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The polarization response of molecules or meta-atoms to external electric and magnetic fields, which defines the
electromagnetic properties of materials, can either be direct (electric field induces electric moment and magnetic
field induces magnetic moment) or indirect (magnetoelectric coupling in bianisotropic scatterers). Earlier studies
suggest that there is a fundamental bound on the indirect response of all passive scatterers: It is believed to be
always weaker than the direct one. In this paper, we prove that there exist scatterers which overcome this bound
substantially. Moreover, we show that the amplitudes of electric and magnetic polarizabilities can be negligibly
small as compared to the magnetoelectric coupling coefficients. However, we prove that if at least one of the
direct-excitation coefficients vanishes, magnetoelectric coupling effects in passive scatterers cannot exist. Our
findings open a way to a new class of electromagnetic scatterers and composite materials.

DOI: 10.1103/PhysRevB.94.245428

I. INTRODUCTION

The emergence of man-made composites (metamaterials
and metasurfaces) has enabled exotic devices for light ma-
nipulations. The response of these effectively homogeneous
artificial structures to the electromagnetic fields is engineered
by proper design of individual scatterers as their building
blocks (meta-atoms). Various meta-atoms have been actively
studied, see e.g., Refs. [1–5]. For linear scatterers and in the
limit of dipole approximation, the relations between the local
electric Eloc and magnetic Hloc fields and the induced electric
and magnetic dipole moments p and m read [6]:

p = ¯̄αee · Eloc + ¯̄αem · Hloc, m = ¯̄αme · Eloc + ¯̄αmm · Hloc,

(1)

where the double bar signs mark tensor (dyadic) quantities.
In the above equations, the polarizability tensors ¯̄αee and
¯̄αmm represent the direct electric and magnetic couplings
between the applied field and the corresponding induced dipole
moment. On the other hand, the bianisotropic polarizability
tensor ¯̄αme ( ¯̄αem) measures the indirect coupling between the
applied electric (magnetic) field and the induced magnetic
(electric) dipole moment.

Some fundamental restrictions on the attainable values of
the polarizabilities are well known. If the scatterer is reciprocal,
then the Onsager-Casimir principle (see, e.g., Ref. [7,8])
dictates that ¯̄αee = ¯̄αT

ee, ¯̄αmm = ¯̄αT
mm, and ¯̄αme = − ¯̄αT

em, where
superscript “T” denotes the transpose operation. Furthermore,
for all passive scatterers the imaginary part of the six-dyadic

α − α
T

is positive definite (see, e.g., Refs. [8]), where the
six-dyadic α is formed by the four polarizabilities in (1) as

¯̄α =
[

¯̄αee ¯̄αem
¯̄αme ¯̄αmm

]
. (2)

The causality requirement leads to Kramers-Kronig relations
for the polarizabilities and to sum rules [8].

Here we discuss fundamental limitations on the relative
strength of direct and indirect coupling phenomena, measured
by the absolute values of the polarizabilities and coupling
coefficients. For simplicity of writing and in view of particular
examples which we will study, we will mainly use the scalar
versions of the linear relations (1), considering the polarization
responses only along one direction. In particular, we consider
relative magnitudes of the products αemαme and αeeαmm. Note
that the passivity limitation on the imaginary part of the six-

dyadic α − α
T

of lossy particles (it is positive definite) [8]
for the case of scalar parameters leads to the condition [7,9]
Im{αemαme} < Im{αeeαmm}, but the real parts or the absolute
values of these products are not restricted by passivity.

In naturally occurring molecules and particles, the magne-
toelectric coupling effects are very small as compared with
the direct polarization effects, suggesting that |αemαme| �
|αeeαmm|. However, by properly engineering meta-atoms it
is possible to significantly enhance the coupling effects. This
enables new unprecedented effects. Here, we focus on the
question if the coupling effects can be even stronger than the
direct polarization, that is, if it is possible to create a scatterer
such that |αemαme| > |αeeαmm|.

