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Chaperone-assisted translocation of flexible polymers in three dimensions
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Polymer translocation through a nanometer-scale pore assisted by chaperones binding to the polymer is a
process encountered in vivo for proteins. Studying the relevant models by computer simulations is computationally
demanding. Accordingly, previous studies are either for stiff polymers in three dimensions or flexible polymers in
two dimensions. Here, we study chaperone-assisted translocation of flexible polymers in three dimensions using
Langevin dynamics. We show that differences in binding mechanisms, more specifically, whether a chaperone
can bind to a single site or multiple sites on the polymer, lead to substantial differences in translocation dynamics
in three dimensions. We show that the single-binding mode leads to dynamics that is very much like that in the
constant-force driven translocation and accordingly mainly determined by tension propagation on the cis side.
We obtain β ≈ 1.26 for the exponent for the scaling of the translocation time with polymer length. This fairly
low value can be explained by the additional friction due to binding particles. The multiple-site binding leads to
translocation the dynamics of which is mainly determined by the trans side. For this process we obtain β ≈ 1.36.
This value can be explained by our derivation of β = 4/3 for constant-bias translocation, where translocated
polymer segments form a globule on the trans side. Our results pave the way for understanding and utilizing
chaperone-assisted translocation where variations in microscopic details lead to rich variations in the emerging
dynamics.

DOI: 10.1103/PhysRevE.93.012406

I. INTRODUCTION

Polymer translocation through a nanopore has been a topic
of major interest ever since Kasianowicz et al. suggested that
the process could be used for inexpensive and fast DNA
sequencing [1]. There is a plethora of studies to explain
different aspects of the process in various circumstances. For
a recent review, see [2].

Among different variants of polymer translocation, the
process driven by binding particles (BiPs) has gotten less at-
tention. In this form of polymer translocation, freely diffusing
BiPs bind to the translocating polymer on the trans side. The
bound BiPs block the polymer from reentering the pore and
hence prevent its backwards motion towards the cis side. This
Brownian ratcheting mechanism creates a bias to the polymer’s
diffusion and drives the translocation.

An example in cell biology of a similar process is the protein
translocation into the lumen of endoplasmic reticulum and
into the mitochondrial matrix [3–6]. It is believed that during
the translocation auxiliary proteins called chaperones bind to
the translocating polypeptide chain, which causes Brownian
ratcheting.

The Brownian ratcheting was first theoretically studied in
[7]. After this the topic has been discussed in a number of
publications (see, e.g., [8–30]), some of which are computa-
tional studies. Monte Carlo simulations of the process have
been reported in Refs. [12,20,21,24,25]. Extra care has to be
taken to make sure Monte Carlo simulations capture the correct
dynamics of translocation processes [31]. In this respect,
Langevin dynamics (LD) simulations are a more straightfor-
ward approach [13,14,26,27,29,30]. Presumably due to the
heavy computational requirements, the three-dimensional BiP
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driven translocation has not been much investigated by LD.
The systems studied by LD are fairly small or in two dimen-
sions. To our knowledge the only existing three-dimensional
study concerns BiPs driving stiff chains [14], which does not
capture the true dynamics of nonrigid polymers.

The motivation for studying binding-particle driven translo-
cation of stiff polymers was to facilitate a theoretical basis
for the more complicated case of flexible polymers [14]. It
was argued that the essential features of the process would
be covered by including the dynamics within the polymer’s
persistence length from the pore. However, from the numerous
studies of translocation driven by force applied at the pore we
know that changes in the conformation of the nonrigid polymer
during translocation largely determine the dynamics (see, e.g.,
[32–34]).

Flexible BiP driven polymers and the effect of flexibility
have been studied in two dimensions [26,29,30]. With stiff
polymers particle binding was unambiguous: BiPs can only
bind to one site (polymer segment) at a time. Introducing
flexibility changes this. In Refs. [26,29] BiPs were allowed to
bind to multiple polymer segments simultaneously. However,
in many known cases in cellular biology a protein has only
a single binding site for interactions with another molecule.
When this is the case, a binding model that restricts the binding
of BiPs to only a single segment of the polymer at a time should
be used.

