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Topological superconductivity and anti-Shiba states in disordered chains of magnetic adatoms

Alex Westström,* Kim Pöyhönen, and Teemu Ojanen†

Department of Applied Physics (LTL), Aalto University, P. O. Box 15100, FI-00076 AALTO, Finland
(Received 7 April 2016; published 23 September 2016)

Regular arrays of magnetic atoms on a superconductor provide a promising platform for topological
superconductivity. In this work, we study the effects of disorder in these systems, focusing on vacancies realized
by missing magnetic atoms. We develop approaches that allow treatment of ferromagnetic dense chains as well as
long-range hopping ferromagnetic and helical Shiba chains at arbitrary subgap energies. Vacancies in magnetic
chains play an analogous role to magnetic impurities in a clean s-wave superconductor. A single vacancy in a
topological chain gives rise to a low-lying “anti-Shiba” state below the band edge of a regular magnetic chain.
Proliferation of the anti-Shiba band formed by a finite density of hybridized vacancy states leads to deterioration
of the topological phase, which exhibits unusual fragility in a particular parameter region in dilute chains. We also
consider local fluctuation in the Shiba coupling and discuss how vacancy states could contribute to experimental
verification of topological superconductivity.
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I. INTRODUCTION

Chains and arrays of magnetic atoms on a superconducting
surface offer a promising route to topological superconductiv-
ity [1] and accompanying Majorana quasiparticles [2]. Differ-
ent aspects of these systems are under intense experimental
[3–5] and theoretical [6–23] investigation at the moment.
While the application potential of magnetic chains seem
more rigid compared to the semiconducting nanowire-based
realizations [24–28] of topological superconductivity, they
also offer important advantages over them. Perhaps the most
prominent advantage is the fact the magnetic chains can be
accurately mapped by scanning tunneling microscopy (STM)
techniques.

The semiconductor nanowire systems with proximity su-
perconductivity are naturally discussed in the language of
normal state nanowire properties, such as the Fermi velocity,
transverse modes and the mean free path of the wire.
These concepts do not have straightforward counterparts in
magnetic chains, especially in the dilute Shiba limit. Also,
magnetic chains have their own characteristic properties such
as long-range hopping between the sites [8,10,17,22,29].
Since the early work on the subject [30–33], the effects
of disorder in the nanowire systems [34] and Kitaev’s toy
model [35] have been studied extensively. However, the special
properties of magnetic chains have received relatively little
attention [36,37].

Despite the long history of the subject of magnetic impuri-
ties on s-wave superconductors, a comprehensive picture has
emerged only in the past two decades. Bulk superconductors
with arbitrary magnetic impurity concentrations are gap-
less [38]. This is because, in addition to the extended impurity
band of hybridized subgap Yu-Shiba-Rusinov states [39–43],
there can exist rare configurations of lumped impurities that
induce Lifshitz tails to the density of states (DOS) at all subgap
energies [44].
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In this work, we study vacancies induced by missing
magnetic atoms in a regular magnetic chain. This starting
point is complementary to the Shiba problem where the
inhomogeneity is the magnetic impurity atom. A periodic
magnetic atom chain on a superconductor is hence now our
clean system—the subgap bands are characterized by gapped
one-dimensional (1D) energy bands. The subgap band may
undergo a topological phase transition so that the magnetic
lattice forms a topological superconductor. When the magnetic
lattice breaks periodicity due to some source of disorder, the
system generally acquires low-energy disorder states [45,46]
that will eventually destroy the topological phase. In addition
to vacancies, we consider disorder originating due to locally
fluctuating Shiba coupling α = πνJS, where ν is the DOS of
the host superconductor, J is the exchange coupling between
the atom and the bulk electrons, and S is the impurity
spin.

Below we will treat three different models (illustrated in
Fig. 1) that exhibit topological superconductivity. In Sec. II,
we consider a ferromagnetic short-range hopping model with a
Rashba spin-orbit coupling (SOC). This intrinsically 1D model
is investigated to illuminate the behavior of densely-packed
magnetic chains. In Sec. III, we consider a complemen-
tary parameter regime where the magnetic atoms form a
dilute chain and are coupled only through the long-range
hybridization of coupled Shiba wave functions. We introduce
a formalism which is valid at arbitrary subgap energies and can
be employed when the effective low-energy theory does not
allow a formulation in terms of a Hamiltonian. In addition to
ferromagnetic Shiba chains embedded in a 2D superconductor
with a Rashba SOC, in Sec. IV, we will analyze helical Shiba
chains embedded in a 3D superconductor.

For the three studied models, we find that a single vacancy
introduces bound states below the gap edge when the system
without vacancies is topologically nontrivial. In the presence of
multiple vacancies, the subgap spectrum exhibits an impurity
band, which is peaked around the single-vacancy energy and
drives the system towards a gapless phase. Interestingly, in
both of the dilute Shiba chains, there exists a parameter regime
where the topological gap of the clean system is robust but
a dilute vacancy concentration destroys the gap efficiently.
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This is in stark contrast to other forms of disorder, where the
detrimental effects on the topology is directly related to the
size of the gap, with the topological regions close to the phase
boundaries being the first to vanish.

II. DENSE CHAIN LIMIT

We begin by studying a system of a one-dimensional (1D)
spin-orbit coupled superconducting chain which is decorated

by magnetic moments. This simple model cannot reproduce
all the nuances of realistic systems but has previously revealed
much intuition to the phenomenology in magnetic chains.
In addition to being more tractable than the microscopically
derived long-range hopping models treated in Secs. III and IV,
the model addresses the regime where magnetic moments are
packed within a hopping distance apart. In the dense-chain
limit, with only nearest-neighbor hoppings considered, the
Hamiltonian for the system is

H =
N−1∑
n=1

∑
s=↑,↓

(tnâ
†
n+1s âns + t∗n â†

ns ân+1s) −
N∑

n=1

∑
s=↑,↓

μnâ
†
ns âns +

N∑
n=1

Bn(â†
n↑ân↑ − â

†
n↓ân↓)

+αR

N−1∑
n=1

∑
s1,s2=↑,↓

(
â
†
n+1s1

(iσy)s1s2 âns2 − â†
ns1

(iσy)s1s2 ân+1s2

) +
N∑

n=1

(�nâ
†
n↑â

†
n↓ + �∗

nân↓ân↑), (1)

where â
†
ns (âns) creates (annihilates) an electron with spin

s at site n. In the clean limit, all system parameters are
independent of position so that the local hopping amplitudes,
chemical potentials, magnetic fields, and superconducting
order parameters become tn = t,μn = μ, Bn = B, and �n =
�, where we with no loss of generality take � to be real. The
parameter αR determines the strength of the Rashba SOC. In
this limit, we can formulate a Bogoliubov-de Gennes (BdG)
Hamiltonian in k space,

