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Recent developments in the search for topological superconductivity have brought lattices of magnetic
adatoms on a superconductor into intense focus. In this work we will study ferromagnetic chains of adatoms on
superconducting surfaces with Rashba spin-orbit coupling. Generalizing the deep-impurity approach employed
extensively in previous works to arbitrary subgap energies, we formulate the theory of the subgap spectrum
as a nonlinear matrix eigenvalue problem. We obtain an essentially analytical description of the subgap
spectrum, allowing an efficient study of the topological properties. Employing a flat-band Hamiltonian sharing
the topological properties of the chain, we evaluate the Z-valued winding number and discover five distinct
topological phases. Our results also confirm that the topological band formation does not require the decoupled
Shiba energies to be fine-tuned to the gap center. We also study the properties of Majorana bound states in the
system.
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I. INTRODUCTION

The physics of magnetic impurities in superconductors
has been studied extensively since the seminal works by Yu,
Shiba, and Rusinov [1–3]. A magnetic moment locally disrupts
the superconducting condensate, giving rise to subgap bound
states localized in the vicinity of the magnetic moment. In
the past two decades, scanning tunneling microscopy (STM)
studies of magnetic impurity physics have complemented
this theoretical understanding [4,5]. The interest in these
systems was renewed after proposals [6–12] to realize one-
dimensional (1D) and 2D topological superconductors by
lattices of magnetic adatoms on superconducting surfaces. The
promising observation [13] of signatures of Majorana bound
states (MBSs) in ferromagnetic chains has brought the topic in
the intense focus recently. Similar signatures are also claimed
to have been observed in another recent experiment [14]. Mag-
netic chains, with their respective advantages and weaknesses,
offer an interesting alternative to the nanowire systems [15–18]
as a route towards topological superconductivity.

In this work we concentrate on the properties of 1D
ferromagnetic adatom lattices deposited on a 2D super-
conducting film with a Rashba spin-orbit coupling (SOC).
We will study the situation where each magnetic moment
binds a single subgap Shiba state with energy � 1−α2

1+α2 , where
the dimensionless coupling α = JSν0π is determined by
microscopic parameters—ν0 is the density of states, J is the
exchange coupling, and S is the magnitude of the impurity
spin—and � is the pairing gap of the superconductor [8,12].
Compared to the dense-chain limit [19,20], the impurity sites
in a Shiba chain are separated by greater distances so that the
atomic orbitals of different sites do not directly overlap. The
Shiba states are concentrated around the magnetic moments
with wave functions decaying as e−r/ξ

r1/2 in 2D and e−r/ξ

r
in 3D

superconductors, where the exponential decay is controlled by
the superconducting coherence length ξ0. The wave functions
are more slowly decaying in two dimensions, which was
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qualitatively confirmed in a recent experiment [21]. The slow
spatial decay of the bound states at length scales below
ξ0 has important physical implications. The separation of
the magnetic moments can easily be much shorter than the
coherence length, thus allowing a significant hybridization
of bound states separated by dozens of neighbors. Therefore
effective theories of subgap bands generically exhibit a long-
range hopping, adding its special properties to the problem.
The long-range hopping nature of the Shiba states will give
rise to rich topological properties, especially in 2D magnetic
lattices where it is possible to achieve dozens of different
phases and Chern numbers much larger than unity [22,23].

The topological properties of magnetic chains with helical
[7–10,24–28] and ferromagnetic [19,29–31] order have al-
ready been studied in considerable detail. An interesting recent
step towards a more realistic description of Shiba systems
was taken by the generalization of the theory of topological
Shiba bands to the multichannel case to accommodate multiple
bound states on a single impurity [30]. That work, like most
of the studies capturing the microscopic structure of the Shiba
states, is restricted to the deep-dilute impurity limit where the
energy of the decoupled Shiba states reside close to the gap
center, i.e., α ≈ 1. This is motivated partly by the significant
theoretical simplification arising from the linearization of the
spectral problem in energy, which allows an elegant and simple
formulation in terms of an effective Hamiltonian [8]. Our work
takes a step towards a more general description by formulating
a theory of Shiba bands beyond the deep-impurity regime. This
is important, since tuning the parameters controlling the value
of α is difficult in experimental setups. As highlighted in our
work, the microscopic parameters do not need to be fine-tuned
to the deep-impurity regime to reach the topological phase,
addressing some concerns about the deep-impurity limit that
have recently been raised [32].

In Sec. II, we formulate the subgap spectral problem of a
ferromagnetic Shiba chain as a nonlinear matrix eigenvalue
problem and obtain an essentially analytical solution for the
dispersion and wave functions valid for arbitrary subgap
energies. In Sec. III, we show that the 1D chain has an
emergent chiral symmetry which enables us to define a
Z-valued winding number invariantN classifying the different
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FIG. 1. Schematic figure of the ferromagnetic chain of atoms
embedded on a two-dimensional superconductor.

phases. In Sec. IV, we discover five distinct topological phases
with winding numbers N = −2, − 1, 0, 1, 2, discuss the
implications of the observation, and compare the results to the
deep-impurity formulation. We study the MBSs supported by
the chain in Sec. V, extracting the spatial decay of their wave
functions, topological gaps, and energy splitting. In Sec. VI,
we summarize our results and discuss their implications.