Here, we investigate the BiP driven translocation of flexible
polymers in three dimensions using Langevin dynamics. We
apply two different binding models. In the one-to-one (OTO)
binding model we restrict the binding of BiPs to only a single
monomer at a time. In the all-to-all (ATA) binding model we
allow BiPs to bind to all monomers in their vicinity. Regarding
previous studies the OTO model introduces polymer flexibility
to single site binding of stiff polymers, whereas the ATA model
introduces the third dimension to the two-dimensional models
studied in Refs. [26,30].
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We show that the processes in three dimensions are crucially
different from the processes in two dimensions and that
changing the binding mechanism completely changes the
process in three dimensions. We compare translocation driven
by OTO binding to translocation driven by a constant pore
force and show that also the dynamics of the OTO driven
process is mainly determined by tension propagation in the
polymer segment on the cis side. Close resemblance in the
tension propagation of the BiP-assisted and pore force driven
translocation was recently seen in two dimensions [30].

In what follows, we first outline the computational setting
by describing models used for polymers, binding particles,
dynamics, and the pore and the membrane. We then report and
analyze the results from our simulations. Finally, we recap the
main conclusions of our study.

II. THE COMPUTATIONAL MODELS

The three-dimensional simulation space consisting of a
translocating polymer, binding particles (BiPs), membrane
walls, and periodic boundaries is depicted in Fig. 1. In what
follows cis and trans signify the sides of the membrane on
which the polymer resides initially and to which it translocates,
respectively.

A. The polymer model

Excluded volume interactions of the polymer are taken into
account via a Lennard-Jones (L-J) potential acting between

FIG. 1. Depiction of the simulation setup of a polymer under-
going binding particle (BiP) driven translocation from the cis side
(bottom) to the trans side (top). Polymer beads (PBs) are drawn as
circles and BiPs are drawn as squares. The cis and trans sides are
separated by a slip-wall membrane of thickness 3σ . In the membrane
there is a pore of diameter 2σ that allows the polymer to pass through.
To prevent BiPs from diffusing away in the x and y directions, periodic
boundary conditions are applied. For the z direction on the trans side,
diffusion is prevented by a slip wall sufficiently far away from the
pore.

any two polymer beads (PBs):

UL-J = 4ε

[(
σ

r

)12

−
(

σ

r

)6

+ 1

4

]
, r � 21/6σ. (1)

Here, ε = 1.0 is the strength of the interaction, σ = 1.0 is the
length scale of the interaction, and r is the current distance
between two PBs. By setting the cutoff distance r = 21/6σ

to exclude attractive interactions we model the polymer to be
immersed in good solvent.

The polymer is modeled as a freely jointed bead spring
chain. Adjacent PBs are connected together by a finitely
extensible nonlinear elastic potential:

UF = −K

2
R2 ln

(
1 − r2

R2

)
, (2)

where K = 30
σ 2 is the strength of the attractive interaction, R =

1.5σ is the maximum distance, and r is the current distance
between two connected PBs.

B. The binding particle model

The interaction between any two BiPs is modeled with the
repulsive L-J interaction of Eq. (1). A slightly different L-J
potential is used for modeling the interaction between a BiP
and a PB. First, a PB and a BiP can bind together via the
attractive part of the L-J interaction. Second, we use εb instead
of ε for the binding strength of the BiPs to the PBs. The BiP-PB
interaction hence takes the form

UL-J = 4εb

[(
σ

r

)12

−
(

σ

r

)6

+ 1

4

]
, r � rmax. (3)

The binding strength is chosen to be εb = 8.0. Only when
investigating the effect of the binding strength εb is varied
between 1.0 and 64.0.

The binding and unbinding are controlled via the threshold
distance rmax. We conduct our simulations with two different
models for binding. In both models the binding is described
by Eq. (3) and can only take place between a BiP and a PB. In
the ATA binding model every BiP-PB pair can bind together
when they are within the distance rbind = 1.84σ of each other.
Equation (3) is hence used with rmax = rbind for all BiP-PB
pairs. This allows each BiP (PB) to bind to many PBs (BiPs)
simultaneously. ATA hence corresponds to the intersegment
binding model of [26,29]. In contrast, in the OTO binding
model each BiP is allowed to bind to only one PB at a time.
When an unbound BiP and an unbound PB are within rbind

of each other, a binding takes place and Eq. (3) is used with
rmax = rbind. For any BiP (PB) interacting with an already
bound PB (BiP), rmax = 21/6σ and only the repulsive part is
applied. A BiP-PB pair is considered broken if the BiP and PB
get farther than rbind apart.

For both models binding between a PB and a BiP can only
occur if the PB has entered the trans side. This prevents binding
of a BiP to a PB that is still inside the pore and, consequently,
the BiP from pulling the PB from the pore to the trans side.
If a bound PB reenters the pore, its binding to the BiP is not
broken.