H = 1

2

∑
k

�
†
kHk�k, (2)

where

Hk = (2t cos k − μ)τz + Bσz + 2αR sin kσyτz + �τx (3)

FIG. 1. Schematic representation of the systems studied in this
work, illustrating (a) the dense chain with nearest-neighbor hopping,
(b) the ferromagnetic Shiba chain, and (c) the helical Shiba chains.
The grayed-out sites represent vacancies giving rise to low-lying
anti-Shiba states.

and � ≡ (âk↑,âk↓,â
†
−k↓, − â

†
−k↑)T . Here we have set the lattice

constant to unity. The matrices τ and σ are Pauli matrices
in particle-hole and spin space, respectively. From the above
we see that Hamiltonian anticommutes with C = σyτy and
thus possesses chiral symmetry in addition to the particle-hole
symmetry inherent in the BdG formalism. Hence the system
belongs to the symmetry class BDI and supports a Z-valued
topological invariant Q′ [47,48]. By calculating the winding
number one finds Q′ ∈ {0,±1}. Below we will consider Z2

phases, which are classified by the parity of Q′. Following
Kitaev [2], we can then for the clean case easily find the
borders between the topological and nontopological limits by
examining gap closings at k = 0 and π . These occur when

B2 = (2t ± μ)2 + �2. (4)

To prepare for the treatment of disordered systems, we will
employ a method to evaluate the topological invariant in
real space. The Z2 phases can be identified by studying
the response of the ground-state fermion parity to twisted
boundary conditions. In this case, the Z2 invariant is given by

Q = sign( Pf[CHP ] Pf[CHA]), (5)

where HP (HA) is the Hamiltonian for the chains with
periodic (antiperiodic) boundary conditions and Pf[· · · ]
denotes the Pfaffian of a skew-symmetric matrix. Note that
the multiplication of a chiral symmetric Hamiltonian by the
corresponding chiral operator C ensures that the resulting
matrix is skew-symmetric. The two different boundary
conditions can be thought of as a probe for the existence
of two different parity sectors achieved by hybridizing the
Majorana end modes in open chains [2]. The value Q = 1
corresponds to a trivial state while Q = −1 indicates a
nontrivial state with Majorana end states. A topological phase
diagram for a finite chain in the clean case can be seen in
Fig. 2. A relatively small system of a few dozen of sites
will reproduce the infinite system phase diagram essentially
perfectly. The Z2 phase diagram, shown in Fig. 2(a), is
symmetric with respect to t → −t . As discussed below,
disorder will suppress the nontrivial phase of the topological
phase diagram of the clean system as depicted in Fig. 2(b).
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FIG. 2. Diagram of the Z2 invariant of a 50-site dense chain
(a) in the pure limit and (b) with five vacancies averaged over 200
configurations. Both figures were obtained through applying the
Pfaffian inavriant in real space as described in the text. Blue and
yellow correspond to the topological and trivial phase, respectively;
the red line is the analytical k-space solution for the phase boundaries
obtained from Eq. (4). Remaining parameters are μ = 4, αR = 1, and
� = 1.

A. Single and two vacancy states

As in the dual case of dilute magnetic impurities, it is
indispensable for understanding the phenomena of multiple
defects to first consider a single-defect problem. The defect that
we in the present case are interested in is a missing magnetic
moment, realizing a vacancy in an otherwise perfect lattice of
magnetic moments. We model a system with a single vacancy
by setting Bn in Eq. (1) to zero at the site of the defect and
everywhere else Bn = B. The extension to multiple vacancies
should be obvious. The local Zeeman field at a vacancy is
suppressed, allowing for bound subgap states.

The single-vacancy bound states can be solved by the
T -matrix formulation [44]. Treating Eq. (1) as the unperturbed
Hamiltonian Hk , the T matrix for the system with one
vacancy is

T =
[
I4×4 − V

2π

∫ π/a

−π/a

dkG0(k)

]−1

V, (6)

where G0 = (E − Hk)−1 is the Green’s function of Hk , and V

is the Fourier transform of the vacancy Hamiltonian. Treating
the vacancy as a missing localized magnetic moment, its
Fourier transform is simply −Bσz, which is independent
of k, effectively reducing the calculation of the T -matrix
to an integral over G0. The vacancy energies can then be
obtained as poles of the T -matrix, or, equivalently, as zeros
of the determinant of the matrix inside the square brackets
in Eq. (6). Due to the involved form of the Green’s function
of the clean magnetic lattice, the analytical solution is not
practical. However, the bound states can be solved numerically
as illustrated in Fig. 3(a). The single-vacancy energy depends
on all the parameters. Physically, it is easy to appreciate why
the vacancy problem does not allow a simple results such as
the single Shiba state: a vacancy in the topological phase can
be considered as a hybridized pair of Majorana states localized
around the vacancy site. The energy of the Majorana pair will
naturally depend on the energy gap of the system, which itself
is follows from the complicated dispersion given by Eq. (A2)
in Appendix A.

Diagonalization of a finite periodic chain with a vacancy
site accurately reproduces the subgap states from the T -matrix

FIG. 3. (a) Normalized DOS of a dense chain with PBC, for 1000
sites with a single vacancy. The red line corresponds to the vacancy
energy obtained through numerical calculation of the T -matrix.
(b) Positive subgap bound state energies of a chain with two vacancy
sites as a function of the distance between the vacancies. The spectrum
has been calculated in a chain with 1000 sites. (c) The DOS of
a single vacancy disorder realization of a periodic chain with 2000
sites and 100 vacancies. (d) The DOS for a disorder-averaged (2 × 106

configurations) periodic chain with 80 sites with four vacancies. In
all four figures, the parameters are t = 3, μ = 5, B = 2, αR = 1, and
� = 1.

calculation as illustrated in the Fig. 3(a). Wave functions of the
vacancy states are localized in the vicinity of the vacancy site.
This is evident in the spectrum of two vacancies as a functions
of the distance illustrated in Fig. 3(b). First, the vacancies
are close together, opening up a small trivial region, but as the
vacancy sites move apart from each other, the spectrum start to
resemble that of two decoupled states. The existence of bound
subgap states and their hybridization are the basic building
blocks of the low-energy impurity bands that will contaminate
the topological state and lead to a gapless phase.

B. Properties of disordered chains

We now turn to study disordered configurations with
multiple vacancy sites. As argued above, increasing the
vacancy density destroys the topological phase due to the
proliferation of subgap vacancy bands. This behavior is evident
in Fig. 3(c), which shows the DOS for a single realization of a
long chain and Fig. 3(d), which illustrates a disorder averaged
DOS of shorter chains with a 5% vacancy concentration. The
vacancy band has a large DOS at the single vacancy energy
and spreads out to fill the bulk gap. The gap edge of the clean
system is smeared out and a finite but suppressed DOS extends
all the way down to the gap center. The DOS of a single long
chain exhibits qualitatively similar features as the disorder
averaged DOS with equal vacancy concentration, especially
the strong peak at the single-vacancy energy.