II. MODEL AND THE SPECTRAL PROBLEM

A. Subgap spectrum as a nonlinear eigenvalue problem

The starting point of our study is the system depicted in
Fig. 1 consisting of a 2D superconductor surface decorated by
magnetic impurities arranged in a chain with lattice constant
a. The system is described by the Bogoliubov–de Gennes
Hamiltonian

H =
(

k2

2m
− μ + αR(kyσx − kxσy)

)
τz

+�τx − J
∑

i

(Si · σ )δ(r − ri). (1)

The matrix structure of Eq. (1) corresponds to the Nambu
basis 
 = (ψ↑,ψ↓,ψ

†
↓, − ψ

†
↑)T ; τx,y,z and σx,y,z correspond

to Pauli spin matrices in the particle-hole and spin subspaces,
respectively. Here k2/2m − μ is the kinetic energy of the
electrons, αR is the spin-orbit coupling, and � describes the
pairing amplitude of Cooper pairs. The vector r is the position
of the electron, whereas ri describes the impurity positions.
We will focus on the case where all magnetic moments point
in the z direction. Consequently the system is in the symmetry
class D [33,34]. Inserting the Hamiltonian density into the
Bogoliubov–de Gennes equation H
 = E
, we obtain

{E − [ξk + αR(kyσx − kxσy)]τz − �τx}
(r)

= −J
∑

i

Sσzδ(r − ri)
(ri), (2)

where we have introduced ξk = k2/(2m) − μ. We can make
further progress by restricting the system to a one-dimensional
chain in the x direction, yielding, as seen in Appendix A, the
equation(

1 − α
E + �τx√
�2 − E2

σz

)

(xi) = −

∑
j �=i

JE(xij )σz
(xj ), (3)

where α = JSν0π = 1
2JSm, and JE is essentially given by

the propagator of the 2D bulk electrons. The specific form of
JE in this case was evaluated by Brydon et al. in Ref. [12]
and is presented in Appendix A. In the deep-dilute limit this
equation can be linearized in E/� and 1/

√
kF a, where kF is

the Fermi wave number and a is the chain lattice constant; this

allows projection onto the low-energy single impurity bands,
resulting in an effective two-band Hamiltonian [8]. However,
in this work we are interested in the behavior of the system
for arbitrary subgap energies, thus requiring a more general
approach to the problem. As outlined in Appendix A, it is
convenient to work in the basis of the eigenstates of τxσz,
in which case we can obtain a nonlinear eigenvalue problem
(NLEVP) for λ ≡ (� + E)/

√
�2 − E2 and 
,⎛

⎜⎜⎝
aλ2 − 1

α
λ bλ cλ2 −λd

−bλ 1
α
λ − a −λd c

−cλ2 −λd aλ2 + 1
α
λ −bλ

−λd −c bλ − 1
α
λ − a

⎞
⎟⎟⎠
 = 0.

(4)

Here a, b, c, d are N × N matrices (where N is the length
of the chain), and similarly λ is shorthand for λIN×N . The
coefficient matrices are of the form

aij = −
√

�2 − E2

2m
[I−

3 (xij ) + I+
3 (xij )] + δij ,

bij = − i

2m
[I−

2 (xij ) − I+
2 (xij )],

cij = −i

√
�2 − E2

2m
[I−

4 (xij ) − I+
4 (xij )],

dij = − 1

2m
[I−

1 (xij ) + I+
1 (xij )],

(5)

where xij ≡ xi − xj denotes the difference between positions
of magnetic moments and I±

i are given by the special function
expressions presented in Appendix A. It is important to
note that the submatrices have a nontrivial energy depen-
dence through the energy dependent coherence length ξE ≡
vF /

√
�2 − E2 (not to be confused with the kinetic energy ξk),

which in principle complicates the solution considerably. In
the limit where the energy-independent coherence length ξ0 ≡
vF /� goes to infinity this nontrivial dependence vanishes. The
problem (4) is a representative of NLEVPs A(E)
 = 0, where
A(E) is a matrix-valued nonlinear function of E and can be
thought of as a generalization of the usual linear Schrödinger
problem where A(E) = H − EI.

On physical grounds we know that since we are dealing
with a system of N magnetic moments with a single s-channel
bound state, Eq. (4) has N positive and N negative energy
solutions describing the magnetic subgap band. Most of the
previous works solve the problem in the deep-impurity limit by
linearizing the model, yielding a linear problem H eff
 = E


with an effective 2N × 2N Hamiltonian

Heff = �

(
I − αã iαc̃

−iαc̃† αã − I

)
, (6)

where ã = limE→0 a, c̃ = limE→0 c. This description is valid
for deep impurities α ≈ 1 close to the gap center coupled
by a weak hopping 1/

√
kF a 	 1. One of our central results

presented below is that by relaxing the conditions leading to the
two-band model we can show that the topologically nontrivial
phases extend outside the deep-impurity regime. Therefore it
is not necessary for the decoupled Shiba states to lie close to
the gap center to achieve topological phases, and there is no
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need to tune their energies if the hybridization, which can be
controlled by the distance between the magnetic moments, is
sufficiently strong.