Since the binding and unbinding take place according to
the distance of the BiP and the monomer to which it binds,
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the stochastic nature of this process comes about via the
stochastic motion of the particles. Adding explicit binding
and unbinding rates would give more freedom in defining,
e.g., highly asymmetrical binding and unbinding probabilities.
This would, however, slow down the translocation process
and make the simulation of the three-dimensional chaperon-
assisted translocation computationally an overwhelming task.
The binding and unbinding described here are used in the
previous studies in two dimensions, which enables us to make
direct comparisons to them.

C. The dynamics of polymer and BiPs

The dynamics for the pointlike PB and BiP particles is
implemented using Ermak’s version of Langevin dynamics
[35]. The Langevin equation governing the dynamics of a
particle indexed i is written as

ṗi = −ξpi + ηηηi(t) + fi(ri), (4)

where pi is the momentum of the particle and ṗi is its time
derivative, ξ is the friction coefficient of the implicit solvent,
ηηηi is the resultant random force exerted on the particle, fi(ri)
is the resultant force exerted on the particle, and ri is the
position of the particle. The velocity Verlet algorithm is used
to integrate the positions and velocities of the particles related
by the Langevin equation [36].

Parameter values used in the simulations are given in
reduced units. The Boltzmann constant kB = 1.0 and the
temperature T = 1.0. The time step δt = 0.001 and the friction
coefficient ξ = 0.5 to which we also relate ηηηi(t) according to
the fluctuation dissipation theorem. The masses of both PBs
and BiPs are m = 16.0.

D. The pore, membrane, and boundary conditions

The simulation space consists of two compartments sepa-
rated by a membrane. The membrane is modeled by a wall
of thickness 3σ . Slip boundary conditions are applied for all
beads colliding with the two wall surfaces. A circular pore of
diameter 2σ penetrates the wall allowing PBs to pass from one
side to the other. BiPs residing on the trans side cannot enter
the pore.

The pore is implemented by a harmonic force that pulls the
PBs toward an axis orthogonal to the wall surfaces:

fh = −kprp − cvp. (5)

Here, rp is the distance of the PB from the pore axis and
vp is the velocity of the PB perpendicular to the pore axis.
The coefficient values were chosen as kp = 100.0 and c =
1.0. In addition to the harmonic force aligning the polymer,
hairpinning is prevented also by only allowing PBs to enter
the pore sequentially.

Periodic boundaries in x and y directions and a slip wall
perpendicular to the z direction prevent the BiPs on the trans
side from diffusing away. The periodic boundary conditions
and the wall are applied for both BiPs and PBs. The slip wall
in the z direction is placed so far that only a few of the longest
(N = 400) polymers under OTO binding touch the wall.

FIG. 2. Snapshots from simulations of BiP driven translocation
using OTO (upper row) and ATA (lower row). The leftmost snapshots
are taken at the start of the simulations, the center snapshots are
taken when half of the polymer has translocated, and the rightmost
snapshots are taken at the end of the process.

E. About the simulations

At the start of all simulations almost the entire polymer is
on the cis side. A short segment is inside the pore and two
monomers in the head protrude to the trans side. All the BiPs
are on the trans side. See the first snapshot in Fig. 2.

Simulations are started from equilibrated polymer confor-
mations. A polymer is equilibrated while keeping the polymer
end fixed. During equilibration we measure the radius of
gyration R2

g = ∑N
i=1(ri − rCM)2, where rCM is the polymer’s

center of mass. An equilibrium conformation is considered
to be reached when the time-averaged Rg has converged to a
stable value. After the polymer equilibration the BiPs on the
trans side are also allowed to find an equilibrium distribution
and bind to the two PBs on the trans side. After this the polymer
is released, and translocation begins.

For all sets of presented data we have conducted 300
simulations. There are some exceptions: For polymers of
length N = 400 with cis dynamics excluded, we conducted
100 simulations each. For simulations used to calculate the
equilibrium Rg , 50 time-averaged simulations were used. It
should also be noted that for small binding strengths εb

a number of translocations do not complete due to some
polymers sliding back to the cis side. In these cases the number
of simulations can be considerably less than 300. For the
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FIG. 3. A simplified snapshot from the end conformation of the
ATA simulation of Fig. 2. The BiPs have been omitted to show how
the polymer coils around itself forming helical segments.

intermediate value εb = 8 used in most of our simulations
around 10% of the polymers do not translocate.