It is clear from the Figs. 3(c) and 3(d) that the spectrum of a
topological chain with a robust gap in the clean limit is already
dramatically affected by a vacancy concentration of the order
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FIG. 4. Distribution of the lowest-lying positive energy for 50 000
realizations of a periodic dense chain with 100 sites of which ten
are vacancies. Parameters are t = 2.8, μ = 5, B = 2, αR = 1, and
� = 1. For comparison, the gap energy for a pure system is ≈0.67�.

a few percent. However, as shown in Fig. 2(b), the nontrivial
phase persists in a significant part of the phase diagram. The
disorder-averaged Pfaffian invariant indicates that nontrivial
states with low Zeeman splitting are most robust to the vacancy
disorder. For the parameters of Fig. 2(b), the topological phase
diagram of disordered system remains by and large unaffected
for Zeeman fields B/� < 4.

In quantum information applications of topological super-
conductors, it is essential that the systems are gapped. The
energies of localized Majorana bound states in the vicinity
of the gap center should be well-separated from the lowest-
lying bulk states. By diagonalizing the system for different
configurations, in Fig. 4, we have plotted a distribution of the
energy gap for a chain with 100 atoms with 10% vacancy
concentration. Although the gap is significantly suppressed
from the clean value, the distribution is peaked at finite energy.
The peak structure in the gap distribution reflects the peak
structure of the disorder averaged DOS seen in Fig. 3(d).

At strong disorder, topological superconductors are gener-
ically expected to exhibit enhanced DOS at zero energy and
filling of the excitation gap. In this work, we will concentrate
on weak or moderate disorder, since magnetic chains are
expected to be relatively clean systems. In current experiments,
the chains are spontaneously formed under suitable conditions.
Current technology also allows for the possibility of a top-
down fabrication where individual atoms are placed one by
one by STM techniques [49,50]. In both scenarios, it seems
likely that high quality can be achieved. Even though effects of
weak vacancy disorder in dense chains are not negligible, they
are not detrimental to topological properties of finite chains in
large parts of the phase diagram.

III. FERROMAGNETIC SHIBA CHAIN

In this section, we consider a model derived from micro-
scopics, consisting of magnetic adatoms deposited on top of a
2D superconducting substrate with Rashba SOC. The system
is schematically depicted in Fig. 1(b). The adatoms, treated
here as classical spins, form Yu-Shiba-Rusinov bound states
that hybridize to form a band within the gap of the underlying

superconductor. Unlike the system considered previously, the
starting point of this system is genuinely two-dimensional. In
two dimensions, as observed in a recent experiment [51], the
Shiba states decay as r−1/2 at distances up to the order of
the coherence length of the underlying superconductor, and
exponentially beyond this length scale. As a consequence,
the effective low-energy description of a realistic situation
where spacing of the magnetic atoms is much smaller than
the coherence length may easily involve significant hopping
between dozens of closest neighbors. A ferromagnetic chain,
in which all spins point in the z direction perpendicular to the
plane, is described by the Hamiltonian

H =
(

p2

2m
− μ + αR(pyσx − pxσy)

)
τz + �τx

− J
∑

i

(Si · σ )δ(r − ri). (7)

The model system has been studied previously in
Refs. [9,11,22]. Here we follow the formulation of Ref. [22],
which is valid for the full range of subgap energies. The subgap
physics of model (7) is conveniently extracted by identifying
the relevant subgap degrees of freedom. Each magnetic
impurity binds a Shiba state at energies ±� 1−α2

1+α2 , where the
dimensionless Shiba coupling α = πνJS is determined by
the exchange coupling J , the magnetic moment S and the
density of states ν of the underlying bulk. The long tails
of the Shiba states lead to long-range hybrization of states
centered at different magnetic moments. The relevant energy
scale describing the hybrization of two Shiba states within
superconducting coherence length is �/(kF a)1/2 in 2D and
�/(kF a) in 3D, where a is the separation of the magnetic
moments.

As explained in Appendix A, we can derive a nonlinear
eigenvalue problem (NLEVP) for the subgap energy bands,
taking the form G̃−1(E)� = 0, where

G̃−1(E) =

⎛
⎜⎜⎝

Aλ2 − λ
α

Bλ Cλ2 −λD

−Bλ −A + λ
α

−λD C

−Cλ2 −λD Aλ2 + λ
α

−Bλ

−λD −C Bλ −A − λ
α

⎞
⎟⎟⎠,

(8)
and λ = (� + E)/

√
�2 − E2. The quantity G̃−1 is related

to the Green’s function of the chain and is a nonlinear
function of energy, hence the notation and nomenclature.
For a chain consisting of N magnetic moments, A, B, C,
and D are N × N matrices describing the hopping elements
between different Shiba states. The detailed expressions for
the submatrices can be found in Appendix A. Due to the
spin and Nambu indices, the spectral problem involves a
4N × 4N matrix. The wave functions � have 2N electron
and 2N hole components, containing the information of the
spatial localization of the eigenstates along the chain. The
matrix elements of the N × N blocks satisfy the asymptotic
behavior Aij ∼ e−a|i−j |/ξE

|i−j |1/2 , reflecting the long-range hopping

between the Shiba states. Here ξE = ξ0/
√

1 − E2/�2, where
ξ0 = vF /� is the superconducting coherence length of the
underlying superconductor, and vF is the Fermi velocity of the
bulk electrons.

104519-4



TOPOLOGICAL SUPERCONDUCTIVITY AND ANTI-SHIBA . . . PHYSICAL REVIEW B 94, 104519 (2016)

FIG. 5. (a) Z2 phase diagram of the finite ferromagnetic Shiba chain with Rashba SOC, obtained by evaluating the Pfaffian invariant. Blue
and yellow correspond to Q = −1 and Q = 1 phases, respectively. The red curves are exact phase boundaries of an infinite system obtained
in Appendix A. Parameters used are ς = 0.01 and ξ0 = 50a with 50 magnetic sites for the Pfaffian diagram. (b) Z-valued winding number
diagram for an infinite chain with the same parameters. The |N | = 2 phase, supporting two Majorana end states in open chains, is not visible
in the Z2 diagrams. (c) Energy gap diagram for the same parameters.

In contrast to the original Hamiltonian in Eq. (7), the
remaining degrees of freedom of the low-energy theory are
discrete and localized at the magnetic impurity positions form-
ing a periodic chain with a lattice constant a. This effective 1D
model, defined by the hopping matrix G̃−1(E), belongs to the
symmetry class BDI, thus supporting a Z-valued topological
invariant. Recently, it was discovered that in the physically
relevant parameter regime the model supports four different
topologically nontrivial phases with one and two Majorana end
states [22]. Here, we will, however, mostly concern ourselves
with the phases of single Majorana states. This allows us to
classify the topological phases with the Pfaffian invariant Q,
which only distinguishes states with different ground state
parities. In the low-energy description, the fundamental object
is G̃−1(E) in Eq. (8)—not a Hamiltonian. The spectrum of the
chain can be computed by solving the equation det[G̃−1(E)] =
0 for E and finding the eigenvectors belonging to the kernel
of G̃−1(E). Solving NLEVPs is generally resource-consuming
compared to linear matrix eigenvalue problems. However, as
explained in Appendix B, the topological properties of the
system can be extracted from the “topological Hamiltonian”
H̃ = G̃−1(0).