B. Solution to the nonlinear eigenvalue problem

In the case of a periodic or infinite system, the problem
can be vastly simplified by going over to reciprocal space. The
submatrices a,b,c,d are all translationally invariant, allowing

a Fourier transform

ak =
∑
j �=i

aij e
ika(i−j ) (7)

which reduces the equation to a 4 × 4 NLEVP. In this form
we can find an expression for the bulk spectrum from the
usual eigenvalue condition by requiring that the determinant
of the matrix in Eq. (4) vanishes. This gives us a transcendental
equation for the energy,

E(k) = ±�

√√√√ (
a2

k + b2
k + c2

k + d2
k − 1/α

)2 − 4(akbk + ckdk)2(
a2

k + b2
k + c2

k + d2
k − 1/α

)2 − 4(akbk + ckdk)2 + 4
(
a2

k + c2
k

) . (8)

In comparison, the expression for the energy of the linearized
two-band model is

Eeff(k) = ±�

√
(1 − αãk)2 + α2c̃2

k . (9)

Note that this is not a transcendental equation, because E

is set to 0 in the expressions for ak and ck and hence it
gives E directly for any coherence length. However, Eq. (8)
can be solved numerically for any coherence length with
standard methods for transcendental equations. As shown in
Appendix B, it turns out that replacing ξE with ξ0 in the four-
band model gives an excellent approximation of the energy.
This has two important consequences. First, after setting
ξE → ξ0 on the right-hand side, Eq. (8) essentially provides
an explicit solution of the subgap energy bands typically
within accuracy of the order of 10−2� or even much better.
The accuracy of the solution could be numerically improved
systematically by iteration as also shown in Appendix B, but
for all practical purposes the zeroth-order solution is sufficient.
Second, since the replacement ξE → ξ0 in the bulk spectral
problem is seen to lead to negligible corrections to the energies,
we also employ this approximation when we solve the NLEVP
in real space to study the MBSs.

Remarkably, the eigenspinor can also be solved analytically
from the 4 × 4 NLEVP in reciprocal space. The components
of the eigenspinor 
λ(k) ≡ (x1, x2, x3, x4)T are, up to a
normalization factor,

x1 = −λ

[
c2 − d2 + λ2d2 − (ad − bc)2

λ2 − (a2 + c2)

]
,

x3 = λ(ac − bd) − c + λ(ab + cd + λb)(bc − ad + λd)

λ2 − (a2 + c2)
,

x2 = λ(ab + cd + λb)

λ2 − (a2 + c2)
x1 + λ(ad − bc + λd)

λ2 − (a2 + c2)
x3,

x4 = 1

c
[λbx1 + (a − λ)x2 + λdx3], (10)

where we have suppressed the k index on the functions a,b,c,d.
The eigenvector |E+〉 corresponding to the positive energy
can be found by inserting the appropriate solution E(k) >

0 of Eq. (8) into the expressions (10) for the components.
Importantly, the negative energy solution |E−〉 corresponding
to E(k) < 0 is related to the positive energy solution (at the

same k) through C|E+〉 = |E−〉 where C = τyσy in the original
basis of Eq. (1), or σz ⊗ σx in the rotated basis in which solution
(10) is obtained. The expression σz ⊗ σx stands for a 4 × 4
matrix where the Pauli matrices do not refer to the electron
spin anymore.

III. TOPOLOGICAL CONSIDERATIONS

A. 1D flat-band Hamiltonian with chiral symmetry

In this section we will present the topological properties of
the subgap Shiba bands described by Eqs. (8) and (10). In the
periodic table of topological insulators and superconductors,
d-dimensional gapped systems are typically classified by
studying associated d-dimensional (Bloch) Hamiltonians and
their symmetries. However, while we started with a 2D
Hamiltonian (1) we obtained subgap energy bands that are
essentially localized in the vicinity of the 1D chain of magnetic
atoms. In addition, the eigenstates |E±〉 are parametrized by
the 1D wave vector k and so the subgap spectrum is effectively
one dimensional. In the deep-dilute limit it is possible to
reduce the NLEVP to a linear problem in terms of an effective
Hamiltonian of type (6) and study the topological properties
by treating Heff as a bona fide 1D Hamiltonian. However, in
our case another strategy must be adopted due to the nonlinear
formulation of the problem. Therefore we define an effective
Hamiltonian in terms of the projectors of the subgap bands as

H̃ =
∑
ν=±

Eν |Eν〉〈Eν | ≡
∑
ν=±

EνP̂ν = E+P̂+ + E−P̂−.

(11)

The low-energy properties of the initial 2D system coincide
with those of the 1D Hamiltonian (11). When we are only in-
terested in the topological properties of the system, the precise
details of the energy bands are irrelevant and with no loss of
generality we can adiabatically flatten them E±(k) → ±1 and
study H̃ = P̂+ − P̂−. Notice that the property C|E+〉 = |E−〉
implies the anticommutation relation {C,H̃ } = 0, i.e., the 1D
system has the chiral symmetry and belongs to the symmetry
class BDI [33,34], similarly to the original Hamiltonian (1)
if motion and spin are restricted to the x and z directions,
respectively (ky = 0, Sj ‖ ẑ).
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B. Winding number

In noninteracting 1D systems with chiral symmetry the
topological classification is Z valued, thus the system can
support an arbitrary number of different topological states.
These states can be most conveniently obtained by evaluating
the winding number invariant given in the form

N = 1

4πi

∫ π/a

−π/a

dk tr[CH−1∂kH ], (12)

where C = C† = C−1 is the chiral symmetry operator and H

is a fully gapped 1D Bloch Hamiltonian [33,34]. As discussed
above, in the transformed basis the chiral symmetry operator
for this system is C = σz ⊗ σx . After inserting the flat-band
Hamiltonian H̃ in Eq. (12) and a few lines of algebra, outlined
in Appendix C, the winding number can be expressed in terms
of the band projectors as

N = 1

πi

∫ π/a

−π/a

dk tr[CP̂+∂kP̂+]. (13)

In the next section, we will analyze the topological phase
diagram by evaluating (13) as a function of the system
parameters.

