of genuine quantum properties,
which serve as a resource for several different quantum
information and communication protocols [2,3], has become a
very important challenge. In order to suppress the undesirable
effects of environment-induced decoherence, various methods
have been put forward [4–7]. One such technique is through
the exploitation of memory effects dynamically arising in the
course of the time evolution of the system.

Memory effects emerge when an open quantum system
interacts with its environment in a non-Markovian fashion.
The characterization of non-Markovian quantum dynamics has
been and still is a very significant problem in the study of
open quantum systems [8,9]. Numerous distinct criteria have
been introduced to identify the non-Markovian memory effects
based on conceptually different approaches [10–17]. Indeed,
such memory effects have their roots in nontrivial temporal
correlations among the states of the open system at different
times throughout the dynamics. Besides, the emergence of
memory effects is also known to be closely related to the
dynamics of information exchange between the open system
and its environment since future states of the system might
depend on its past states when information flows back from
the environment to the open system [16–20].

*smanis@utu.fi

The concept of memory effects and non-Markovianity as
information back-flow, which is typical of open quantum
systems theory, does not, however, coincide with the concept
of quantum channels with memory generally used in quantum
information theory. The latter one, indeed, typically refers to
the way a quantum channel (i.e., a quantum operation that
is viewed as a channel to transfer information) acts on the
system when it is used consecutively [21–23]. In particular,
one indicates with memory or memoryless channels the
situation in which multiple uses of the channel are correlated
to or independent of each other, respectively. In effect, the
memory in this case is induced by the correlated action
of noise channels on the system of interest consisting of a
set of individual quantum systems, rather than the temporal
correlations occurring throughout the time evolution of a single
quantum system. To distinguish between these two different
notions of memory, we shall use the term correlated channels
to describe the quantum channels with memory. On the other
hand, the type of memory occurring due to the temporal
correlations in the dynamics will be called non-Markovian
memory effects.

Although both the non-Markovian memory effects and
the memory due to the correlated application of quantum
channels have been explored in the literature on their own
as separate subjects, they have not yet been studied in relation
to each other. In fact, our work aims to establish this link
by investigating the effect of classical correlations between
multiple uses of quantum channels on the non-Markovian
memory effects occurring as a result of the nondivisible nature
of the dynamics. Specifically, considering a well-established
model for describing channels with memory [21], we examine
how correlated application of quantum channels modifies
the non-Markovian memory effects, quantified via different
measures of non-Markovianity, in a dephasing scenario.

This paper is organized as follows. In Sec. II, we introduce
the type of open quantum system models that we intend to
use in our study. In Sec. III, we discuss the identification
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and quantification of non-Markovian memory effects for the
considered model. In Sec. IV, we present the results of our
investigation related to the effect of correlated channels on the
nature of non-Markovian dynamics. Section V includes the
summary of our results.

II. CORRELATED QUANTUM CHANNELS

Let us first introduce the type of classically correlated
quantum channels that we consider in our work. A single-qubit
Pauli channel, which is a random implementation of the Pauli
transformations, is given by

ρ → E(ρ) =
3∑

i=0

qiσiρσi, (1)

where qi constitute a probability distribution, i.e.,
∑3

i=0 qi =
1, σ0 denotes the 2 × 2 identity matrix, and σi are the Pauli
operators in the x,y,z directions. In the course of this work,
we focus our attention on two uses of quantum channels for
the sake of simplicity. Provided that the noise is assumed to
be uncorrelated for two uses of the channel, the effect of such
a channel can be described by independent applications of the
considered map on the two-qubit state, that is,

ρ → E(ρ) =
3∑

i,j=0

qiqj (σi ⊗ σj )ρ(σi ⊗ σj ), (2)

where qi(j ) are independent probability distributions.
However, it is possible to have some classical correlations

in the repeated application of the channel which might modify
the way the Pauli transformations act on the state, in which
case we have

