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In this work we consider the influence of potential impurities deposited on top of two-dimensional chiral
superconductors. As discovered recently, magnetic impurity lattices on an s-wave superconductor may give rise
to a rich topological phase diagram. We show that a similar mechanism takes place in chiral superconductors
decorated by nonmagnetic impurities, thus avoiding the delicate issue of magnetic ordering of adatoms. We
illustrate the method by presenting the theory of potential impurity lattices embedded on chiral p-wave
superconductors. While a prerequisite for the topological state engineering is a chiral superconductor, the
proposed procedure results in vistas of nontrivial descendant phases with different Chern numbers.
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Introduction. Engineering novel quantum phases of matter
with exotic properties is a rapidly growing trend in contem-
porary physics. The main goal is to employ simpler and well-
understood ingredients and methods to create more complex
structures with desirable properties. Recent promising efforts
to realize [1–3] topological superconductivity in nanowire
systems [4,5] demonstrate the power of the approach. While it
seems unlikely that Nature directly provides us with Majorana
quasiparticles that could be employed in quantum information
applications [6], it is increasingly probable that those can
be achieved in the laboratory. In the spirit of engineering
novel controllable states of matter, we show how to realize
a complex hierarchy of topological phases with potential
impurity superstructures adsorbed on chiral superconductors.

Magnetic atoms on s-wave superconductors give rise to
Yu-Shiba-Rusinov subgap states [7–10] which have been
probed experimentally by scanning tunneling microscopy
(STM) [11–14]. Superstructures fabricated from magnetic
atoms are currently under active experimental [15–17] and
theoretical research [18–33]. Intriguing properties of these
systems include the possibility for various one-dimensional
(1D) topological superconducting phases with Majorana
bound states and rich two-dimensional (2D) topological phases
[34–37]. A topologically nontrivial phase is known to arise in
1D ferromagnetic arrays when the underlying superconductor
has a strong Rasha spin-orbit coupling or in arrays with
helical magnetic textures. In 1D structures there are theoretical
arguments why magnetic self-tuning could result in a nontrivial
ground state [20–22,28,32,38], though in real systems there are
a number of complications. In particular, in 2D structures the
nature and tunability of magnetic textures is a delicate and
largely unsolved question.

Very recently it was proposed that potential impurities
could be utilized to realize interesting topological states in
1D structures [39] and 2D toy models [40]. The procedure
requires a non-s-wave superconductor host material with
chiral or helical pairing components but circumvents the need
for specific magnetic textures of adatoms. In the present
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work we provide a microscopic theory of potential impurity
structures on chiral superconductors. We show that given a
nontrivial chiral superconductor, the potential impurities give
rise to a complex hierarchy of distinct nontrivial phases.
The Chern number of the phase can be structurally designed
by employing different impurities and varying the impurity
lattice constant. We illustrate the procedure with a chiral
p-wave superconductor. However, our results are not restricted
to chiral p-wave systems and also apply to time-reversal
breaking s + p mixtures, higher chiral superconductors, and
the artificial p-wave model realized in sandwich structures
of a 2D semiconductor proximity coupled to an s-wave
superconductor and a ferromagnetic insulator.

Chiral p-wave systems. Here we formulate the theory
describing the system in Fig. 1(a). The bulk electrons in
a 2D spinless px + ipy superconductor are described by a
Bogoliubov–de Gennes (BdG) Hamiltonian

H(bulk)
p = ξpτz + �(pxτx − pyτy),

expressed in the Nambu basis (�̂p,�̂
†
−p). Here the single-

particle energy is ξp = p2

2m
− εF with the Fermi energy εF ,

and � is the superconducting p-wave pairing amplitude which
is taken as real and positive. The Pauli matrices τi operate in
the particle-hole space. The collection of adatoms act as local
potentials described by

H(imp)(r) = Uτz

∑
n

δ(r − rn),

where rn are the positions of the atoms and U is the impurity
strength. Our treatment is also valid if we consider impurities
of a finite size (see the Supplemental Material (SM) [41]
for details). The total Hamiltonian consists of the sum H =
H(bulk) + H(imp).