C. Z2 invariant

The existence of chiral symmetry is typically approximate
in real systems and topological classification based on particle-
hole redundancy that is built into the Bogoliubov–de Gennes
formalism is expected to be less sensitive to disorder. Therefore
we also consider Kitaev’s Z2 invariant measuring the ground-
state fermion parity. The phase transition between different
parities is associated by the energy gap closing E(k) = 0 at
k = 0,π/a. This is useful, as the phase boundary between
of different Z2 phases can be explicitly obtained from the
NLEVP matrix in reciprocal space, as discussed in Ref. [35].
We are especially interested in the phase diagram as a function
of the single-impurity Shiba energy determined by α and the
hybridization parameter kF a. Setting E(k) = 0 at k = 0, π/a,
we can solve the gap closing lines as a function of α and kF a as

α = 1√
ã2

k + d̃2
k

∣∣∣∣
k=0,π/a

. (14)

This equation defines the phase boundary between regions of
different parity of the Z2 invariant, and is valid for arbitrary
coherence lengths. The corresponding equation for the
two-band model is given by

α = 1

ãk

∣∣∣∣
k=0,π/a

, (15)

allowing for simple comparison of the Z2 phase diagram of
the exact four-band solution and the two-band approximation
valid in the deep-impurity limit. In the presence of chiral
symmetry the Z2 phases are captured by the winding
number parity so considering it separately brings little
new information. However, formulas (14) and (15) yield
semianalytic phase boundaries of the different parity phases
and make their analysis very convenient without the need to
perform integral (13) everywhere.

FIG. 2. (a) Topological diagram of the four-band model, created
by plotting the winding number as a function of kF a and α. The
parameters used are ξ0 = 50a, ς = 0.1. Winding numbers from
−2 to +2 are represented. As kF a increases the winding number
configurations (quasi)periodically flip signs; this happens more often
with increasing ς . (b) Same parameters as in (a), but focused on a
narrower range of kF a values. (c) Energy of the lowest-lying positive
state for an infinite system as a function of kF a and α. Parameters
used are the same as in (a). The topological phase transitions are seen
here as bulk gap closings.

IV. TOPOLOGICAL PHASE DIAGRAMS

In the previous section we derived analytical formulas
describing the FM Shiba chain. In this section we will use
those results to examine the topological properties of the chain.
To that end we have used Eqs. (13) and (14) to calculate the
topological phase diagram of the system.

As seen in Fig. 2, the phase diagram thus obtained reveals
the presence of several topological phases, in accordance with
the BDI classification of the FM chain. In total we found
five phases, corresponding to winding numbers 0, ± 1, ± 2.
This feature is present in both the general model and in the
linearized two-band model, a feature missed in previous works
which either considered the parity of the winding number [12]
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or examined a parameter area too narrow to contain all the
winding numbers [29]. Often, nontrivial regions appear for
parameter values where the validity of the two-band model
breaks down, so a reliable identification of the phase diagram
requires the full machinery of the four-band model derived
in the present work. As seen in Fig. 2(c), the topological
phase transitions are accompanied by closings of the gap
as expected. A phase with winding number N supports |N |
degenerate MBSs; further, domain walls between regions with
different winding numbers N1 and N2 can support |N1 − N2|
bound states. However, while the energy gaps for phases
|N | = 1 can be as high as 0.25�, the |N | = 2 phases generally
have smaller gaps; this naturally provides a complication
in realizing domain walls with more than two MBSs. The
general behavior of the energy gap will be discussed in more
detail in the next section. Notice that significant regions of
the nontrivial topological phases extend to values α > 1.5
and α < 0.6 for small values of kF a (large hybridization),
translating to bound-state energies between −0.4� and 0.5�.
Thus, provided that the separation of the moments can be tuned
in the fabrication of the chain, topological superconductivity
should still be possible to realize despite recent concerns
[32] that the single-impurity energy cannot be fine-tuned
to zero.

It is interesting to compare the accuracy of the two-band
model to the exact four-band solution. Several recent papers
[8,24,35] have considered a similar chain with a helical spin
configuration in an intrinsically 3D system rather than the
ferromagnetic planar version with Rashba SOC that is the
focus of this paper. As seen in Ref. [35], the two-band and
four-band models are in fairly good agreement in the helical
system; however, in the ferromagnetic case the differences of
the models are more pronounced. While the two-band and
four-band models indeed agree in the deep-dilute limit α ≈ 1,
kF a � 1, the convergence is much slower than in the helical
3D model. In order to compare the two models, we plot the Z2

phases of the four- and two-band models, using Eqs. (14) and
(15), in Fig. 3. Even though the two-band model captures the

FIG. 3. Z2 phase diagram of the exact four-band model (red)
and the two-band deep-impurity (blue) model. Parameters used are
ξ0 = 50a, ς = 0.01. Note that the agreement is not accurate even
in the deep-impurity α = 1 regime. The agreement improves as kF a

increases and the system becomes more dilute.

behavior reasonably in the dilute regime kF a > 10π , it is evi-
dent that non-negligible departures remain. In the dense regime
kF a � 4π the differences become qualitatively significant and
the deep-impurity approximation starts to break down.