In the simulations we fix the concentration of free BiPs
to cf = 1/40 unless stated otherwise. The exceptions are
simulations for investigating the effect of cf . Here cf is chosen
between 1/320 and 1/5. The value of cf is maintained by
creating a new BiP at the edge of the simulation space if cf

drops below a threshold value.

III. RESULTS

A. Different binding causes visible difference in translocation

The snapshots from the simulations in Fig. 2 show how the
two different binding models affect translocation. They are
taken from simulations conducted with polymers of length
N = 400. The snapshots in the upper and lower rows are
from single simulations using OTO and ATA, respectively. In
OTO the polymer takes a diffuse conformation on the trans
side, whereas ATA brings the polymer to a highly folded
conformation consisting of helical regions (see Fig. 3). The
strong folding markedly differs the translocation driven by
ATA binding in three dimensions from the corresponding pro-
cess in two dimensions. In two dimensions the intersegmental
binding in ATA binding is much more restricted than in three
dimensions, so the difference to translocation driven by OTO
binding is not as significant in two dimensions as in three
dimensions.

B. Relaxation of the polymer segment on the trans side

In our previous studies on driven polymer translocation
we measured Rg for segments on the trans side to determine
if the translocation of segments was faster than relaxation
of translocated segments to equilibrium. We found that
translocated segments do not have time to relax but are
driven increasingly further out of equilibrium as the number of
translocated monomers Ntr increases. This shows as the differ-
ence R

eq
g (Ntr) − Rg(Ntr) increasing with Ntr, where R

eq
g (Ntr)

is the radius of gyration for an equilibrium conformation of a
polymer of length Ntr [33,37].

Ntr
0 100 200 300 400

R
g

0

2

4

6

8

10

12

14

16 OTO
ATA
OTO EQ
ATA EQ

FIG. 4. Rg of the trans side polymer segment as a function of
the number of translocated monomers Ntr during the BiP driven
translocation for both OTO and ATA models. Also Rg for equilibrated
polymers, Req

g , of equal lengths are shown for comparison (triangles
and circles).

We apply the same method here. Figure 4 shows how
Rg(Ntr) for OTO and ATA evolve during translocation.
R

eq
g (Ntr) for both models at the same BiP concentration cf

is also shown. Rg(Ntr) for OTO is seen to be much larger
than for ATA as expected due to the polymer in ATA partially
folding (see Fig. 2). Still, Rg for OTO is much smaller than
the corresponding R

eq
g , indicating that although the process

is driven by incomplete Brownian ratcheting the trans side
polymer segment is driven out of equilibrium. In contrast, the
trans side Rg of the polymer in the ATA model follows R

eq
g .

C. Waiting times: Contribution of tension propagation

Waiting time tw(s) is the average time for the bead s to exit
the pore after the bead s + 1 has exited. Its measurement is the
most straightforward way to gain understanding on transloca-
tion dynamics. We calculate waiting times by subtracting the
last passage time of the current bead from that of the previous
bead. We have checked that using first passage times instead
does not change the waiting time profiles.

In order to asses the role of the cis side on the dynamics
of the BiP driven translocation models we also simulate a
modified model where the polymer beads on the cis side are
excluded. In this modified model we do not have a polymer
segment on the cis side but generate PBs at the pore entrance.
Should the polymer slide back, the PBs entering the cis side
are removed from the polymer. We have previously used this
method in connection with the driven polymer translocation
[37].

Figure 5 shows the ensemble averages of the waiting times
tw(s) for the full (a) and modified (b) OTO model and for the
full (c) and modified (d) ATA model. The waiting time data are
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FIG. 5. Waiting times for OTO: (a) full model (b) models where
the contribution from the cis side is excluded. Waiting times for ATA:
(c) full model (d) models where the contribution from the cis side is
excluded. Polymer lengths N = 50, 100, 200, and 400.

inherently noisy. The amount of statistics required to suppress
the noise to an insignificant level would be unfeasible for the
system sizes used here. Accordingly, the presented data have
been slightly Gaussian filtered for improved clarity.

ATA binding induces stronger bias than OTO binding, so
the waiting times for ATA are clearly shorter. Also the shapes
of the waiting time profiles for ATA and OTO are clearly
different.