ρ → E(ρ) =
3∑

i,j=0

pij (σi ⊗ σj )ρ(σi ⊗ σj ), (3)

where pij is not restricted to be factorized as pij = qiqj .
A well-studied model taking into account the memory in
the channel (in the form of classical correlations between
multiple applications of the channel) has been proposed by
Macchiavello and Palma [21], and its relevance has been
discussed in the context of quantum information theory [22]. In
this model, the joint probability distribution takes the following
form:

pij = (1 − μ)qiqj + μqiδij . (4)

It is straightforward to observe that the above distribution
implies the existence of an additional effect coming from the
degree of classical correlation μ, which with some probability
forces the same Pauli transformation operator to be repeated
in the second use of the channel. When μ = 0, there are no
correlations between the two uses of the channel. On the
contrary, the channel is fully correlated for μ = 1, and in
this case it is guaranteed that the same Pauli transformation
is applied on both qubits since the probability distribution is
given by pij = qiδij .

In order to establish a link between the memory stemming
from the correlated application of quantum channels and
the non-Markovian memory effects due to the nondivisible

dynamics, the coefficients pij should explicitly depend on
time. To this aim, we introduce a colored pure dephasing model
describing the time evolution of a single qubit [24], which
admits a solution falling under the class of Pauli channels
described by Eq. (1). This model allows us to explore the
effect of the classical correlations, controlled by the parameter
μ, on the non-Markovian memory effects in the dynamics.

Let us assume that the dynamics of a qubit is described by
a time-dependent Hamiltonian H (t) = ��(t)σz, where �(t) is
an independent random variable with the statistics of a random
telegraph signal. It can be written as �(t) = αn(t), where n(t)
has a Poisson distribution with a mean equal to t/2τ and α

is a coin-flip random variable with the possible values ±α. If
α = 1, the dynamics can be described by the following Kraus
operators:

K1(ν) =
√

[1 + 	(ν)]/2I, (5)

K2(ν) =
√

[1 − 	(ν)]/2σ3, (6)

where we have 	(ν) = e−ν[cos(uν) + sin(uν)/u] and u =√
(4τ )2 − 1, with ν = t/2τ being the scaled time. Here the

parameter τ controls the degree of non-Markovianity of
the dephasing process that produces the dynamical memory
effects. Interested readers may refer to Ref. [24] for the
technical details of the derivation and the solution of the model
along with its physical relevance.

For the above-considered pure dephasing model, it is rather
easy to verify that the time-dependent coefficients qi in Eq. (1)
take the form

q0 = 1
2 [1 + 	(ν)], q1 = q2 = 0, q3 = 1

2 [1 − 	(ν)].

(7)

Hence, the correlated quantum channel in Eq. (3) now
describes the dynamical evolution of the open system, and
it can be expressed in terms of the Kraus representation,

E(ρ) = p03(σ0 ⊗ σ3)ρ(σ0 ⊗ σ3)

+p30(σ3 ⊗ σ0)ρ(σ3 ⊗ σ0)

+p00(σ0 ⊗ σ0)ρ(σ0 ⊗ σ0)

+p33(σ3 ⊗ σ3)ρ(σ3 ⊗ σ3). (8)

With this information at hand, we can study how the classical
correlations quantified via the parameter μ in the application
of quantum channels affect the dynamically arising non-
Markovian memory effects.

III. CHARACTERIZING NON-MARKOVIAN
MEMORY EFFECTS

In this section, we will elaborate on the quantification of
the non-Markovian memory effects in open quantum system
dynamics. Despite the fact that there are many different ways of
measuring the non-Markovian behavior of a quantum process
[8,9], here we will mainly focus on two of them, which are
relevant for our purposes.