Having analyzed the impact of the parameter α, we move
on to consider the behavior of the topological phases as a
function of the normalized SOC strength ς = mαR/kF . In
Fig. 4 we plot the winding number as a function of kF a and
ς for different values of α. While the trivial regions do grow
when the single-impurity bound state is moved away from

(a)

(b)

(c)

FIG. 4. Topological phase diagram plotting the winding number
as a function of kF a and ς . The color scheme is the same as Fig. 2.
(a) Parameters used are α = 1, ξ0 = 50a. (b) Same diagram, but
α = 0.85. The trivial regions at the center and edges of the figure
are larger than in (a), but so are the |N | = 2 phases, even at the
expense of some trivial regions. (c) Topological phase diagram of
the two-band model. Parameters used are α = 1, ξ0 = 5a; compare
Fig. 1 in Ref. [12], which plots the parity of the invariant for the same
parameters.

014517-5
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the gap center α = 1, for the parameters chosen here, the
N = ±2 phases grow as well; hence, lowering α in this case
makes even parity more likely. While the linearized model
may not quantitatively agree with the four-band model, its
phase diagram shows many of the same characteristics. To
make contact with previous work, we present in Fig. 4(c) a
topological phase diagram similar to that of Fig. 1 in Ref. [12].
The evaluation of the winding number reveals a richer structure
of topological regions as well as entirely new nontrivial
regions compared to the Z2 classification presented in that
work.

In all the diagrams presented here, we find that |N | � 2.
The topological phases of the studied system are determined
by an effective two-band model describing the hybridized
Shiba states, as seen in Eq. (11). In a model containing
only nearest-neighbor hopping, the absolute value of the
winding number would be at most unity. The appearance of
|N | = 2 states signals that long-range hopping can become
significant compared to the combined effect of the on-site
energy and the nearest-neighbor hopping terms. We are not
aware of any fundamental reason why even higher winding
number phases could not be present, in analogy to the high
Chern number phases in the 2D model [22]. However, at
least in the physically motivated parameter region studied
here we do not find examples of phases with higher winding
numbers.

V. MAJORANA BOUND STATES

In the previous section we analyzed the topological prop-
erties of the system, finding values for the winding number
between −2 and +2. In practice, realization of these phases
may be limited by factors such as system size and temperature.
In this section we will study the energy scales and spatial
decay of the Majorana bound states in finite chains with
open boundary conditions. This is carried out by numerically
solving the 4N × 4N NLEVP (4) in real space.

A robust topological phase requires the existence of a
well-defined energy gap between the MBSs at zero energy
and the bulk states. In the limit of an infinite system, this
gap can be straightforwardly calculated using Eq. (8). In
Fig. 5(a) we have plotted the energy gap of the system as
a function of kF a and α. Excepting an area of low gap size

around certain k = 0 transitions, the energy gap is generally
of the order of 0.1�, reaching values around 0.25� at the
center of the |N | = 1 region; assuming a gap size similar
to the 1.36 meV seen in the experiment on Pb surface in
Ref. [13], this corresponds to temperatures ≈ 4 K. While the
parameters for a realistic system may not reach this maximum
it is clear that there are wide regions where the gap size is large
compared to temperatures that can realistically be reached in
experimental setups. The |N | = 2 phases generally have a
much lower bulk gap, often by an order of magnitude. For finite
systems the energy gap and the MBS splitting will depend
on the chain length. In Figs. 5(b) and 5(c) we have plotted
the gap and MBS energy as a function of chain length in
the |N | = 1 and |N | = 2 region, respectively. In the |N | = 1
region the dependence of the energy gap on the chain length
is negligible, and for relatively short chains with N � 50 the
MBS spitting is two orders of magnitude smaller than the
energy gap. The oscillating splitting of the MBSs localized
at each end of the wire will first go down exponentially after
which it settles on a slower algebraic suppression as discussed
previously for wave functions in Ref. [24]. The algebraic
tail of the MBS splitting could, in principle, be harmful for
quantum information applications, though the absolute value
of the splitting is orders of magnitude smaller than the gap.
For the |N | = 2 phase the energy gap is first reduced by an
increasing chain length before converging to a constant value.
Observation of the double MBSs at each end is limited by
the large splitting seen in short chains, hence requiring larger
system sizes and lower temperatures.

Besides the splitting behavior we are also interested in the
spatial decay of the MBS wave functions. This was previously
analyzed in the case of a helical chain by Pientka et al. [24]
An analytical solution of this problem is beyond the scope of
this work, but numerical parameter fitting indicates that the
envelope of the wave functions decays in a similar manner as
those found in the helical chain. As seen in Fig. 6, the decay
is exponential over short distances but over longer distances
(but still < ξ0) takes a character of x−β ln(x/x0)−γ , where β,
γ ∈ R+. This decay of the wave functions reflect the behavior
of the MBS energy splitting which has the same origin. In
general, the MBSs seem to be more localized in the |N | = 1
phases, while the |N | = 2 phase features stronger finite-size
effects which are also apparent in Fig. 5.