Excluding the cis side dynamics has a dramatically different
effect on ATA and OTO models. The waiting time profile
for OTO becomes almost flat when the cis side is excluded,
whereas the tw(s) for ATA change only mildly. The stronger
binding on the trans side in the ATA model not only speeds up
the translocation but also enhances the correlations along the
polymer on the trans side, as seen in Figs. 2 and 3. Accordingly,
in the ATA binding the friction for the movement of the
polymer segment on the trans side is larger than in the OTO
binding. Consequently, the trans side has a more dominating
role in the translocation dynamics of ATA. It is in place to
note here that the larger bias of the ATA model more than
compensates for this larger trans side friction compared to the
OTO model.

The contribution from the cis side comes from the initial
conformation and the tension propagating along the polymer
contour. Like in all processes where a polymer from an
unconstrained conformation is driven by some means through
a pore the dynamics is subdiffusive. For the subdiffusive
motion the dominant cis side contribution is expected to be
tension propagation, as found for the driven translocation
[32–34,38]. In our simulations the dynamics for OTO binding
is dominantly determined by the cis side [see Figs. 5(a)
and 5(b)]. Hence, we expect tension propagation to play a
significant role in the dynamics for OTO.

FIG. 6. In the course of the translocation all two-bond distances
between PBs (exemplified by the dashed lines) are computed
to quantify polymer’s straightening. A longer two-bond distance
indicates straighter polymer and stronger tension.

To track the tension propagation during translocation,
we apply the same measure for polymer straightening that
we successfully used in connection with driven polymer
translocation [37]. We measure the distance between all beads
that are separated by two bonds along the polymer chain
for each discrete value of the translocation coordinate s (see
Fig. 6). For a more detailed description of the measurement of
tension during translocation see [37].

Figure 7 shows ensemble averages of the two-bond dis-
tances for polymers of length N = 400 in translocations driven
by OTO [(a) and (b)] and ATA [(c) and (d)] bindings. The
tension propagation on the cis side can be seen in the plots
(a) and (c) as shaded areas above the diagonal. Tension
propagation in the two models is clearly similar. In the ATA
model the tension propagation is slightly more prominent as
seen from the larger size and the darker shade of the area above
the diagonal.

By extracting contours for different values of the two-point
distance we gain a more precise picture of the tension
propagation in different models. The number of beads nd

experiencing a certain magnitude of drag can be calculated
by subtracting the diagonal value from the value of i for each
s. The outcome is depicted in Figs. 7(b) and 7(d). Shown are all
two-bond distance values greater than the equilibrium value
1.59 for our self-avoiding polymer. The top curve nd (s) in
each subfigure corresponds to the contour for the two-bond
distance value of ld = 1.60. The subsequent nd (s) curves
are plotted for ld = 1.62,1.64, . . . up to a value where the
corresponding contour can no longer be distinguished from
the diagonal of the respective left column plots of Fig. 7. The
higher the ld for the contours that can be distinguished, the
more prominent is the tension propagation. Hence, it can be
seen that tension propagation is most prominent in the ATA
binding. This can be accounted for by the ATA binding leading
to faster translocation.

To further assess how largely tension propagation defines
the translocation dynamics in the case of OTO binding
we compare the waiting times and tension propagation in
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FIG. 7. Tension propagation in OTO (top) and ATA (bottom)
binding. Left column: Two-bond distances along the polymer around
the ith PB as a function of the translocation coordinate s. i = 0
labels the polymer end that translocates first. The darker shade of
gray corresponds to larger distance. PBs on the cis side are above the
diagonal line and those on the trans side are below it. The solid line
above the diagonal corresponds to the two-bond distance 1.60. Right
column: The number of beads under drag. In each plot the curves
from top to bottom correspond to different magnitudes of drag force
with two-bond distance values starting from 1.60 (top) and increasing
by 0.02 for each curve.

translocations driven by OTO and pore force. We have
previously shown that the trans side has no discernible
contribution on the dynamics in the case of driven translocation
[37]. Hence, the translocation driven by pore force can be
used as a reference for polymer translocation the dynamics
of which is practically completely determined by tension
propagation. Figures 8(a) and 8(b) give the above-described
tension propagation data for the driven polymer translocation.
The pore force fd = 0.25 was selected so that it takes the same
average time for polymers of length N = 400 to complete the
driven and the OTO translocation. Accordingly, the closest
match of tw(s) is seen for N = 400.