Based on known results, it is expected that the indi-
rect coupling effects cannot be stronger than the direct
ones [3,4,7,10,11]. In earlier studies, it was shown that the
polarizabilities of metal spirals close to the fundamental
resonance obey the relation [10,11]

|αemαme| = |αeeαmm| (3)

(see also in Ref. [4]). Later, it was shown that this equality is not
a general restriction and examples of resonant spirals for which
|αemαme| < |αeeαmm| holds were shown [12]. However, to the
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best of our knowledge, no results where the opposite inequality
would hold are known. Moreover, in more recent studies [3], it
is stated that in a small scatterer the magnetoelectric coupling
cannot exceed the direct polarization effects, so that for all
linear passive scatterers

|αemαme| � |αeeαmm|. (4)

However, this statement of Ref. [3] implies the presumption
that the scatterer is modeled as a single-resonant RLC circuit.
In such scatterers, both induced electric and magnetic dipole
moments are formed by the same current distribution and have
nearly the same frequency dispersion close to the fundamental
resonance.

Here, we show that once we relax this presumption, we can
largely overcome this fundamental bound. On the other hand,
we establish a new constraint for a general linear passive dipole
scatterer. We prove that indirect magnetoelectric coupling
coefficients (bianisotropy parameters) may be different from
zero only if both of the direct coupling coefficients ¯̄αee and
¯̄αmm are simultaneously nonzero.

II. NECESSARY CONDITIONS FOR THE PRESENCE
OF INDIRECT COUPLINGS

Let us first apply the energy conservation law to a general
lossless bianisotropic scatterer (linear response is assumed).
Equating the power extracted by the scatterer from the
incident fields and the power which it re-radiates back into
surrounding space, we can write the following relation between
its polarizability tensors (see, e.g., Refs. [3,13]):

i

2
( ¯̄α† − ¯̄α) = k3

6πε0

¯̄α† · ¯̄α, (5)

where k is the wave number of the incident wave and ε0

is the permittivity of the host medium that is assumed to
be isotropic and dielectric only, † denotes the conjugate
transpose operator, and the 6 × 6 polarizability dyadic is
defined in (A2). The time-harmonic dependency in the form
of e−iωt is assumed. From (A1) and (A2), the following
expressions for the polarizability tensor of a lossless scatterer
follow (see Appendix A):

¯̄α†
ee − ¯̄αee

2
= −i

k3

6πε0
[ ¯̄α†

ee · ¯̄αee + ¯̄α†
me · ¯̄αme], (6)

¯̄α†
mm − ¯̄αmm

2
= −i

k3

6πε0
[ ¯̄α†

mm · ¯̄αmm + ¯̄α†
em · ¯̄αem]. (7)

If we now assume that ¯̄αee is exactly zero, then we see
from (A3) that ¯̄α†

me · ¯̄αme = ¯̄0. From here it follows that
¯̄αme = ¯̄αem = ¯̄0 (see Appendix A). The same result can be
obtained from (A5) if a vanishing magnetic tensor ¯̄αmm is
assumed. Similar reasoning leads to the conclusion that the
same result is valid also for lossy (dissipative) scatterers. It
can be understood from observing that for lossy scatterers
relations (A3) and (A5) contain additional positive terms in
the right-hand side, which represent the dissipated power.

Therefore, we conclude that if at least one of the direct
coupling tensors vanishes, the indirect coupling tensors must
be zero accordingly. However, from the above considerations
it does not follow that the indirect magnetoelectric coupling

p

JeE

Hk

(a)

m

Je

E

Hk

(b)

FIG. 1. (a),(b) A metal split-ring resonator in free space. At the
main resonance, the induced electric and magnetic dipole moments
are related to the same nearly uniform current distribution.

coefficients cannot be stronger as compared to the direct ones,
as long as both direct polarizabilities are not exactly zero. It is
important to study if there are possibilities to design scatterers
which overcome the inequality (4).

III. COUNTEREXAMPLES WHICH BREAK THE
INEQUALITY |αemαme| � |αeeαmm|

A. Split-ring resonators

As a representative example, let us consider a scatterer that
exhibits bianisotropic coupling of the so-called omega type [8]:
a split-ring resonator (Fig. 1).

The resonator has a square shape with the outer edge equal
to 110 nm and the square cross section with the side of
30 nm. The gap is 30 nm. The material is gold [14]. Based
on the semianalytical approach developed in Ref. [15], we
extract the main polarizability components of this scatterer
excited by the illumination shown in Fig. 1. Figure 2(a) depicts
magnitudes of the main components of the polarizability
tensors and Fig. 2(b) shows the products of the direct and
the indirect terms, respectively.