20 100 200

10-6

10-4

10-2

100

20 20010-3

10-2

100

10-1

FIG. 5. (a) Bulk energy gap as a function of kF a and α. Parameters used are ς = 0.01 and ξ0 = 50a. The black lines correspond to
topological phase transitions; the wide black zones are areas of low bulk gap. The corresponding winding number diagram is illustrated in
Fig. 8 in Appendix B. (b) Dependence of bulk and MBS energy on the length of the chain N in the N = 1 phase. Parameters used are kF a = 20,
α = 1, ς = 0.01, ξ0 = 50a. (c) Dependence of bulk and MBS energy on the length of the chain in the N = 2 phase. Parameters used are
kF a = 5.7π , α = 0.8, ς = 0.01, ξ0 = 50a.
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10-4
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010

10-4

10-2
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FIG. 6. Spatial decay of Majorana wave functions. (a) Wave
function in N = 1 phase. Parameters used are N = 500, kF a =
20, α = 1, ς = 0.01, ξ0 = ∞. The fitted function is f (n) ≈
0.43e−0.16n + 6.84n−1 ln−2(n/0.0011). (b) Wave function in N =
2 phase. Parameters used are N = 800, kF a = 17.74, α = 0.73,
ς = 0.01, ξ0 = ∞. The fitted function is f (n) ≈ 0.31e−0.026n +
1.01n−0.79 ln−2(n/0.07).

VI. DISCUSSION AND OUTLOOK

Motivated by recent experimental developments in topo-
logical chains, we studied the case of a ferromagnetic chain
of adatoms embedded on a superconductor with Rashba
spin-orbit coupling. Building upon previous works limited to
the deep magnetic impurity regime, we formulated a theory
that can address 1D Shiba bands at arbitrary subgap energies,
bypassing recent doubts [32] regarding the requirement of
fine-tuning the single-impurity energy in Shiba chains. This
allowed us to make a number of interesting observations
regarding the topological states in the chain.

We found that the system, in accordance with its BDI
classification which allows a Z-valued topological invariant,
supports five different topological phases, some of which
have hitherto not been reported in this setup. These phases
may support zero, one, or two Majorana end states and their
interfaces may support up to four Majorana bound states. Our
analysis revealed that energy gaps of the most robust phases
may be as high as 0.2� and that the decoupled impurity
energy does not need to be fine-tuned close to the gap center
for obtaining robust topological phases. In the dense-chain
limit [19,20], where the orbitals of the magnetic atoms have
a direct overlap, the mechanisms of topological phases are
qualitatively quite different, bearing a strong resemblance to
the physics of proximity coupled nanowires. However, it is
remarkable that robust topological gaps can be obtained also
in the studied Shiba limit with bound-state energies well away
from the gap center. The sources and effects of disorder in the
long-range hopping model are expected to be quite different
from the conventional nanowire setting and are left for future
studies. Considering the richness of the topological properties,
and the fact that the system allows for local probing in STM,
the studied system is one of the most promising platforms for
studying topological superconductivity.

The main obstacle for applications of topological super-
conductivity [36,37] may be the slow spatial decay of the
edge modes, which results in an algebraic energy splitting of
the Majorana end states. However, already in relatively short
wires the splitting could be orders of magnitude smaller than
the bulk energy gap, as found in our numerical calculations.
Our results are generally encouraging for the prospect of an

experimental observation of topological superconductivity in
the studied setup.

ACKNOWLEDGMENT

The authors acknowledge the Academy of Finland for
support.

APPENDIX A: DERIVATION OF THE NLEVP

In this appendix we will derive the nonlinear eigenvalue
problem for the four-band Rashba model. Our starting point is
Eq. (2);

{E − [ξk + αR(kyσx − kxσy)]τz − �τx}
(r)

= −J
∑

j

Sσzδ(r − rj )
(rj ), (A1)

which we then Fourier transform, giving us

{E − [ξk + αR(kyσx − kxσy)]τz − �τx}
k

= −J
∑

j

e−ik·rj Sσz
(rj ). (A2)

Multiplying the equation by the inverse of the matrix on the
left-hand side and transforming back to real space yields

[1 + JE(0)σz]
(xi) = −
∑
j �=i

JE(xi − xj )σz
(xj ) (A3)

with the identification

JE(r) = JS

∫
dk

(2π )2
eik·r{E − [ξk

+αR(kyσx − kxσy)]τz − �τx}−1. (A4)

By defining

M± = E + ξ±τz + �τx

E2 − ξ 2± − �

(
1 ± ky

k
σx ∓ kx

k
σy

)
, (A5)

where k =
√

k2
x + k2

y and ξ± = ξk ± αRk, we split JE into two

helicities corresponding to each sign,

JE(r) = JS

∫
dk

(2π )2
eik·r(M+ + M−). (A6)

We assume that the wave vector k is centered around the point
ξ± ≈ 0, or, equivalently, in the neighborhood of the Fermi
surface for both helicities. In spherical coordinates, we can
then substitute k for ξ± in the integrals as appropriate. This
gives us four different integrals to calculate, namely