Figure 9 compares OTO and fd driven translocation. Here,
the extent of the tensed segment on the cis side in the number
of beads in drag nd is shown in the left column, and the waiting
times tw as functions of the number of translocated beads s are
shown in the right column for different N . The tension on the
cis side is seen to propagate identically in translocations driven
by pore force and OTO binding. There are minor differences in
the waiting time profiles. As the frictional contribution due to
tension propagation on the cis side is seen to be identical these
differences have to come solely from the trans side where
the binding changes the polymer conformation: the altered
friction and inertia due to binding particles directly affect the
translocation dynamics.
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FIG. 8. From top to bottom: Driven translocation with a driving
force fd = 0.25 and perfect Brownian ratchet. Left and right columns,
respectively, present the corresponding data described in the caption
of Fig. 7.

D. Bias due to binding

The bias driving the polymer through the pore is caused by
two factors: energy drop on the trans side and Brownian ratch-
eting, both caused by the binding particles. For the completely
stiff (rod) polymer it was found that the driving caused by
the energy drop dominates over the perfect Brownian ratchet
mechanism [14]. To determine the dominating mechanism in
the case of a flexible polymer we simulate a three-dimensional
translocation model where the polymer is driven by perfect
ratcheting only. The model geometry is the same as in ATA-,
OTO-, and fd -driven models. There is no driving force nor
binding particles; only the backward motion of the polymer
segment inside the pore is completely inhibited to realize
perfect ratcheting. Figures 8(c) and 8(d) show the tension
propagation characteristics for perfect Brownian ratcheting.
Tension propagation for the perfect Brownian ratchet is seen
to be clearly the strongest of the different models.

In Fig. 10 tw(s) for the full models and ones where the
cis side is excluded are given for the driven translocation
and the perfect ratchet model. The perfect Brownian ratchet
mechanism is seen to be clearly faster than the translocations
driven by constant force and the binding particles (see Fig. 5).
As seen in Fig. 10, eliminating the cis side in the Brownian
ratchet dynamics results in a completely flat tw(s). For the
full ratchet model tw(s) is identical in form to that of the
driven translocation (see Fig. 10). This confirms that tension
propagation on the cis side predominantly determines the
dynamics in perfect Brownian ratcheting like in the driven
translocation.

In the OTO model particle unbinding allows for some
backward motion of the polymer, so the ratcheting mechanism
is not perfect. Our simulations show that the model with
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FIG. 9. The number of beads in drag nd (s) (left column) and
the waiting times tw(s) (right column) for OTO binding and driven
translocation, fd = 0.25.

Brownian ratcheting alone without energy reduction due to
binding gives by far the strongest bias of all the simulated
modes. This suggests that it is the Brownian ratcheting that
dominates in three dimensions the translocation of a flexible
polymer by binding particles, not the reduction of the free
energy on the trans side due to binding. This is in contrast to
what was found for chaperone-assisted translocation of stiff
polymers [14].

E. Translocation time versus polymer length

Here, we verify the above-presented analysis by looking at
the scaling of translocation time τ with polymer length N in
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FIG. 10. Waiting times for full translocation models (left column)
and models where the contribution from the cis side is excluded (right
column). The first row: The driven translocation model, fd = 0.25.
The second row: The perfect ratchet translocation model. Polymer
lengths N = 50, 100, 200, and 400.

the different model systems. Figure 11 shows average τ as a
function of N for the full and modified binding models. The
error bars of the data points are much smaller than the used
symbols. Figure 11 also shows the scaling relations τ ∼ Nβ

fitted to the data. The scaling exponents are β = 1.26 ± 0.02
and 1.09 ± 0.01 for the full OTO model and one where the
polymer segment on the cis side is excluded, respectively. The
corresponding exponents for the full and modified ATA models
are β = 1.36 ± 0.01 and 1.34 ± 0.02, respectively.

Removal of segments on the cis side reduces β from 1.26
to 1.09 in the OTO binding. The drop of β to almost 1.0,
i.e., linear scaling, confirms our observation that the trans side
has only a minimal effect on the translocation driven by OTO
binding and, consequently, the weak tension propagation on
the cis side largely determines the dynamics. The fairly low
value of β = 1.26 is understandable, since particles binding
to the polymer in the vicinity of the pore increase the local
friction there. This leads to reduced β for polymers of modest
length [33].