Close to the resonance, where the current around the ring
is nearly uniform (the conduction current is continued in
the gap as a displacement current with the same phase), its
polarizabilities agree with the theory of Ref. [11] and obey
the relation (3). Based on the earlier studies [3], it can be
expected that when the frequency deviates from the resonant
range, limitation (4) should continue to hold. However, at
frequencies near 325 THz, the indirect coupling coefficient αem

clearly exceeds both direct ones (normalized by the free space
impedance η0) more than 2.5 times. In this frequency range, the
current induced in the resonator is strongly nonuniform: The
current in the middle part of the scatterer is directed oppositely
to the displacement current in the gap and the external
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FIG. 2. Numerically obtained magnitudes of the main polariz-
ability components of the split-ring resonator versus frequency.
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electric field excites predominantly a magnetic dipole moment.
Likewise, the external magnetic field excites a strong electric
dipole moment. We conclude that beyond the frequency range
of the fundamental resonance, where the RLC model is not
applicable, the limitation (4) does not hold.

B. Dimers

Although the studied example scatterer overcomes the
previously established limitation (4), the indirect coupling
coefficients αem and αme are still of the same order as that of
the direct ones η0αee and αmm/η0. In order to further enhance
the indirect coupling and suppress the direct polarization
effects, we push the idea of multimode scatterers to the
limit by designing a nanodimer whose two constituents have
electric polarizabilities of the opposite signs. Despite the fact
that dimer scatterers have been intensively studied (see, e.g.,
Refs. [5,16,17]), their potentials for enhancing bianisotropic
coupling as compared to the direct ones appear not to be
realized. Commonly, previous works (see, e.g., Ref. [5]) were
devoted to designing dimers that have no excited electric dipole
moment under illumination of an incident plane wave (e.g., to
realize scattering cancellation cloaking [18]):

p = ¯̄αee · Einc + ¯̄αem · Hinc ≈ 0. (8)

However, this condition is drastically different from our goal
to minimize the direct coupling. Indeed, Eq. (8) implies that
the indirect coupling should be of the same order as the direct
one.

In this work, we aim to design a scatterer such that
its electromagnetic response is almost solely defined by
the indirect coupling (a “purely bianisotropic scatterer”).
Neglecting the direct coupling coefficients, we can write the
dipole moments induced in such a scatterer as follows:

p ≈ ¯̄αem · Hinc, m ≈ ¯̄αme · Einc. (9)

To exactly meet the equality in (9) is impossible due to the
constraint established above.

We design the nanodimer as a system of two closely spaced,
very small (compared to the wavelength) dielectric spheres
with the relative permittivity ε1 and ε2 and equal radii r = 21.4
nm (see Fig. 3).

The distance between the centers of the spheres is 3r =
64.2 nm. Without loss of generality, we assume that the

x
z

y

FIG. 3. Illustration of a nanodimer.

FIG. 4. Distribution of the electric field scattered by the nan-
odimer with the polarizabilities given by (9). The dimer is excited by
external (a),(b) electric field and (c),(d) magnetic field. (b),(d) The
corresponding patterns of the scattering amplitude.

nanodimer is located in free space. We choose ε1 = 0.4 and
ε2 = 2 at the operational frequency, so that the electric polar-
izabilities of the spheres in the quasistatic approximation [1]
have equal amplitudes but opposite signs (see Appendix B).
The magnetic polarizabilities of both spheres in the quasistatic
approximation can be neglected.

In order to analyze the dimer polarizabilities, we excite it
by a combination of two plane waves propagating along the
z axis in the opposite directions, forming a standing wave.
When the dimer is positioned in the antinode of the electric
field Eext = 2Einc [see Fig. 4(a)], where the external magnetic
field is zero, the induced electric dipole moments in the two
spheres p1 and p2 compensate each other, ensuring near-zero
direct coupling coefficient αee of the total dimer system.

On the other hand, this configuration of the opposite electric
dipoles forms an electric quadrupole moment and a magnetic
dipole moment [which, according to (9), corresponds to the
nonzero indirect coupling coefficient αme]. Figure 4(b) depicts
the radiation pattern of the nanodimer under this excitation in
terms of the scattering amplitude f = limr→∞ Esc(r) · r . The
result corresponds to the typical pattern of combined electric
quadrupole and magnetic dipole moments.