We commence by considering the well-known trace-
distance measure [16] [also known as the Breuer-Laine-Piilo
(BLP) measure] that is constructed upon the trace distance
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between two arbitrary states ρ1(t) and ρ2(t) of the system,
given by

D(ρ1(t),ρ2(t)) = 1
2 Tr|ρ1(t) − ρ2(t)|, (9)

where |A| =
√

A†A. The trace-distance measure has a phys-
ical interpretation in terms of the distinguishability of two
quantum states, variation of which during the evolution can be
interpreted as an information exchange between the principal
system and its environment. Especially, a monotonic loss
of distinguishability between ρ1(t) and ρ2(t) throughout the
dynamics, i.e., dD(t)/dt < 0, indicates that information flows
from the system to the environment at all times. On the other
hand, dD(t)/dt > 0 implies that there exists a back-flow of
information from the environment back to the system, giving
rise to a non-Markovian process. Based on this criterion, the
BLP measure reads

ND(E) = max
ρ1(0),ρ2(0)

∫
[dD(t)/dt]>0

dD(t)

dt
dt, (10)

where the maximum is taken over all possible pairs of initial
states ρ1(0) and ρ2(0). Markovian maps satisfy the property
of divisibility, i.e., Et = Et,sEs , with Et,s being completely
positive and trace preserving (CPTP) and s � t . It is important
to note that, although the trace distance is contractive (mono-
tonically decreasing) under CPTP maps, so that the distin-
guishability between ρ1(t) and ρ2(t) monotonically decreases
for all divisible processes at all times, non-Markovianity based
on trace distance is not exactly equivalent to the nondivisibility.
Indeed, the BLP measure is only a witness for nondivisibility
of quantum processes.

In addition, there exists a different class of non-
Markovianity measures that exploit the fact that entanglement,
mutual information, or some other information theoretic
quantities are monotonically decreasing under local CPTP
maps. Different from the case of the BLP measure, here an
ancillary system is introduced with the same dimension as the
principal system. Then, assuming that the map Et acts only
on the subsystem B and the ancilla A evolves trivially, the
absence of dynamical memory effects immediately suggests
that

X[(I ⊗ Et )ρAB] � X[(I ⊗ Es)ρAB] (11)

at all times 0 � s � t for all bipartite states ρAB , where X

is any considered monotonic quantity. Clearly, any violation
of this inequality can be interpreted as a manifestation of
non-Markovianity since it signals that the intermediate map
Et,s is not a CPTP map, violating divisibility. In fact, it is
straightforward to define a measure of memory effects based
on this violation by summing up the total increase of the chosen
quantifier X throughout the dynamics as

N (E) = max
ρAB

∫
[dX(t)/dt]>0

dX(t)

dt
dt, (12)

where the optimization should be performed over all bipartite
states ρAB in general. We should also mention in passing
that such measures are nothing but witnesses for nondivisible
dynamics, similar to the case of the trace-distance measure,
although the BLP measure and these measures might lead to
different conclusions in general.

Returning back to the correlated-noise scenario, we recall
that even in the simplest case a bipartite system is required
to analyze dynamical memory effects in correlated channels
since we need two applications of the single-qubit map on the
system. Thus, studying the behavior of the quantity X would
require us to consider a quadripartite state. This would make
the optimization problem in the definition of the measures
intractable in most situations.

Therefore, in order to be able to investigate the dy-
namical non-Markovian behavior due to nondivisibility in
the correlated-noise scenario, we will slightly modify the
characterization given in Eq. (11). Specifically, we consider a
principal system consisting of two qubits (as required to study
the correlated quantum channels) without the addition of any
ancillary qubits. We can then use the modified inequality

X(Et ρAB) � X(EsρAB) (13)

at all times 0 � s � t for all bipartite states ρAB . Note that the
classically correlated quantum map in Eq. (8) no longer acts
locally on the bipartite state. As a consequence, one cannot
exploit the monotonicity property of certain quantities, such
as mutual information, under local CPTP maps to detect the
violation of divisibility. However, the type of correlated maps
that we consider in Eq. (3) can be implemented by local
operations and classical communication (LOCC); that is, they
belong to the class of LOCC maps since they are nothing
but probabilistic unitary operations with local operators. For
such quantum maps, we can utilize any entanglement measure
as the quantifier X to filter out the direct effect of classical
correlations, for entanglement measures by definition are
monotonic not only under local CPTP maps but also under
local operations and classical communication. In our setting,
if we assume that the intermediate map Et,s cannot be a valid
CPTP map unless it is LOCC, then the inequality in Eq. (13)
is temporarily invalidated only for nondivisible dynamics.