In Fig. 5(a), we have plotted the Z2 topological phase
diagram of the system by evaluating the Pfaffian invariant
Q for H̃ in a finite chain. This reproduces the clean,
infinite system phase diagram accurately. We have reproduced
the winding number phase diagram [22] in Fig. 5(b) for
comparison, illustrating the double Majorana phases that are
not distinguished by the Pfaffian invariant. By solving the
full NLEVP for a clean system, we obtain the energy gap
of an infinite chain, as shown in Fig. 5(c). By inspecting the
gap diagram it is clear that the small discrepancies between
the finite system phase diagram and the analytical phase
boundaries of the infinite system in Fig. 5(a) arise only in
the parameter regions where the system is nearly gapless and
the ground state parity is susceptible to weak perturbations.

A. Topological properties of disordered chains

As in the case of dense chain, we first study the vacancy
states due to a single missing magnetic moment. The vacancies
are modelled by taking Si = 0 in Eq. (7) at the vacancy sites
and Si = S elsewhere. In the low-energy theory (8), each
vacancy reduces the number of lattice sites by one. A vacancy

in the topological phase introduces an anti-Shiba bound state
in the band gap of a regular Shiba lattice, as illustrated in
Fig. 6(a). In the trivial phase the bound states generally do not
exist, while in the nontrivial phase the single vacancy binds a
subgap state whenever the gap is robust as seen in Fig. 6(b). As
highlighted in Figs. 6(a) and 6(b), the single-vacancy energy
diagram shows also a striking feature: there is stripe-like
pattern inside the nontrivial Z2 phase where the vacancy
energy lies at the gap center. Furthermore, as a comparison
with the gap diagram in Fig. 5(c) reveals, the vanishing bound
state energy is not correlated with a small topological gap.
Intuitively, a vacancy can be seen as strong localized disorder
that effectively creates a one-site trivial phase at the vacancy

FIG. 6. Effect of vacancies on the ferromagnetic Shiba chain.
(a) Ratio of the single-vacancy bound state energy Evac to the smallest
positive energy Egap of a clean system. Remaining parameters are ς =
0.01 and ξ0 = 50a. Note also the diagonal lines where the impurity
energy is fine-tuned to near zero. The maximum values have been
capped at 1 to avoid divergences at gap closings. (b) Relative gap
plotted along the black line in (a). The vacancy-based gap closings
are clearly visible, being wider than those caused by topological
phase changes. (c) Pfaffian invariant Q for a 50-site system with
five vacancies, averaged over 400 configurations. The parameters are
otherwise the same as in the previous figures. Additional diagonal
gapless lines are seen next to the original single-vacancy lines. (d)
Same, but with 10 vacancies.
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site. As its effect on the topology is independent of the bulk
gap, there is no reason to expect any correlation between the
magnitude of the bulk gap and the presence of anti-Shiba
states. As such, vacancies affect the topological properties in
a qualitatively different way compared to for example a weak
disorder in the chemical potential, and at the striped parts of
the parameter space, the hybridized Majorana pair created by
the vacancy has a vanishing excitation energy even when the
clean gap is robust.

In Figs. 6(c) and 6(d), we have plotted topological phase
diagrams averaged over different disorder configuration for
finite chains with different vacancy concentrations. These
illustrate how the topological phase is gradually washed away
as the vacancy concentration increases. In the case of multiple
vacancies, the bound state energies form a band, the width
of which is determined by the mean distance between the
vacancies. It is clear that the vicinity of the phase boundaries
of the clean system are fragile since the gap is small and
the ground state fermion parity can fluctuate as a result of
weak disorder. Even more strikingly, the nontrivial phase
of disordered chains is divided by a stripelike patterns that
dissect the clean system’s topological phase. This fragility
of the topological phase can be qualitatively understood by
considering the single-vacancy states. The deterioration of
the topological phase is nucleated from the region where
the single-vacancy energy vanishes. In those parts, even a
weak hopping between the impurity sites far apart may push
the impurity state below the Fermi energy, switching the
ground state parity measured by the Pfaffian invariant. This
mechanism allows a nucleation of the trivial state in the middle
of the topological phase at very weak vacancy concentrations
in finite chains. Increasing the vacancy concentration, the
bandwidth of the anti-Shiba band centered at the Fermi energy
increases and will drive the proliferation of a gapless state,
splitting the nontrivial phase.

It should be noted that the above discussed effect of finite
DOS at the gap center and proliferation of gapless state
is distinct from the ubiquitous effect of lumped disorder
configurations leading to the Griffiths effect and a peak in DOS
at the Fermi energy [45,46]. While the Wigner singularity and
the Griffiths effect are generic consequences of strong disorder
in topological superconductors [30,31,33,35], the fragility of
the phase diagram of finite Shiba chains at weak disorder is
caused by the accidental tuning of the single vacancy energy
near the gap center.

Although we are mostly concentrating on the single Majo-
rana phase defined by value Q = −1 of the Pfaffian invariant,
the results illustrated above have important consequences on
the disordered double Majorana phases indicated in Fig. 5(b).
Since Q measures the fermion parity of the ground state, the
double Majorana phases with winding numbers ±2 map to the
trivial sector Q = 1. As one can see in Figs. 6(c) and 6(d),
the parity averaged over disorder configurations in a double
Majorana phase fluctuates at weak vacancy concentration
where most parts of the Q = −1 phases are unaffected. This
illustrates that the double Majorana phases are substantially
more fragile to disorder than single Majorana phase.

In addition to studying vacancies, we briefly consider an
onsite disorder in the dimensionless Shiba coupling α = πνJS

on the topology of the system. Recently, it was suggested

FIG. 7. The effect of disorder in the Shiba coupling α on the
topology of the ferromagnetic Shiba chain. An average over (a) 100
configurations for a uniform disorder of 5% in α; (b) 200 configura-
tions for 20% disorder. Other parameters are ς = 0.01 and ξ0 = 50a.
The length of the PBC chain is 50 sites.

that disorder in the underlying superconductor may lead to
variation in this parameter [36]. In addition, variation of the
exchange coupling J , originating from different microscopic
coupling configurations between the atom and the substrate,
will also translate into variation of α. Recently, this was
employed in the observation of the ground state parity
switching that takes place in a system with an isolated magnetic
impurity at α = 1 [52]. We will allow α to vary locally as
αi = α(1 + δαi), where δα is a uniformly distributed with
a finite bandwidth δαi ∈ [−ε,ε]. The modification to the
low-energy theory (8) due to a fluctuating α is explained in
Appendix B. As seen in Figs. 7(a) and 7(b), the system is very
robust against this type of disorder. Even at strong disorder
when the site-to-site fluctuation of α can reach 20%, the
nontrivial Z2 regions persist for the most parts. As expected,
the nontrivial regions with a small energy gap are first washed
away. Contrary to the vacancy disorder, the nontrivial phase
is deteriorating only from the boundaries without splitting to
additional disconnected parts. The double Majorana phases
are again completely smeared out at disorder strengths where
most parts of the Q = −1 phase still persist.