Each potential impurity atom binds a single physical subgap
state [42–44], which in the BdG formalism is represented

by a pair of states at energies ε = ± γβ2−
√

1+β2(1−γ 2)
1+β2 
t for

repulsive potential β > 0. For attractive potential β < 0 the
solutions are otherwise the same with the exception of a minus
sign in front of the square root [41]. Here we have defined
quantities β = πνU , γ = �̃√

1+�̃2 ,�̃ = �
vF

, and 
t = �kF√
1+�̃2 ,
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FIG. 1. (a) Schematic representation of the studied system,
consisting of potential scatterers deposited on top of a chiral
superconductor. The topological phase on the impurity lattice can
be be widely modified from that of the underlying compound. (b) In
two-band models the Chern number can be illustrated through the
motion of the d̂(k) vector on the unit sphere. A long-range hopping
translates to high Chern numbers through rapid rotation of d̂(k).

where vF is the Fermi velocity and ν the density of states
in the bulk [45].

The parameter 
t represents the p-wave bulk gap determin-
ing the coherence length ξ−1 = 
t

vF
and β is a dimensionless

impurity strength. Strong impurities with β � 1 give rise
to deep-lying subgap states close to the Fermi level, while
weak impurity states reside near the gap edge. Analogous to
the Shiba states in a 2D system [14], the potential impurity
wave functions have asymptotic form eikF r−r/ξE /

√
kF r away

from the impurity where the decay length is given by ξE =
ξ/

√
1 − (E/
t )2.

When impurity atoms are arranged into a regular array
with a lattice constant a < ξ , the impurity states bound to a
particular atom are hybridized with several nearest neighbors.
This leads to the formation of subgap energy bands which
support rich topological properties. To study the topologi-
cal properties of the subgap bands, we formulate effective
low-energy theory valid in the deep-dilute impurity regime
β � 1,

√
kF a � 1 in the vicinity of the Fermi level. However,

as we discussed below, the effective theory yields an exact
topological phase diagram which is valid also outside the
deep-dilute regime. As outlined in the Supplemental Material
[41], a similar procedure that was applied in the Shiba systems
[23,24,29,34] results in a description of the impurity lattice in
terms of the tight-binding Hamiltonian

Hmn =
(

hmn 
mn

(
mn)† −h∗
mn

)
. (1)

The effective Hamiltonian has an N × N BdG block structure,
where N is the number of impurity atoms. The BdG blocks
are given by

hmn =
{

ε0, m = n

A(rmn), m �= n,
(2)


mn =
{

0, m = n

B(rmn) xmn+iymn

rmn
, m �= n,

where the on-site term ε0 = 
t (γ − β−1) arises from the
decoupled impurity energy, rmn = |rm − rn| is the distance
between two impurity lattice sites, and xmn = xm − xn, ymn =

ym − yn. The matrix elements depend on the functions

A(r) = −2
t

π
Re{ηK0[−iηkF r]},

B(r) = −i
2
t

π
Re{ηK1[−iηkF r]},

where Ki(x) stands for the modified Bessel function of the
second kind with index i and η = 1 + i�̃. The block matrices
in Eq. (2) define a hopping model where the amplitudes satisfy
asymptotic behavior 
mn,hmn ∼ e−rmn/ξ√

rmn
at long distances. The

model (1) with entries (2) is a lattice discretized chiral
superconductor with rich topological properties discussed
below.