I±
1 (r) = N±

(2π )2

∫ 2π

0
dθ

∫ ∞

−∞
dξ

ξeik±(ξ )r cos θ

E2 − ξ 2 − �2
,

I±
2 (r) = N±

(2π )2

∫ 2π

0
dθ

∫ ∞

−∞
dξ

ξeiθ+ik±(ξ )r cos θ

E2 − ξ 2 − �2
,

I±
3 (r) = N±

(2π )2

∫ 2π

0
dθ

∫ ∞

−∞
dξ

eik±(ξ )r cos θ

E2 − ξ 2 − �2
,

I±
4 (r) = N±

(2π )2

∫ 2π

0
dθ

∫ ∞

−∞
dξ

eiθ+ik±(ξ )r cos θ

E2 − ξ 2 − �2
.

(A7)
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Here we have introduced N± = 1 ∓ ς/
√

1 + ς2 and k±(ξ ) =
kF (

√
1 + ς2 ∓ ς ) + ξ/vF

√
1 + ς2, with the normalized spin-

orbit coupling ς = mαR/kF . To make further progress, we
restrict our attention to subgap energies, i.e., E < �. For
r = 0, all integrals but the third vanish trivially, and I±

3 is
simplified enough to be calculated using standard contour
integral methods. For r > 0 we must employ Bessel and Struve
functions. Setting the chain to be along the x direction, we can
now rewrite Eq. (A3) into the form of Eq. (3) with

JE(x) = α
2 {[I−

1 (x) + I+
1 (x)]τz + [I−

2 (x) − I+
2 (x)]τzσy}

+ α
2 (E + �τx){[I−

3 (x) + I+
3 (x)]

+ [I−
4 (x) − I+

4 (x)]σy}, (A8)

where

I±
1 (x) = mN±Im{J0[(kF,± + iξ−1

E )|x|]
+ iH0[(kF,± + iξ−1

E )|x|]},
I±

2 (x) = −imN±sgn(x)Re{iJ1[(kF,± + iξ−1
E )|x|]

+H−1[(kF,± + iξ−1
E )|x|]},

I±
3 (x) = − mN±√

�2 − E2
Re{J0[(kF,± + iξ−1

E )|x|]

+ iH0[(kF,± + iξ−1
E )|x|]},

I±
4 (x) = −i

mN±sgn(x)√
�2 − E2

Im{iJ1[(kF,± + iξ−1
E )|x|]

+H−1[(kF,± + iξ−1
E )|x|]}. (A9)

Here we have used the previously mentioned Bessel (J0,1)
and Struve (H0,−1) functions along with the two Fermi
momenta kF,± = kF (

√
1 + ς2 ∓ ς ) and the quantity ξE =

ξ0/
√

1 − E2/�2. The problem can be further simplified by
working in the basis of the eigenstates of τxσz, which corre-
spond to the eigenstates of the single-impurity problem. With
the shorthand |τxσz〉, where for example |+ ↑〉 = |+〉τx

⊗ | ↑
〉σz

, the spinor in the new basis is


j = (〈+ ↑|
j 〉 〈− ↓|
j 〉 〈+ ↓|
j 〉 〈− ↑|
j 〉)T . (A10)

In the transformed basis, we obtain a 4N × 4N nonlinear
eigenvalue problem for a chain of length N . By defining the
matrices

aij = −
√

�2 − E2

2m
[I−

3 (xij ) + I+
3 (xij )] + δij ,

bij = − i

2m
[I−

2 (xij ) − I+
2 (xij )],

cij = −i

√
�2 − E2

2m
[I−

4 (xij ) − I+
4 (xij )],

dij = 1

2m
[I−

1 (xij ) + I+
1 (xij )]

(A11)

we can transform Eq. (3) into the NLEVP in Eq. (4).

APPENDIX B: VALIDITY OF THE
ENERGY-INDEPENDENT COHERENCE LENGTH

APPROXIMATION

The purpose of this appendix is to give some motivation
as to why using ξ0 instead of ξE in the four-band model is
an excellent approximation. We first note that for a given ξ0,
we have ξE � ξ0, so it is evident that the real energy must
lie within the interval [finf,fsup], where finf / sup stands for the
infimum/supremum in the interval ξ ∈ [ξ0,∞) for the function
f defined by E = �f (ξE), i.e., the right-hand side of the
expression for the energy in Eq. (8). This, however, does not
narrow the error down too much as f (ξ ) can vary greatly
between ξ = ξ0 and ξ = ∞.

One way to approach the problem is through the use
of contractions. A contraction g : R → R is a Lipschitz
continuous function, whose Lipschitz constant Kg < 1. In
other words, if g is a contraction and R is equipped with
the usual metric, we have

|g(x) − g(y)| � Kg|x − y|, (B1)

where x,y ∈ R and 0 < Kg < 1. If we now define the iteration
of a function for some x ∈ R as x0 = x,x1 = g(x), . . . ,xn =
g(xn−1), we immediately get that

|xn − xn+1| � Kn
g |x0 − x1|. (B2)

Furthermore, this tells us that for any positive integers p

and n

|xn − xn+p| �
p−1∑
m=0

|xn+m − xn+m+1|

�
p−1∑
m=0

Kn+m
g |x0 − x1| = Kn

g

(
1 − K

p
g

)
1 − Kg

|x0 − x1|,

(B3)

where we in the first step applied the triangle inequality. Since
this is valid for any p, we can take the limit p → ∞, resulting
in

|xn − x∗| �
Kn

g

1 − Kg

|x0 − x1|. (B4)

Here x∗ is the so-called fixed point defined by x∗ = g(x∗). For
contractions, this fixed point is known to exist and be unique
according to the Banach fixed-point theorem.