B. Energy gaps of disordered Shiba chains

In the previous section, we analyzed the Z2 topological
invariant in the ferromagnetic Shiba chain with disorder. Here,
we study how the excitation gaps of these systems are affected
by vacancy disorder.

In Fig. 8(a), we have plotted a disorder averaged energy
gap for a finite chain. This information should be contrasted
to the α = 0.9 cut of the phase diagram depicted on Fig. 6(c).
In certain parts of the nontrivial phase, the gap follows very
closely to the clean system value. However, as the stripe pattern
of the vanishing single-vacancy energy is approached, the gap
is dramatically suppressed. As Fig. 8(a) clearly shows, the gap
or disordered system closes at the stripe while it approaches
the maximum value at the clean system. As argued above, this
unexpected fragility of the nontrivial phase is present even for
very weak disorder. The statistical fluctuations of the energy
gap are pronounced at the left side of the stripe where the
average gap closes. This effect shows up in Figs. 6(c) and 6(d)
as the side bands of the main stripe of the vanishing single-
vacancy energy.
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FIG. 8. (a) Disorder-averaged energy gap Ē for a 100-site ferro-
magnetic Shiba chain with 10 vacancies, averaged over 1000 configu-
rations. The tube containing the average value represents one standard
deviation. Other parameters are α = 0.9, ς = 0.01, and ξ0 = 50a.
(b) and (c) Distribution of the lowest positive energy for a 50-site
periodic ferromagnetic Shiba chain with 5 and 10 vacancies, respec-
tively. Distribution is for 10 000 configurations. Other parameters
are kF a = 20.5, α = 1, ς = 0.01, and ξ0 = 50a. The gap for a clean
system is ≈0.11�.

In Figs. 8(b) and 8(c), we have plotted the gap distributions
for two vacancy concentrations. Although both distributions
are peaked at energies below the clean system gap ∼0.1�,
the topological gap still remains in the observable range. As
expected, the distribution for the higher vacancy concentration
is peaked and exhibits a tail to lower energies.

IV. HELICAL SHIBA CHAINS

Finally we analyze the helical Shiba chain. Similarly to
the ferromagnetic Shiba system, it consists of classical spins
placed in a dilute chain on a superconducting substrate.
However, now the substrate is treated as a genuinely three-
dimensional bulk. The main differences to the 2D ferromag-
netic model are the fact that the Shiba states decay as r−1

(instead of r−1/2) at distances up to the order of the coherence
length and that no Rashba coupling is required to achieve
a topologically nontrivial phase [7]. The Hamiltonian for a
helical chain is

H =
(

p2

2m
− μ

)
τz + �τx − J

∑
i

(Si · σ )δ(r − ri). (9)

The magnetic moments form a helical texture, Sj =
( sin(θ ) cos(ϕj ), sin(θ ) sin(ϕj ), cos(θ )) where, for a chain
aligned along the x axis, ϕj = 2kH xj = 2jkHa. The helical
wave number kH determines the pitch of the helix. The
helical Shiba chain has been examined in more detail in

FIG. 9. (a) Z2 phase diagram of a helical Shiba chain of 100 sites
with kH a = π/8,θ = π/2,ξ0 = 50a. Blue and yellow correspond to
values Q = −1 and Q = 1 of the Pfaffian invariant. The red curves
represent exact phase boundaries of infinite system, obtained in
Appendix A. (b) Energy gap diagram of an infinite helical Shiba
chain with the same parameters. The diagonal line visible in the
middle here, but not in the Z2 diagram, corresponds to the phase
transition between phases N = 1 and N = −1 of Z-valued winding
number invariants.

Refs. [8,17,29]. Following the treatment in Ref. [17] and also
explained in Appendix A, we can again formulate the subgap
spectral problem of N magnetic atoms as G̃−1(E)� = 0,
where

G̃−1 =

⎛
⎜⎜⎜⎝

λ2h↑↑ − λ
α

−λd↑↓ −λ2h↑↓ λd↑↑

−λd↓↑ −h↓↓ + λ
α

λd↓↓ h↓↑

−λ2h↓↑ λd↓↓ λ2h↓↓ + λ
α

−λd↓↑

λd↑↑ h↑↓ −λd↑↓ −h↑↑ − λ
α

⎞
⎟⎟⎟⎠.

(10)

The explicit expressions for the N × N submatrices hσσ ′

and dσσ ′
, describing a long-range hopping with asymptotic

behavior hσσ ′
ij ,dσσ ′

ij ∼ e−a|i−j |/ξE
|i−j | , are given in Appendix A. The

general helical chain is in symmetry class D; however, the
planar helical chain (θ = π/2) is in class BDI [20]. For
simplicity, we will here focus on the Z2 topological phase
of the planar chain, as the Z2 boundaries are independent of
θ . Analogously to the ferromagnetic chain, we can then again
define a topological Hamiltonian H̃ = G̃−1(0) from which the
topological properties of the system can be obtained.

By evaluating Pfaffian invariant Q for a finite chain, we
have plotted the Z2 phase diagram of the pure system in
Fig. 9(a). Again, Q evaluated for a finite chain reproduces
very accurately the infinite system phase diagram. The energy
gap for an infinite system can be achieved by solving the full
nonlinear problem. The gap, illustrated in Fig. 9(b), reveals
that the nontrivial phase is divided into two disjoint regions by
a gap-closing line.