Next, we position the nanodimer in the antinode of the
magnetic field of the standing wave Hext = 2Hinc as shown
in Fig. 4(c). Importantly, in this configuration the induced
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FIG. 5. Numerically obtained magnitudes of the main po-
larizability components of the nonresonant purely bianisotropic
nanodimer.

magnetic moment in the dimer corresponding to the direct
coupling is negligibly small. There are two reasons for that.
Firstly, the spheres have a small intrinsic magnetic response
because we work far from their magnetic Mie resonances.
Secondly, the external magnetic field due to the Faraday law
creates circulation of the electric field around the center of
the dimer. Due to the opposite electric polarizabilities of
the nanodimer spheres, this circulating external electric field
excites noncirculating electric dipoles directed along the same
direction as is shown in Fig. 4(c). Therefore, the total magnetic
response at excitation by magnetic fields is almost completely
suppressed, and the scatterer radiates as a pure electric dipole
with the corresponding radiation pattern shown in Fig. 4(d)
(electric quadrupole moment is also very small).

In order to quantitatively analyze the response of the
nanodimer, we determine its main polarizability components
excited by illumination by waves propagating along the z

axis. Figure 5(a) shows the extracted polarizabilities of the
nanodimer and Fig. 5(b) depicts the product of the direct and
indirect terms.

Notice that in a very wide frequency range the magneto-
electric coupling coefficient is at least one order of magnitude
stronger than both electric and magnetic ones, so that the
limitation (4) is largely exceeded (more than 27 times).
Thus, the nanodimer exhibits properties of a nearly pure
bianisotropic scatterer and can be described by (9).

Although this example is simple and vivid, because of a
small size compared to the wavelength and the nonresonant
scattering regime, the dimer is weakly excited by incident illu-
mination, which may preclude its use in potential applications.
To enhance the strength of the nanodimer response and hence
make it practical, we have demonstrated a design solution for a
dimer operating near the Mie resonances of its two inclusions
(see Appendix B).

The unique property of pure bianisotropic response implies
several exciting consequences. For example, such a nanodimer
has an equivalent response (along its axis) to that of Kerker’s
magnetoelectric sphere with ε = μ [2]. In this regime, the
backscattering from the dimer is zero for any polarization of
the incident wave, as is seen from Eqs. (9). Moreover, the
forward scattered wave has always the same polarization as
that of the incident wave.

Another interesting property of purely bianisotropic scat-
terers is predominantly lateral scattering. Indeed, if a dimer
is illuminated with a plane wave propagating along the x

FIG. 6. Illustration of the modified purely bianisotropic scatterer.
The configuration ensures that for a specific incidence direction a
lateral force F ⊥ k acting on the cluster occurs.

axis (see Fig. 3) with the electric field polarized along the y

axis, the scattering pattern has a shape similar to that depicted
in Fig. 4(b) and is characterized by very weak forward and
backward scattering and strong side scattering along the +z

and −z directions. This effect of strong lateral scattering
can find important applications for engineering optical forces
which is discussed in the following.

IV. LATERAL OPTICAL FORCES WITH PURELY
BIANISOTROPIC SCATTERERS

Indeed, it is possible to modify the nanodimer so that the
scattering is directed predominantly in one lateral direction.
Let us consider a dimer configuration depicted in Fig. 6, where
we have added an additional sphere in the center of the dimer.

This additional sphere is a small metallic nanoparticle
which is at its plasmonic resonance, i.e., ε3 ≈ −2. In our
conceptual consideration we neglect without loss of generality
the effects of interaction between the plasmonic particle and
the nanodimer spheres. Under the excitation shown in Fig. 6,
an electric dipole moment p3 will be induced in the plasmonic
particle along the x axis, while the induced electric dipole
moments p1 and p2 in the dimer will form an effective magnetic
moment along the y axis. Tuning the dimensions of the
plasmonic nanoparticle and its loss factor, one can balance the
induced effective magnetic moment with the electric moment
p3 so that they have the same amplitude and phase. In this
case, these two orthogonal dipole moments form a Huygens’
pair whose scattering pattern has a null along the +z or
−z direction. Therefore, due to the conservation of linear
momentum in the system, the nanocluster, illuminated by a
wave along the y direction will experience a lateral force along
the z direction. Such an effect of side optical forces can be
interesting in micromanipulation (so-called optical tweezers)
and fabrication.