If we now introduce the dimensionless parameters ε ≡
E/� and χ ≡ a/ξ0, we can rewrite the equation for the energy
of a fixed point in reciprocal space as

ε = f (χ
√

1 − ε2) ≡ h(ε). (B5)

Evidently, the energy satisfying this equation is the fixed point
of h. If h is then also a contraction, we can apply the machinery
developed in the previous paragraph. Through the mean-value
theorem, we know that for any x < z ∈ [0,1) there exists a
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FIG. 7. (a) Energy as a function of k for the first approximation
ε0 as well as the numerically exact fixed-point solution ε of
Eq. (8). Parameter values are kF a = 20, α = 1, ς = 0.01, ξ0 = 50a.
Iterations are omitted here as they would be indistinguishable
from the fixed-point solution. (b) Difference in energy between the
solution of the transcendental equation and several iterations of the
solution for εn, plotted as a function of the inverse coherence length
at zero energy. Parameters used are kF a = 20, α = 1, ς = 0.01.
We have arbitrarily chosen the point ka = π/5 for the graphical
presentation.

y ∈ [x,z] such that

|h(x) − h(z)| = |x − z|χ |y|√
1 − y2

df (x)

dx

∣∣∣∣
x=χ

√
1−y2

. (B6)

Comparing to Eq. (B1), then, if

Kh = χ max
y∈[finf ,fsup]

(
|y|√

1 − y2

df (x)

dx

∣∣∣∣
x=χ

√
1−y2

)
< 1, (B7)

h becomes a contraction. Usually Kh is of the order of
10−2–10−1 regardless of the chosen k point, but due to the
complicated form of f this has to be checked for each case
separately. Nevertheless, we can finally conclude that

|ε0 − ε| � Kh

1 − Kh

|ε0 − ε1|, (B8)

where ε0 = h(0), ε1 = h(ε0), and ε = h(ε) is the actual
normalized energy. Note that the approximation ξE → ξ0

corresponds to ε → ε0. An example of the effect of this ap-
proximation is seen in Fig. 7(a), where the first approximation
ε0(k) and the fixed-point solution ε(k) are plotted in the same
figure. The iterations converge towards the exact solution very
rapidly, but, as seen in the figure, the first approximation
using ξ0 is already reasonably close. A comparison of the
differences between iterations for a selected k point is seen in
Fig. 7(b); the initial error is minor, and each iteration reduces
it by several orders of magnitude. As expected the errors
are lowest at high coherence lengths; however, even at low
coherence lengths, error for the first iteration remains lower
than 10−2�.

Another way to test the accuracy of our approximation is
to compare the topological phase diagram calculated using
Eq. (13) to the phase diagram of the Z2 invariant found
using Eq. (14). Note that the former method relies on the
approximation, while the latter is inherently equally valid for
any coherence length. As even the quantitative differences

FIG. 8. Topological phase diagram obtained by calculating the
winding number using the ξ ≈ ξ0 approach. The white line plots the
border between regions where the topological invariant is of different
parity, as calculated using Eq. (14); this equation is valid for arbitrary
coherence lengths. Parameters used are αR = 0.01, ξ0 = 50a.

between iterations are generally negligible, the qualitative
effects on the topological properties of the system are minor. In
Fig. 8 we see these two methods in superposition. The regions
in which the two methods disagree coincide with areas where
the gap size is extremely low [see Fig. 5(a)]. The apparent
disagreement between the two phase diagrams is hence due
to unreliability in the numerical calculation of the winding
number, rather than the ξ0 approximation. Physically this is of
little relevance, as the gap size in that is too low for observation
of topological effects of the type studied here.

APPENDIX C: WINDING NUMBER FORMULA

The topological invariant for the one-dimensional FM Shiba
chain can be calculated using Eq. (12). This is straightforward
for the linearized two-band model, but the four-band NLEVP
is not formulated in terms of a Hamiltonian operator. As
mentioned in the main text, this can be circumvented by
defining a topologically equivalent flat-band version of the ef-
fective Hamiltonian, H̃ = P̂+ − P̂−. Inserting this expression
in Eq. (12) gives

N = 1

4πi

∫ π/a

−π/a

dk tr[C(P̂+ − P̂−)∂k(P̂+ − P̂−)]. (C1)

We can progress by considering the chiral symmetry operator
C. The effect of C on the energy eigenstates is known to
be C|E±〉 = |E∓〉. It is straightforward to see that this also
satisfies CH̃ = −H̃C. Together with the properties of the trace,
we obtain

N = 1

2πi

∫ π/a

−π/a

dk tr[CP̂+∂kP̂+ − P̂+C∂kP̂+]. (C2)

Integration by parts finally yields Eq. (13) from the main text.
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