A. Disordered helical chains

We assume that vacancies in the helical chain do not affect
the spin configuration of the other sites, so that we can model
vacancies by simply removing magnetic sites from a static
texture. Similarly to those found in the ferromagnetic Shiba
chain, the single-vacancy bound states are always present in
the nontrivial phase. Importantly, we again uncover stripelike
features where the single-vacancy energies lie at the gap center
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FIG. 10. (a) Single-vacancy bound state energy divided by the
energy gap of a clean system. Similarly to the ferromagnetic case, a
line with zero bound-state energy is observed. The figure is calculated
for a chain with 48 sites and kH a = π/8, θ = π/2, and ξ0 = 50a.
(b) Topological Z2 invariant for a helical Shiba chain with 48
sites of which 6 are vacancies, averaged over 400 configurations.
Otherwise, the parameters are the same as in (a). The red curves in
both figures represent the exact topological phase boundaries for an
infinite system.

as illustrated in Fig. 10(a). As in the ferromagnetic chain, the
vanishing vacancy energy stripes may exist in regions that
have robust topological gaps, splitting the nontrivial phase
into several disconnected pieces. The stripe patterns, together
with the gap-closing line splitting the nontrivial phase of the
clean system depicted in Fig. 9, are expected to be fragile
regions of the nontrivial phase in the presence of disorder.
This expectation is confirmed in Fig. 10(b), which shows the
typical behavior of the phase diagram averaged over different
configurations of multiple vacancies. The nucleation of a
gapless phase in the vicinity of fragile regions may take place
already at weak disorder.

As we did for the ferromagnetic chain, we also consider a
local random variation in the Shiba coupling α. In Fig. 11(a),
we see how the disorder averaged Z2 invariant behaves. Here
we notice that α disorder leads to a diminished nontrivial
phase through proliferation of the gapless phase nucleated
at the phase boundaries of the clean system. However, the
stripe patterns associated with vacancies are absent. As in
the ferromagnetic chain, α disorder in helical chains does not
provide big surprises.

We also studied on-site disorder in the pitch angle of the
magnetic helix. It turns out, as depicted in Fig. 11(b), that the

FIG. 11. Topological Z2 phase diagrams for a helical Shiba
chain with 48 sites and (a) 5% disorder in α, averaged over 300
configurations. (b) Disorder in the planar angles of the magnetic
moments: ϕi → ϕi ± δϕi , where δϕi ∈ [−π/8,π/8], averaged
over 100 configurations. Parameters used are kH a = π/8, θ =
π/2, and ξ0 = 50a.

system is generally highly robust against this type of disorder.
As the figure illustrates, a strong on-site random variation in
the magnetization direction comparable to the pitch angle kHa

of the helix causes a slight modulation of the phase boundaries
but leaves the nontrivial phase otherwise intact.

V. DISCUSSION AND CONCLUSIONS

In this work, we have studied effects of vacancies in chains
of magnetic atoms on a superconductor. The starting point
of the analysis is a finite perfect chain of magnetic atoms
which contains a single vacancy or a dilute concentration of
vacancy sites. This problem has, especially in the topologically
nontrivial phase, close analogy to the problem of dilute
magnetic impurities in a s-wave superconductor. In analogy
to a subgap Shiba state bound to a single magnetic impurity, a
single vacancy state gives rise to a localized low-energy state
below the topological gap edge. This can be interpreted as
two hybridized Majorana states at the weak link formed by
the vacancy. Also, the subgap spectrum of magnetic impurity
systems and topological superconductors with vacancies is
similar. In fact, the subgap DOS in the presence of single and
dilute concentration of vacancies depicted in Figs. 3(a), 3(c),
and 3(d) would be qualitatively difficult to distinguish from
the spectrum of an s-wave superconductor with weak con-
centration of magnetic impurities. However, at high vacancy
concentrations there are qualitative differences between the
two models. In strongly disordered topological chains, lumped
vacancy configurations give rise to domain walls of near zero
energy Majorana end states. Thus a topological chain at strong
disorder will universally display a Griffiths effect manifesting
as a singular density of states at the Fermi energy [30,31,45].
In our work we focused on finite chains with weak disorder,
since we believe these to be closer to experimental interest.

Experimentally the vacancy states could serve as a tool to
verify the existence of the topological phase. Vacancy sites
could be created by STM techniques that are used to probe the
chains. Whether this is feasible or not depends on the chemistry
of the adatoms and the surface properties of the employed
materials. In principle, a single atom resolved manipulation
is possible under suitable circumstances. Our results indicate
that in the Shiba limit the single-vacancy subgap states are
only present in the topologically nontrivial phase at physically
relevant parameters. Creating a vacancy and identifying the
resulting subgap state could serve as a smoking gun for the bulk
topology. Furthermore, creating two vacancy states at different
distances apart would reveal the hybrization of the vacancy
states. In the dense chain the situation is not as clear-cut as
some trivial regions also support low-energy vacancy bound
states.

The marked difference between the short-range model of
densely-packed moments and the long-range Shiba models
is that the latter exhibit fragile regions in the phase space
where the single-vacancy bound state energy is tuned very
close to the gap center. In these part of the topological phase
diagram, the gapped state is washed away by a low vacancy
concentration. This effect is not correlated with the gap size
and results in nucleation of gapless phase in the middle of
the topological phase, splitting it to disconnected regions. In
all models, the deterioration of the topological phase at low
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vacancy concentration is driven by the proliferation of the
vacancy band, starting from the single vacancy energy and
spreading to both directions until the gap of the clean system
has been filled by a significant density of states.

Finally, we also studied local fluctuations of the Shiba
coupling that cause random shifts in the Shiba bound state
energies. We studied how this type of disorder affects the
topological band formation in the chains of magnetic atoms.
In contrast to the vacancy disorder, this type of disorder only
results in a proliferation of a gapless states nucleating from the
phase boundaries. The single-Majorana phases of the Shiba
chains with are found to be robust against moderate disorder
of this type.
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APPENDIX A: PROPERTIES OF CLEAN SYSTEMS

In this appendix, we will briefly discuss the clean limit
of the three systems studied in the main text. We will derive
their spectra, as well as the topological phase diagram from
the Z2 invariant. Theoretical formulation of the helical and
ferromagnetic Shiba chains follows Refs. [17] and [22].

We note that under certain conditions the studied models
belong to the BDI symmetry class, and hence supportZ-valued
invariants. In this work, we are primarily concerned with
the single Majorana phases and thus consider Z2 invariants.
However, in the main text we also discuss the implications
of disorder to the existence of double Majorana phases of
ferromagnetic Shiba chains.

1. Dense ferromagnetic chain

Starting from Eq. (1) and considering a clean system, we
obtain a BdG Hamiltonian of the form

Hk = (2t cos k − μ)τz + Bσz + 2αR sin kσyτz + �τx. (A1)

This is now easily diagonalizable, yielding four energy bands

E2
k = (2t cos k − μ)2 + B2 + 4α2

R sin2 k + �2

± 2
√

(2t cos k − μ)2
(
B2 + 4α2

R sin2 k
) + B2�2. (A2)

From the gap closing conditions at k = 0,π , we can then
derive analytical expressions for the boundaries of trivial and
nontrivial Z2 phases:

B2 = (2t ± μ)2 + �2. (A3)

The phase boundaries in Fig. 2 are obtained from this result.