V. CONCLUSION

In summary, we have proved that nonzero indirect coupling
coefficients in a passive scatterer exist only if both direct
coupling effects are present at least as very weak effects.
Based on several examples, we have shown that the earlier
published considerations do not impose any limit on the
strength of the indirect coupling coefficients compared to the
direct ones. Moreover, we have demonstrated that the indirect
coupling can be largely enhanced in specifically designed
dimer scatterers. Such dimers possess unique, almost purely
bianisotropic response and exhibit unprecedented effects, for
example, lateral optical forces.
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This result confirms the nearly pure bianisotropic response
of the nanodimer. The frequency shift from 417 THz to
350 THz can be explained by the mutual interaction of the
spheres. Compared to the case of small spheres in the main
paper, this nanodimer exhibits about three orders of magnitude
stronger electromagnetic response.

APPENDIX A: PROOF THAT PASSIVE PURELY
BIANISOTROPIC SCATTERERS DO NOT EXIST

In the main text, we state that if we assume that the electric
and magnetic polarizabilities ¯̄αee and ¯̄αmm of a dipolar scatterer
are exactly zero, then the magnetoelectric polarizabilities ¯̄αem

and ¯̄αme must also be zero. To prove that, we first employ the
relations for the extracted and scattered powers by the scatterer
in terms of the dipolar moments. Then, we consider the fact
that these two must be equal when there is no absorption loss.
From these considerations, we can write the relation between
the polarizability tensors as:

i

2
( ¯̄α† − ¯̄α) = k3

6πε0

¯̄α† · ¯̄α, (A1)

where † is the conjugate transpose operator and

¯̄α =
[

¯̄αee ¯̄αem
¯̄αme ¯̄αmm

]
. (A2)

From (A1) and (A2) we derive the following expressions for
the polarizability dyadics of a lossless particle:

¯̄α†
ee − ¯̄αee

2
= −i

k3

6πε0
[ ¯̄α†

ee · ¯̄αee + ¯̄α†
me · ¯̄αme], (A3)

¯̄α†
me − ¯̄αem

2
= −i

k3

6πε0
[ ¯̄α†

ee · ¯̄αem + ¯̄α†
me · ¯̄αmm], (A4)

¯̄α†
mm − ¯̄αmm

2
= −i

k3

6πε0
[ ¯̄α†

em · ¯̄αem + ¯̄α†
mm · ¯̄αmm], (A5)

¯̄α†
em − ¯̄αme

2
= −i

k3

6πε0
[ ¯̄α†

em · ¯̄αee + ¯̄α†
mm · ¯̄αme]. (A6)

Next, let us assume that both electric and magnetic polariz-
abilities of the scatterer are zero, i.e., ¯̄αee = ¯̄αmm = 0. Then,
from (A3) and (A5) it follows that

¯̄α†
me · ¯̄αme = ¯̄0, (A7)

¯̄α†
em · ¯̄αem = ¯̄0. (A8)

If we consider ¯̄αem and ¯̄αme as three-dimensional matrices:

¯̄αem =

⎡
⎢⎣

αxx
em α

xy
em αxz

em

α
yx
em α

yy
em α

yz
em

αzx
em α

zy
em αzz

em

⎤
⎥⎦ (A9)

and

¯̄αme =

⎡
⎢⎣

αxx
me α

xy
me αxz

me

α
yx
me α

yy
me α

yz
me

αzx
me α

zy
me αzz

me

⎤
⎥⎦, (A10)
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FIG. 7. Analytical polarizabilities of spheres with ε1 = −0.6 and
ε2 = 10 at frequencies near the Mie resonances. At 417 THz, the
real parts of the electric polarizabilities have equal amplitudes but
opposite signs, while their imaginary parts are negligible.

then from (A7) and (A8) we obtain the following two sets of
equations: ∣∣αxx

em

∣∣2 + ∣∣αyx
em

∣∣2 + ∣∣αzx
em

∣∣2 = 0,∣∣αxy
em

∣∣2 + ∣∣αyy
em

∣∣2 + ∣∣αzy
em

∣∣2 = 0,∣∣αxz
em

∣∣2 + ∣∣αyz
em

∣∣2 + ∣∣αzz
em

∣∣2 = 0 (A11)