Topological properties. The topological phase diagram of
the effective model (2) is conveniently extracted in momentum
space. For any Bravais lattice we can define Fourier transforms

dx(k) = Re
∑

R

eik·R
R, dy(k) = −Im
∑

R

eik·R
R,

dz(k) =
∑

R

eik·RhR,

where the sum is over all the lattice vectors R = (xmn,ymn).
The Hamiltonian can then be written in a simple form H (k) =
d(k) · σ with energies E(k) = ±|d(k)|. The effective Hamil-
tonian H (k) describes the gapped two-band model satisfying
the particle-hole symmetry CH (k)∗C−1 = −H (−k), where
C = σxK and K denotes complex conjugation. The studied
model belongs to the Altland-Zirnbauer class D, admitting a
Z-valued classification by Chern numbers [46]. For two-band
models the Chern number is found by evaluating the expression

C = 1

4π

∫
BZ

d2k
d

|d|3 ·
(

∂d
∂k1

× ∂d
∂k2

)
, (3)

which yields integers. The integer value of the Chern number
can be visualized through construction depicted in Fig. 1(b).
The Hamiltonian defines a unit vector d̂(k) = d(k)/|d(k)|
which can be depicted as a point on the surface of a unit sphere.
Absolute value of the Chern number measures how many times
d̂(k) covers the sphere when k = (kx,ky) covers the Brillouin
zone of the impurity lattice. The long-range hopping gives rise
to rapidly rotating components of d̂ vector and thus may lead
to chiral states with Chern numbers much larger than unity.

As pointed out in the SM [41], the effective description
(1), derived under assumptions of a deep and dilute impurity
configuration β � 1,

√
kF a � 1, actually acts as a topolog-

ical Hamiltonian yielding the exact phase diagram which
is also valid outside the deep-dilute regime. This happens
because at the topological phase transition, accompanied by
the energy gap closing, the effective model (1) becomes exact
irrespectively of the values of β and kF a.

In Fig. 2 we have plotted the topological phase diagram and
the energy gap diagram for square lattices. It is clearly evident
that the system possesses multiple phases which can be tuned
by the separation and strength of the impurities. For higher
values of the hybridization parameter kF a the hopping is highly
oscillatory, thus leading to more rapid alternation of Figs. 3
and 4. The generic features of the phase diagrams seem to be
in line with the Chern mosaic behavior discovered in magnetic
lattices [34,35]. For robust states the energy gaps are of the
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FIG. 2. (a) Chern number (above) and energy gap (below)
diagrams for a square lattice of impurities with lattice constant a

and coherence length ξ/a = 5. The quantity β−1 in the vertical
axis controls the strengths of the impurity. The β−1 = 0 line,
corresponding to infinite impurity potential |U | = ∞, divides the
repulsive and attractive impurity regions. The horizontal axis kF a

controls the hybridization between the bound states centered at
different impurity sites. (b) Same as (a) but for coherence length
ξ/a = 10.

FIG. 3. The same quantities as in Fig. 2 but for larger values of
the hybridization parameter kF a.

FIG. 4. The same quantities as in Fig. 2 but for larger values of
the hybridization parameter kF a.

order of 0.1–0.2
t . Probably larger gaps can be obtained,
but studying those would require more elaborate theory as
the employed approximations become unreliable. Potential
impurity superstructures clearly allow remarkable possibilities
for topological state engineering in the studied system without
uncertainty associated to the magnetic textures.

We have also diagonalized the system on an infinite strip
geometry, where the topological edge modes show up as states
traversing the bulk gap. These results are discussed in more
detail in the Supplemental Material.

Physical realizations. In the above we have considered
potential impurities in spinless chiral p-wave superconduc-
tors. Our theory can be straightforwardly generalized to the
candidate state of Sr2RuO4 where the opposite spins pair to
form Lz = 1 Cooper pairs. Since potential impurities do not
mix spin, the 4 × 4 model with spin leads to two identical but
decoupled 2 × 2 blocks of form Eq. (1). The Chern number can
be evaluated for each block separately, leading to doubling of
the Chern number and the edge modes compared to the spinless
case.