The obtained superlinear scaling with β > 1 due to the trans
side could potentially come from crowding of the segment
close to the pore. In the driven translocation the effect of
the crowding was shown to be negligible. Inclusion of the
trans side was nevertheless found essential as only then β

increased with fd [37]. This was addressed to fluctuations
assisting translocation [39]. However, the driving bias due to
chaperones is weaker and small perturbations on the trans side
are expected to show more easily in the outcome. Moreover,
unlike in fd driven translocation crowding may play a role
in the BiP driven case, since BiPs increase the time it takes
for the translocated segments to relax to thermal equilibrium.
The binding rate may also slow down due to the diffusion of
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FIG. 11. Scaling of the translocation times. Scaling exponents
obtained by fitting τ ∼ Nβ to the data. (a) The BiP driven models.
OTO, β = 1.26 ± 0.02; ATA, β = 1.36 ± 0.01; OTO no cis, β =
1.09 ± 0.01; and ATA no cis, β = 1.34 ± 0.02. (b) The reference
models. Translocation driven by the pore force fd = 0.25, β =
1.39 ± 0.02; driven by the perfect Brownian ratchet mechanism,
β = 1.32 ± 0.01; driven(fd = 0.25) no cis, β = 1.08 ± 0.02; and
driven by the perfect ratchet no cis, β = 1.04 ± 0.01.

the binding particles toward the pore changing as the polymer
translocates. This would slightly diminish the driving bias.
Both these effects increase β.

In accordance with the observations from the waiting time
profiles, removal of segments on the cis side has only a small
effect on the translocation driven by ATA binding (see Fig. 11),
which confirms that in this model the dynamics is almost solely
determined by the translocated and collapsed polymer segment
on the trans side. The correlation length of this densely
crowded segment is very high. Accordingly, the collective
motion of the segment is expected to be more important than
the motion of individual monomers. Also, driving due to ATA
binding is strong. If the cis side played a dominant role in
the dynamics, then in the theoretical limit of extremely strong
driving the polymer segment would be instantly drawn from
the cis side to the pore and β → 1 + ν ≈ 1.6. However, the
measured β = 1.36 obtained for N � 400 is far below this
and, as shown, comes mainly from the trans side.

The measured value for β in ATA binding can be understood
as follows. For the moment, we assume that the number of
bindings close to the pore, which determines the driving force,
is approximately constant. Based on our measurements of
the binding and unbinding during translocation this is not far
from the truth. Consequently, in this approximation the bias
due to binding and hence the momentum in the direction of
translocation p = p = mv are constant. Here, v = v is the
(scalar) translocation velocity in the direction perpendicular
to the wall and m is the moving mass. Due to the strong
attraction between monomers where BiPs attach, we assume
the average distance from the pore to which the center-of-mass
point has been moved on the trans side to scale with the
number of translocated monomers as the gyration radius of
the expanding globular conformation 〈d〉 ∼ 〈Rg〉 ∼ s1/3. The
mass of the packed globule on the trans side grows as m ∼ s,
which leads to p ∼ sv and, consequently, v ∼ 1/s. The time
average over the whole translocation scales as v: v = vτ =
1/τ

∫ τ

0 vdt = 1/τ
∫ N

0 v(s) dt
ds

ds ∼ N−1. Accordingly, it can
be taken as the effective velocity over the whole process,
〈v〉 = 〈vτ 〉. The average translocation time, as s → N , then
becomes τ = 〈d〉/〈v〉 ∼ N4/3.

In reality, the effective bias due to binding of course varies
somewhat, due to which p does not remain strictly constant.
Also Rg does not scale strictly spherically. Departure from
these assumptions causes β to deviate from the predicted value
β = 4/3. Still, the measured value β = 1.36 is very close.

In translocations driven by the perfect Brownian ratchet
mechanism scaling relations for the full model and one where
polymer segments on the cis side are removed confirms that
the dynamics is mainly determined by the tension propagation
on the cis side [see Figs. 10(c) and 10(d)]. From Fig. 11(b) the
scaling exponents β are seen to be somewhat smaller than for
the translocation driven by a constant pore force fd . Rg(s) on
the trans side for the perfect ratchet model and translocation
driven by fd are almost identical (not shown), so based on our
previous results [37] in spite of Rg(s) being smaller than the
equilibrium Rg this crowding on the trans side has no effect
on translocation dynamics.

As described, our perfect ratchet model does not involve any
binding particles but ratcheting comes from not allowing the
polymer to slide back toward cis. Hence, the only qualitative
difference to constant-force-driven translocation is that fluc-
tuations in reaction coordinate s are rectified. In other words,
fluctuations that would move the polymer back toward cis are
eliminated and only forward directed fluctuations are allowed.
Hence, the assistance of the fluctuations in translocation
is further enhanced compared to driven translocation [39],
resulting in a smaller β.