2. Ferromagnetic Shiba chain

For a Shiba chain with magnetic impurities placed at
positions ri and Rashba SOC, the BdG Hamiltonian reads

H =
(

p2

2m
− μ + αR(pyσx − pxσy)

)
τz + �τx

− J
∑

i

(Si · σ )δ(r − ri), (A4)

where μ, αR , and � are defined as previously, m is the mass of
the electron, J is the coupling strength between the magnetic
impurities and the electrons, and finally Si is the magnetic
moment at ri . We have also defined σ ≡ (σx,σy,σz).

Assuming that the impurities form a 1D chain with a lattice
constant a, it is possible to reduce the subgap spectral problem
to the form

�(xi) =
∑

j

αJE(xij )�(xj ), (A5)

where xij = xi − xj = (i − j )a and the coupling JE , which is
essentially given by the Green’s function of the bulk and the
magnetic texture [9]. Furthermore, we have also introduced
the dimensionless Shiba coupling α = πJSν0, where ν0 is the
density of states at the Fermi energy.

For the ferromagnetic case, we have that Si = Sẑ, where
ẑ is the unit vector in the z direction. Following the steps
in Ref. [22], we can reformulate the subgap spectrum of N

magnetic sites into a NLEVP of the form G̃−1(E)�(E) = 0,
where

G̃−1(E) =

⎛
⎜⎜⎝

Aλ2 − λ
α

Bλ Cλ2 −λD

−Bλ −A + λ
α

−λD C

−Cλ2 −λD Aλ2 + λ
α

−Bλ

−λD −C Bλ −A − λ
α

⎞
⎟⎟⎠,

(A6)

λ = (� + E)/
√

�2 − E2, and A, B, C, and D are N × N

matrices

Aij = − 1

2m
(I−

3 (xij ) + I+
3 (xij )) + δij ,

Bij = − i

2m
(I−

2 (xij ) − I+
2 (xij )),

Cij = − i

2m
(I−

4 (xij ) − I+
4 (xij )),

Dij = − 1

2m
(I−

1 (xij ) + I+
1 (xij )) (A7)

defined using

I±
1 (x) = N±Im

[
J0

((
kF,± + iξ−1

E

)|x|) + iH0
((

kF,± + iξ−1
E

)|x|)]
I±

2 (x) = −iN±sgn(x)Re
[
iJ1

((
kF,± + iξ−1

E

)|x|) + H−1
((

kF,± + iξ−1
E

)|x|)]
(A8)

I±
3 (x) = −N±Re

[
J0

((
kF,± + iξ−1

E

)|x|) + iH0
((

kF,± + iξ−1
E

)|x|)]
I±

4 (x) = −iN±sgn(x)Im
[
iJ1

((
kF,± + iξ−1

E

)|x|) + H−1
((

kF,± + iξ−1
E

)|x|)],
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where Jν and Hν are the Bessel function of the first kind
and Struve function, respectively. We have also introduced
the shorthands N± = 1 ∓ ζ/

√
1 + ζ 2,kF,± = kF (

√
1 + ζ 2 ∓

ζ ), and ξE = vF /
√

�2 − E2 = ξ0/
√

1 − E2/�2. In these
expressions, we have used the dimensionless Rashba coupling
ζ = mαR/kF , along with the Fermi wave number kF and
velocity vF . The quantity ξ0 = vF /� is the superconducting
coherence length. In the limit of infinite coherence length, all
energy dependence except for the one in λ vanishes, giving us
a polynomial eigenvalue problem in λ. Polynomial NLEVPs

of order n and dimension N can be written as generalized
linear eigenvalue problems of size nN × nN . As discussed
in Ref. [22], it turns out that setting ξE → ξ0 in the block
matrices is an excellent approximation which enables us to
treat the NLEVP (A6) as a second order polynomial eigenvalue
problem in λ.

Since the system is once again translation invariant, we can
block diagonalize the matrix in momentum space and obtain an
analytical expression for the spectrum. In terms of the Fourier
transforms of the individual N × N matrices, we get

E2
k = �2

(
A2

k + B2
k + C2

k + D2
k − 1/α

)2 − 4(AkBk + CkDk)2(
A2

k + B2
k + C2

k + D2
k − 1/α

)2 − 4(AkBk + CkDk)2 + 4
(
A2

k + C2
k

) . (A9)

The topological Z2 phase boundaries can be extract from
Eq. (A6) by setting E = 0 together with ka = 0,π and
requiring that det G̃−1 = 0. This yields an equation of the
form

α0,π = 1√
A2

k + D2
k

∣∣∣∣
ka=0,π

. (A10)

Above procedure results in simple exact expressions for the
Z2 phase boundaries employed in the main text.

3. Helical Shiba chain

In the helical case, we start from (A4) by setting αR = 0, and
Sj = S(cos ϕj sin θ, sin ϕj sin θ, cos θ ), where ϕi is directly
proportional to xj . In other words, ϕj = 2kHxj = 2jkHa,
where the helical wavenumber kH determines the pitch and
a is the lattice constant. We now also assume that the
superconducting bulk is three dimensional.

Following the steps in Ref. [17], we can—similarly to the
ferromagnetic case—transform this problem into a NLEVP
G̃−1(E)�(E) = 0, where

G̃−1 =

⎛
⎜⎜⎜⎝

λ2h↑↑ − λ
α

−λd↑↓ −λ2h↑↓ λd↑↑

−λd↓↑ −h↓↓ + λ
α

λd↓↓ h↓↑

−λ2h↓↑ λd↓↓ λ2h↓↓ + λ
α

−λd↓↑

λd↑↑ h↑↓ −λd↑↓ −h↑↑ − λ
α

⎞
⎟⎟⎟⎠.

(A11)

The subblock matrices are defined according to

hσσ ′
ij ≡ δij δσσ ′ + �ij sin(kF |xij |)〈σ |σ ′〉ij ,

(A12)
dσσ ′

ij ≡ �ij cos(kF |xij |)〈σ |σ ′〉ij ,
where

�i �=j ≡ 1

kF |xij |e
− |xij |

ξE , �ii ≡ 0,

〈↑ | ↑〉ij = 〈↓ | ↓〉∗ij = cos2 θ

2
eikH xij + sin2 θ

2
e−ikH xij ,(A13)

〈↑ | ↓〉ij = 〈↓ | ↑〉ij = i sin θ sin kHxij .