However, there are various other candidates for the host
materials. The requirements for topological state engineering
by potential impurities are rather general and met in a
variety of other systems as well. The basic ingredient is that
localized potentials must bind subgap bound states in the
host material. These bound states in chiral superconductors
are generic since Anderson’s theorem which guarantees the
robustness of s-wave superconductors to potential disorder
[10] is not operational in time-reversal breaking systems. The
second requirement is the phase winding structure 
0e

inϕk ,
where tan ϕk = ky/kx , of the gap function of the unperturbed
bulk. This will translate to a type of (xij ± iyij )n/rij phase
structure of the gap function 
ij in the effective low-energy
BdG Hamiltonian (2), indicating topologically nontrivial
superconductivity. In addition, algebraically decaying hop-
ping up to the coherence length is also a universal feature
of gapped states. Thus any 2D chiral (p-, d-, f ...-wave)
superconductor satisfies the general requirements and exhibits
the characteristic features of the studied chiral p-wave model.
We note that different crystal structures of the bulk give rise
to distinct lattice regulations of chiral gap functions. Also, for
a continuum expression 
(k) ∼ (kx + iky)n, corresponding to
Chern number n, there exists many different lattice versions.
However, in the case where the impurity lattice constant is
much larger than that of the underlying superconductor, the
continuum approximation should prove sufficient.

Dominantly p-wave superconductors with s-wave pairing
amplitude, having a gap structure 
s + 
peiϕk , is also a
sufficient starting point for topological state engineering when

p > 
s . In this case potential-impurity-induced bound states
exist [42] and phase winding is inherited to the effective
low-energy model. Such (s + p)-wave structure is satisfied
in the artificial chiral superconductor realized in 2D Rashba-
coupled semiconductors sandwiched by an s-wave super-
conductor and a ferromagnetic insulator [47] at sufficiently
strong magnetization. Patterning the semiconductor layer with
potential impurities or otherwise realizing the potential lattice
by applying an external structured potential gate would enable
fabrication of nontrivial topological states far beyond Chern
number |C| = 1.
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Chiral and time-reversal breaking superconductors have
also been predicted in various other low-dimensional systems.
While these have not been observed in experiments so far, it is
plausible that some will be realized in the future. At that point
a large number of other chiral states will immediately become
accessible through topological state engineering by potential
superstructures.

Discussion. The bulk topology in a topologically nontrivial
state is reflected on its boundary properties. This property
could be employed in experimental identification of nontrivial
bulk states. The subgap density of states in chiral supercon-
ductors arises due to the chiral edge modes as illustrated in
Fig. 1(a). Probing the local density of states by STM reveals
that the subgap modes are localized on the boundary of the
impurity lattice [34]. This method can be employed to show
that the impurity lattice is in a different topological phase than
the underlying chiral superconductor. Experimental extraction
of specific value of the Chern number of a superconductor,
while in principle possible, is an unsolved issue at present.
However, by fabricating interfaces between lattices of, say,
different lattice constants it is possible to compare whether the
two adjacent structures belong to the same topological phase.
If the structures belong to different phases, there must exist
pronounced subgap local density of states at the boundary due
to topological edge modes.

The circulating Majorana edge modes, depicted in Fig. 1(a),
carry heat in otherwise gapped systems and could find
applications in future electronics as chiral heat guides. These
waveguides could be designed on top of the superconductor

by employing different impurity lattice structures. The Chern
number of lattice yields the number of parallel thermal
edge channels, so high Chern number states are generally
more effective thermal conductors compared to low Chern
number states. Also, Majorana bound states trapped in
lattice defects could also be interesting from a quantum
information point of view. While the applications of chiral
superconductors are still emerging, our work points to a
conceptually simple method to obtain them in nanofabricated
structures.

Conclusions. In this work we proposed a method to
engineer topological states by potential impurities deposited
on 2D chiral superconductors. In particular, we presented a
microscopic theory of chiral p-wave superconductors with
impurity lattices. This allowed us to calculate the topological
phase diagram for general impurity strengths and hybridiza-
tion. Our results have remarkable conceptual and practical
consequences: given a 2D chiral superconductor, it is possible
to fabricate a large number of nontrivial descendant states by a
straightforward procedure. Because potential-induced subgap
states are generic in time-reversal breaking superconductors
and superfluids, our results have universal appeal irrespective
of the platform and microscopic details of the chiral state.
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