IV. NON-MARKOVIANITY OF CLASSICALLY
CORRELATED CHANNELS

Having introduced both the type of correlated channels
that we will use in our analysis and the non-Markovianity
quantifiers, we can now study the effect of correlations in the
channel on the non-Markovian dynamics.

Using Eq. (8), we can write the time evolution of the density
matrix of the system as follows:

ρ(t) = ρ(0) ◦

⎛
⎜⎝

1 	(ν) 	(ν) �(ν,μ)
	(ν) 1 �(ν,μ) 	(ν)
	(ν) �(ν,μ) 1 	(ν)

�(ν,μ) 	(ν) 	(ν) 1

⎞
⎟⎠,

where �(ν,μ) = −	(ν)2(−1 + μ) + μ. Note that only the
antidiagonal components depend on the correlation strength
μ. Using the analytical expression for the density-matrix
evolution, we can calculate the BLP measure by numerical
optimization over many pair of states. In Fig. 1(a) we display
the dynamics of trace distance for the optimal pair, where the
intervals of information back-flow due to nondivisibility can be
witnessed through the temporary increase of trace distance. In
Fig. 1(b) we show how the BLP measure changes as we change
the correlation coefficient μ, sweeping between vanishing and
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FIG. 1. (a) Dynamics of the trace distance for the maximizing
pair |±±〉 〈±±| for any value of the correlation parameter μ. (b)
The BLP measure as a function of the correlation strength μ for
τ = 1. The following random states are present: maximally entangled
states (purple), pure states (pink), mixed states (red), product states
(green), combinations of mixed and pure states (blue), Bell states
(black crosses), and the product state |±±〉 〈±±| (orange stars). The
optimal value is given by the highest point on the y axis.

full classical correlations for two consecutive uses of the
channel. Note that in this plot the parameter τ , controlling
the degree of non-Markovianity of the map in the absence
of classical correlations, is fixed to 1 so that we can isolate
the effect of the correlation parameter μ (non-Markovianity
rises with increasing τ ). Performing an extensive numerical
sampling of different pairs, we conclude that the optimal pair
giving the maximum value of the BLP measure is always given
by the separable states

|±±〉 〈±±| = 1

4

⎛
⎜⎝

1 ±1 ±1 1
±1 1 1 ±1
±1 1 1 ±1
1 ±1 ±1 1

⎞
⎟⎠. (14)

In fact, from the plot one notices that the BLP measure seems to
be independent of the effects of correlations in the application
of the channel. A closer inspection reveals that the trace
distance for the pair of optimal states reads

D = 1

2

∑
|
i | = |	(ν)|, (15)

where 
i are the eigenvalues of ρ1(t) − ρ2(t) = ρ12(t). Con-
sequently, non-Markovianity as measured by trace distance
is completely insensitive to classical correlations in multiple
applications of the channel. Stated another way, dynamical
non-Markovianity does not depend on whether or not the
channel here has correlations.

Let us now turn our attention to the entanglement-based
measure of non-Markovian memory effects described in
Eq. (12). We choose X to be the concurrence, which is defined
as

C(ρ) = max(0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4), (16)

with {λi} being the eigenvalues of the Hermitian operator
R = ρ(σy ⊗ σy)ρ∗(σy ⊗ σy) in decreasing order and ρ∗ being
the complex conjugate of the density matrix ρ. In Fig. 2(a)
we present the results of our analysis for the entanglement-
based measure of non-Markovianity performing a numerical
sampling of many different types of initial bipartite states. For
convenience, we only display the Bell states (black crosses)
and the family of maximally entangled states obtained from the

FIG. 2. The entanglement-based measure for τ = 1. (a) Random
maximally entangled states (blue), implemented by applying local
unitaries to Bell states, and the Bell states (black crosses). (b) The
concurrence of the Bell states for μ = 1 (solid black line), μ = 0.5
(blue dashed line), and μ = 0.1 (red dot-dashed line).