F. Concentration and binding force dependence
of the translocation time

In previous sections the free BiP concentration and the bind-
ing constant were set at cf = 1/40 and εb = 8.0, respectively.
Here we investigate how the translocation times are affected
when cf is varied between 1/320 and 1/5 and binding strength
εb between 1.0 and 64.0.

Figure 12 shows the average translocation times τ as a
function of cf . The simulations were done for N = 50 and
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FIG. 12. Average translocation times τ as a function of the free
BiP concentration cf when εb = 8 and N = 50.

εb = 8. It can be seen that for the OTO there is a clear
minimum of translocation speed as a function of cf . This
is in accord with the results for the translocation driven by
ATA binding in two dimensions [26,27]. There the increase
of τ after initial decrease when increasing cf was related to
additional friction due to binding BiPs and also the running
out of BiPs, since a constant number of BiPs was used. In
our simulations concentration of free binding particles is kept
constant, so BiPs do not run out, and the contribution that
remains is the increased friction.

For ATA the translocation times decrease with increasing
c and reach a minimum without increasing again. Hence,
translocation by ATA binding in three dimensions differs
from that in two dimensions [26,27]. Due to smaller spatial
restrictions intersegmental binding in three dimensions is
much more pronounced, so driving due to this binding is
not inhibited when increasing cf in the same way as in two
dimensions.

When increasing the binding constant εb in our simulations
τ rapidly decreases saturating to a constant minimum value for
both binding models (not shown). This indicates that no spatial
restrictions emerge for binding in three dimensions for these cf

and εb, which in part supports the approximation of constant
bias made in deriving the scaling τ ∼ Nβ for translocation
driven by ATA binding.

IV. CONCLUSION

We have studied chaperone-assisted translocation of flex-
ible polymers through a nanometer-scale pore in three di-
mensions by computer simulations using models based on
Langevin dynamics. We implemented two mechanisms for
the chaperones to bind to the polymer on the trans side.
In one-to-one (OTO) binding a chaperone can bind to only
one site, whereas in all-to-all (ATA) binding it can bind to
multiple sites on the polymer simultaneously. We showed

that in three dimensions the differences in binding lead to
substantial differences in translocation dynamics.

In the OTO binding the polymer is driven increasingly out
of equilibrium much the same way as in the case of constant
pore force fd driving the translocating polymer. We showed
that for this binding tension propagates on the cis side in
exactly the same way as in fd -driven translocation. In spite of
this similarity waiting time profiles showed differences for the
two cases. Translocation assisted by OTO binding is slightly
slowed down compared to the fd -driven case. Obviously, the
differences have to come from the trans side. Crowding of
the polymer segment, which we have previously shown not
to affect fd -driven translocation, can to some extent impede
chaperone-assisted translocation, since the inertia and friction
of the polymer segment on the trans side are increased due to
binding particles.

The main conclusion concerning OTO-binding assisted
translocation in three dimensions is that its dynamics is mainly
determined by tension propagation on the cis side and that the
tension propagates exactly like the tension in translocation
driven by pore force the magnitude of which equals the
bias due to binding chaperones. The exponent for scaling of
the translocation time with the polymer length, τ ∼ Nβ , in
OTO-binding assisted translocation was found to be β ≈ 1.26.
This value is low given the similarity of the process to the
pore-force driven case. One explanation for this is the increased
local friction due to chaperones binding in the vicinity of the
pore on the trans side [33].

Under the ATA binding the polymer conformation on
the trans side is very dense and accordingly motion of the
monomers in it is highly correlated. We found that although
tension propagation on the cis side is strong due to rapid
translocation contribution of the trans side dominates the
dynamics. We derived the scaling exponent β = 4/3 for the
approximated case of a completely correlated moving (and
growing) spherical polymer conformation on the trans side
under constant bias translocation. This is very close to the
value β ≈ 1.36 obtained from our simulations.

To summarize, chaperone-assisted translocation of flexible
polymers in three dimensions is highly dependent on the
binding mechanism. Clear similarity to translocation driven by
constant pore force was found for the single-binding scenario,
whereas allowing binding to take place on multiple sites
simultaneously changed the picture dramatically. The results
presented here will pave the way for detailed understanding
and possibly application of the many variations of chaperone-
assisted biopolymer translocation.
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