FIG. 8. Distribution of the electric field scattered by the nan-
odimer at 350 THz. The dimer is excited by external (a),(b) electric
field and (c),(d) magnetic field. (b),(d) The corresponding patterns of
the scattering amplitude.
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and
∣∣αxx

me

∣∣2 + ∣∣αyx
me

∣∣2 + ∣∣αzx
me

∣∣2 = 0,∣∣αxy
me

∣∣2 + ∣∣αyy
me

∣∣2 + ∣∣αzy
me

∣∣2 = 0, (A12)∣∣αxz
me

∣∣2 + ∣∣αyz
me

∣∣2 + ∣∣αzz
me

∣∣2 = 0.

Now from (A11) and (A12) one can conclude that if ¯̄αee =
¯̄αmm = 0, then there is no possibility to have nonzero ¯̄αem and
¯̄αme, i.e.,

if { ¯̄αee = ¯̄αmm = 0} =⇒ { ¯̄αem = ¯̄αme = 0}. (A13)

This conclusion is applied to any dipolar scatterer.

APPENDIX B: DIELECTRIC SPHERES CLOSE
TO THE MIE RESONANCES

The electric polarizabilities of the spheres within the
quasistatic approximation read

αee1,2 = 4

3
πr3ε0

3(ε1,2 − 1)

ε1,2 + 2
(B1)

and their magnetic polarizabilities can be neglected. In the
main text, we presented a scatterer system of two dielectric
spheres whose magnetoelectric polarizability is stronger than
both electric and magnetic polarizabilities. The individual
electric αee and magnetic αmm dipole polarizabilities of a
dielectric sphere can be determined by [19]:

αee = 6πiε

k3
a1, αmm = 6πiμ

k3
b1, (B2)

where k = ω
√

με is the host medium wave number, μ and ε

are the permeability and permittivity of the host medium, a1

and b1 are the dipolar terms of the scattering Mie coefficients
for a sphere of an arbitrary size in a uniform host medium. The
scattering Mie coefficients of all the multipoles excited in the
sphere are denoted by [20]:

an = μm2jn(mx)[xjn(x)]′ − μpjn(x)[mxjn(mx)]′

μm2jn(mx)
[
xh

(1)
n (x)

]′ − μph
(1)
n (x)[mxjn(mx)]′

,

(B3)
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FIG. 9. Numerically obtained magnitudes of the main polariz-
ability components of the purely bianisotropic nanodimer operating
close to the Mie resonances of its inclusions.

and

bn = μpjn(mx)[xjn(x)]′ − μjn(x)[mxjn(mx)]′

μpjn(mx)
[
xh

(1)
n (x)

]′ − μh
(1)
n (x)[mxjn(mx)]′

. (B4)

Here, x = ω
√

μεD/2, m =
√

μpεp

με
, μp and εp are the perme-

ability and permittivity of the sphere particle, respectively.
In these relations D is the sphere diameter, jn and h(1)

n are
the spherical Bessel functions of the first and third kind,
respectively, and sign “′” denotes the derivative with respect
to the argument.

We choose the radii of the spheres r = 65 nm and the dis-
tance between their centers 3r = 195 nm, and calculate the po-
larizabilities using the full-wave Mie theory. To prevent strong
magnetic response from the spheres, we choose the operational
frequency far enough from the nearest magnetic resonance
of the spheres occurring at 696 THz. Next, we choose the
permittivities of the spheres ε1 = −0.6 and ε2 = 10 such that
at the frequency 417 THz their electric polarizabilities have
equal amplitudes but opposite signs Re(αee 1) = −Re(αee 2).
Figure 7 depicts the analytically calculated polarizabilities of
such spheres.

Due to this property, the external electric/magnetic field
induces magnetic/electric dipole moment in the nanodimer
as shown in Figs. 8(a) and 8(c). The scattering patterns for
these two cases are presented in Figs. 8(b) and 8(d). Close
to 350 THz, the direct coupling coefficients are suppressed,
while the indirect coupling coefficient is strong [see Figs. 9(a)
and 9(b)].
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