Bell states by applying local unitary operations (blue points),
even though our sampling included many more different types
of initial states. Unlike the BLP measure, the maximizing
state and the optimal value of the entanglement-based measure
are clearly dependent on the correlation parameter μ in
this case. Particularly, non-Markovian memory effects are
strengthened as the degree of classical correlations in the
channel increases. This demonstrates a fundamental difference
between these two approaches to the quantification of dynam-
ical memory effects when they are analyzed in relation to the
classical correlations in the operation of quantum channels.

For Bell states the concurrence can be written as

C(t) = −	(ν)2(−1 + μ) + μ. (17)

Hence, for μ = 1, in the case of fully correlated channels,
entanglement is frozen at unity, as can be seen in Fig. 2(b). Note
that the diagonal elements of the density matrix are constant
for the pure dephasing case. Moreover, when the channels
are fully correlated (μ = 1), the antidiagonal elements are
also constant in time. Hence, any X-shaped state including
the Bell states does not evolve in time for fully correlated
channels. As the correlation parameter μ decreases, the
time dependency of the Bell states becomes more and more
dominant, and the concurrence begins to decay increasingly.
On the other hand, the degree of revivals and thus amount
non-Markovian behavior get amplified as well. Looking at
Fig. 2(b), we also see that the Bell states maximize the
measure only for μ = 0 (in the case of uncorrelated channels).
For μ > 0, other maximally entangled states, which can be
obtained from the Bell states by local application of unitary
operations, optimize the measure. It is worth noticing that if
one were to assume that the Bell states are the optimal ones,
which has usually been done in the literature, one could get
the completely wrong idea about the non-Markovian behavior
of the dynamics.

As a final remark we emphasize that the intervals of
temporary revivals for both trace distance and concurrence
fully coincide [even though this is not immediately obvious
by comparing Figs. 1(a) and 2(b) since revivals in concurrence
become very small as time passes]. Since the revivals in the
trace distance always imply that the intermediate map Et,s is
not CPTP during these time intervals, one can conclude that the
revivals in entanglement are also due to the nondivisibility of
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the map rather than to the fact that Et,s cannot be implemented
by LOCC operations. Note that, despite the fact that we cannot
prove in general the validity of our assumption, namely, that
the intermediate map Et,s is non-CPTP unless it is LOCC, we
observe that it can be justified in the studied example. Conse-
quently, both the trace-distance measure and the entanglement-
based measure quantify the revivals occurring purely as a
result of nondivisibility properties of the map. Nonetheless,
we should always keep in mind that both these quantifiers
are just witnesses for nondivisible dynamics. Indeed, we have
seen that while the entanglement-based measure can detect
the effects of the classical correlations in the channel, the
trace-distance-based measure does not feel such effects even
for the fully correlated case, which points out a remarkable
difference between the two.

V. CONCLUSION

In summary, we have explored the effect of correlations
in the quantum channels with correlated noise on the dy-
namical memory effects stemming from the non-Markovian
dynamics of the open quantum system. Particularly, with
a well-motivated model for quantum channels with mem-
ory, we have investigated the role of correlations between
uses of quantum channels in modifying the non-Markovian
memory effects arising throughout the time evolution of the
system.

For this purpose, we have considered a colored pure
dephasing model with non-Markovian characteristics. Our

analysis has unveiled that the classical correlations present in
the studied quantum channels do not affect the non-Markovian
features of the dynamics in any way when we quantify the
memory effects through the trace-distance measure. On the
other hand, we have demonstrated that, if we choose to utilize
the entanglement-based measure, correlations between the
multiple applications of the quantum channels can indeed
amplify the dynamical non-Markovian memory effects. There-
fore, our investigation reveals a clear difference between these
two widely used measures of non-Markovianity.

We should finally mention that even though we have
examined a particular model, which describes the correlations
between the consecutive uses of quantum channels, and
also considered a specific type of dephasing dynamics, our
treatment can be easily applied to study more general scenarios
in a straightforward way.
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