After performing a Fourier transformation of the block
matrices, the spectrum can be found by setting the determinant
of the matrix in Eq. (A11) to zero. This procedure yields the
energy bands

Eβγ (k) = �
λβγ (k)2 − 1

λβγ (k)2 + 1
, (A14)

where β and γ = ±1 are independent signs, and

λβγ (k) = β

√
B2 − 4AC − 8A2

4A
− B

4A

+ γ

2

√
B2

2A2
+ β

8B + 4BC
A

− B3

A2

2
√

B2 − 4AC − 8A2
− C

A
+ 2,

(A15)

where we have defined the functions

A = α2[(h↑↓
k )2 − h

↑↑
k h

↑↑
−k],

B = α3[h↑↑
k (d↑↑

−k )2−h
↑↑
−k(d↑↑

k )2 + 2d
↑↓
k h

↑↓
k (d↑↑

k −d
↑↑
−k )]

+α3(h↑↑
−k − h

↑↑
k )[h↑↑

k h
↑↑
−k + (d↑↓

k )2 − (h↑↓
k )2 + α−2],

(A16)
C = α4[(d↑↓

k )2 − (h↑↓
k )2 + h

↑↑
k h

↑↑
−k − d

↑↑
k d

↑↑
−k ]2

+α4[2d
↑↓
k h

↑↓
k − h

↑↑
k d

↑↑
−k − d

↑↑
k h

↑↑
−k]2 + 1

+α2[2(d↑↓
k )2 − (d↑↑

k )2 − (d↑↑
−k )2 − (h↑↑

k − h
↑↑
−k)2].

The topological phase boundaries are derived using the
same approach as before: set E = 0 everywhere in the Fourier
transformed (A11), set ka = 0,π , and require det G̃−1 = 0.
This gives us the phase boundaries in a compact form:

α0,π = 1√
(h↑↑

k )2 + (d↑↑
k )2

∣∣∣∣
ka=0,π

. (A17)

For a planar helix, this gives the complete phase diagram for
the Z2 invariant, but as soon as we move away from θ = π/2,
gapless regions emerge. These cannot be accounted for using
this procedure since the gapless regions have gap closings
away from ka = 0,π . However, the above relation provides a
complete Z2 description of a planar helix.
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APPENDIX B: TOPOLOGICAL HAMILTONIANS
FOR SHIBA CHAINS

1. Interpretation of G̃−1(E)

We begin by elucidating the interpretation of the matrix
G̃−1, which appears as a fundamental object in the low-energy
theory of Shiba chains:

(E − H0)� ≡ G−1
0 � =

∑
j

Vj δ(r − rj )�, (B1)

where G0 is the unperturbed Green’s function of the underlying
superconductor and Vj = J (Sj · σ ). This can be further
written as

�(r) =
∑

j

G0(r − rj )Vj�(rj ). (B2)

By restricting the position vector to the positions of magnetic
atoms and introducing the notation �(ri) = �i we obtain a
closed eigenvalue problem �i = ∑

j G0(rij )Vj�j . Regarding
G0(rij ) and Vj as matrices in the site indices, we can write
the eigenvalue problem in more abstract matrix notation
as

(I − G0V )� = G0
(
G−1

0 − V
)
� = 0 (B3)

or equivalently as

G0G
−1� ≡ G̃−1� = 0. (B4)

Hence we see that the matrix G̃−1 can be viewed as a product
of the Green’s function of the unperturbed superconductor and
the inverse Green’s function of the full system restricted to
the magnetic sites. The spectrum of the chain can be found
as poles for the Green’s function det G−1(E) = 0. Since G0

does not have subgap poles or zeros, the subgap spectrum can
equivalently be obtained from det G̃−1(E) = 0. Since also the
subgap kernel of G̃−1(E) and G−1(E) coincide, the difference
between them is largely immaterial.

2. Relation between H̃ and G̃−1(E)

While the NLEVP matrices in Eqs. (A6) and (A11) contain
all the information about the subgap energy bands and their
topology, the straightforward solution of the spectral problem
is rather resource intensive and a more expedient method is
hence desirable. Also, typically the topological properties are
extracted from a 1D Hamiltonian of the system which is not
the fundamental object in the low-energy effective theory. In
clean systems, it is possible to obtain the winding number
from the NLEVP matrix in reciprocal space as outlined in
Ref. [22]. However, in disordered systems, momentum is not a
good quantum number and alternative methods are required. In
cases where only the parity of the topology is relevant, the Z2

invariant can be obtained from the Pfaffian of the Hamiltonian
in a suitable basis, avoiding the need for an explicit solution
of the eigenvalues and vectors. Therefore it is desirable to find
a similar approach.

For a given NLEVP

G̃−1(E)�(E) = 0, (B5)

we can define a topological Hamiltonian H̃ = G̃−1(0) with an
auxiliary spectral problem as

H̃�H̃ (E) = E�H̃ (E). (B6)

We stress that H̃ should not be employed in finding the
spectrum of the system. However, a closer look reveals that
the topological properties of models (B5) and (B6) can be
obtained from one another: in the limit E → 0, we have
�(E) → �H̃ (E) and G̃−1(E) → H̃ . In particular, this means
that the gap closings of the two systems coincide, and that
their zero energy solutions are exactly identical. Further, the
Hamiltonian H̃ inherits the symmetries of the original system.
Consequently, we can obtain theZ2 topological phase diagram
of the original system by considering that of the effective
system introduced here; as the Pfaffian only changes sign
at gap closings, and a negative sign corresponds directly
to zero energy modes [2], the phase diagrams will also
coincide.

To regard H̃ as a Hamiltonian, it must be Hermitian.
This is true in the clean limit and for vacancy disorder,
where the NLEVP matrices in Eqs. (A11) and (A6) are
Hermitian. However, the case of local α disorder requires a
slight reformulation of the problem. Going back to Eq. (A5)
but allowing for α to vary locally, we have

�(xi) =
∑

j

αjJE(xij )�(xj ). (B7)

Multiplying both sides by αi �= 0 and then going through
the steps to obtain the NLEVP, we find in the ferromagnetic
case⎛
⎜⎝

a′λ2 − βλ b′λ c′λ2 −λd ′
−b′λ βλ − a′ −λd ′ c′

−c′λ2 −λd ′ a′λ2 + βλ −bλ

−λd ′ −c′ b′λ −βλ − a′

⎞
⎟⎠� = 0,

(B8)
where we have introduced the matrix βij = αiδij , and the
prime on the other submatrices indicate a′

ij = αiαjaij . In the
limit E → 0, this lets us define a Hamiltonian H̃ as outlined
previously in this chapter; as the resultant Hamiltonian is a
real matrix in the BDI symmetry class, it can conveniently
be antisymmetrized through multiplication with the particle-
hole symmetry operator, as was done in the dense chain.
This allows a direct calculation of the Pfaffian, yielding
the phase diagram of the system. In the helical model the
process is somewhat more involved: while a Hermitian H̃

can be similarly obtained, it is a complex Hamiltonian in
the symmetry class D, preventing simple antisymmetrization
by use of the PHS operator. However, in the planar limit,
θ = π/2, it is also in symmetry class BDI. Consequently the
effective Hamiltonian in that model can be made real by a
unitary transformation H̃ → U †H̃U with U = exp(i π

4 τzσz),
and subsequently antisymmetrized to allow calculation of the
Pfaffian. As seen in Ref. [17], the Z2 phase boundaries of
the helical model are independent of the angle θ , and hence the
phase diagram thus obtained is correct for general parameters
with the caveat that the boundaries of gapless phases are not
captured by the approach.
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