
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Jo, Hang Hyun; Perotti, Juan I.; Kaski, Kimmo; Kertész, János
Correlated bursts and the role of memory range

Published in:
Physical Review E

DOI:
10.1103/PhysRevE.92.022814

Published: 20/08/2015

Document Version
Publisher's PDF, also known as Version of record

Please cite the original version:
Jo, H. H., Perotti, J. I., Kaski, K., & Kertész, J. (2015). Correlated bursts and the role of memory range. Physical
Review E, 92(2), Article 022814. https://doi.org/10.1103/PhysRevE.92.022814

https://doi.org/10.1103/PhysRevE.92.022814
https://doi.org/10.1103/PhysRevE.92.022814


PHYSICAL REVIEW E 92, 022814 (2015)

Correlated bursts and the role of memory range

Hang-Hyun Jo,1,2 Juan I. Perotti,2,3 Kimmo Kaski,2 and János Kertész2,4

1BK21plus Physics Division and Department of Physics, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
2Department of Computer Science, School of Science, Aalto University, P.O. Box 15500, Espoo, Finland

3IMT Institute for Advanced Studies Lucca, Piazza San Francesco 19, I-55100 Lucca, Italy
4Center for Network Science, Central European University, Nádor utca 9, H-1051 Budapest, Hungary
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Inhomogeneous temporal processes in natural and social phenomena have been described by bursts that are
rapidly occurring events within short time periods alternating with long periods of low activity. In addition to the
analysis of heavy-tailed interevent time distributions, higher-order correlations between interevent times, called
correlated bursts, have been studied only recently. As the underlying mechanism behind such correlated bursts is
far from being fully understood, we devise a simple model for correlated bursts using a self-exciting point process
with a variable range of memory. Whether a new event occurs is stochastically determined by a memory function
that is the sum of decaying memories of past events. In order to incorporate the noise and/or limited memory
capacity of systems, we apply two memory loss mechanisms: a fixed number or a variable number of memories.
By analysis and numerical simulations, we find that too much memory effect may lead to a Poissonian process,
implying that there exists an intermediate range of memory effect to generate correlated bursts comparable to
empirical findings. Our conclusions provide a deeper understanding of how long-range memory affects correlated
bursts.

DOI: 10.1103/PhysRevE.92.022814 PACS number(s): 89.75.Da, 05.40.−a, 89.20.−a

I. INTRODUCTION

Many natural phenomena and human activities are ex-
tremely inhomogeneous in time. Solar flares, earthquakes
[1], firing of neurons [2], and human communication [3] are
just some examples. In all these phenomena events occurring
within short time periods, called bursts, are alternating with
random, long periods of low activity [3]. Often the elements
behaving in this manner constitute a temporal network [4]
and then the processes such as spreading on the network are
strongly influenced by the burstiness of the time series [5–9].
Alternatively, burstiness can be influenced by spreading [10].
The natural question arises of how to characterize the highly
inhomogeneous dynamics and how to model it. This is im-
portant for discovering analogies between different processes
leading to possible universalities and for understanding the
effect of temporal inhomogeneities on the network processes.

At the simplest level, the bursty time series is characterized
by the heavy-tailed interevent time distribution P (τ ), where τ

is the time interval between two consecutive events. The P (τ )
has often been described by a power law

P (τ ) ∼ τ−α. (1)

However, the interevent time distribution does not provide
a complete characterization. The higher-order description of
bursts focuses on dependences between interevent times, i.e.,
higher-order memory effects. These can be approached in
different ways. One possibility is to calculate the autocorrela-
tion function. For this approach Goh and Barabási defined a
memory coefficient measuring short-range memory effect [11]

M = 〈(τi − 〈τ 〉)(τi+1 − 〈τ 〉)〉
σ 2

, (2)

where τi denotes the ith interevent time and 〈τ 〉 and σ are the
average and standard deviation of interevent times. The aim
was to characterize the bursty time series by two quantities,

M and the burstiness parameter B, defined as

B = σ − 〈τ 〉
σ + 〈τ 〉 . (3)

It has been found in many human activities that M is close
to 0. To describe long-range memory effects, one can use the
entire autocorrelation function of the time series. Recently,
it was shown that the power-law decay of the autocorrelation
function is implied by a power-law interevent time distribution
even without any correlations between consecutive interevent
times. Precisely, the scaling relation α + γ = 2 was proven
with γ denoting the decaying exponent of the autocorrelation
function [12]. However, more work needs to be done for the
validity of the scaling relation, as the effect of dependences
between interevent times in the bursty time series is not yet
fully understood.

An approach sensitive to dependences was recently intro-
duced by using the notion of bursty trains [13]. A bursty train
is defined as a set of events such that any pair of consecutive
events in the train is separated by an interevent time within
a given time window �t . The distribution of the number E

of events in the trains follows an exponential function if the
interevent times are independently and identically distributed.
It was found, however, that in many empirical cases E is
power-law distributed, i.e.,

P�t (E) ∼ E−β (4)

for a wide range of �t . This notion of correlated bursts was
empirically observed in earthquakes, neuronal activities, and
human communication patterns [13]. Such correlations are
clearly due to memory effects.

Generative models for correlated bursts have been devised
and studied. Karsai et al. introduced a two-state model with
memory function [13]: One state is for generating power-law-
distributed interevent times that are uncorrelated, while the
other state is for generating short-time-scale bursty trains. For
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the latter, they define a memory function as the probability of
generating one more event in the train provided l events have
already been generated in the train:

p(l) =
(

l

l + 1

)ν

. (5)

Here α and β are directly controlled by parameters for memory
functions, e.g., β = ν + 1. In this model, the onset of bursty
trains is assumed to be known or at least declared in order to use
the above memory function, requiring additional information.
Such an assumption is not necessarily the case in reality.
Thus, in this paper we suggest a more natural and intuitive
mechanism for correlated bursts that does not need declaring
bursty trains. We also investigate the robustness of the scaling
relation α + γ = 2 with respect to the strength of dependences
between interevent times.

II. MODEL

We study a generative model for correlated bursts with a
variable range of memory effect. In our model, bursty trains
emerge from the stochastic process using a memory function.
Note that our memory function has nothing to do with Eq. (5).
The first event occurs at time step t = 1 and the ith event
occurs at time step t = ti . The probability that the (n + 1)th
event occurs at time step t is given by

p[m(t)] = 1 − e−μm(t)−ε, (6)

m(t) =
n∑

i=1

1

t − ti
for t > tn, (7)

where m(t) denotes the memory function that is the time-
weighted sum of all the past events. Accordingly, μ controls
the strength of the memory effect such that a larger μ implies
a stronger memory effect. Here we use ε = 10−6 to indicate
spontaneous events taking place with very small probability.
Once the (n + 1)th event occurs, the memory term due to this
event is added to the memory function. Note that t is discrete
and t − ti � 1.

We remark that our model can be considered as a self-
exciting point process [14–16] with a power-law kernel.
These processes have been extensively studied for earthquakes
[17–21] as well as in application to social systems [22,23].
In such processes, the time-varying event rate is given as a
function of the past events. As for the kernel, Omori’s law has
been widely used, stating that aftershock frequency decreases
with an elapsed time after the main shock, e.g., in the form
of (t − ti)−1−θ with small positive θ [18]. The self-exciting
point process with Omori’s law is called the epidemic-type
aftershock sequence (ETAS) model. Note that our memory
function in Eq. (7) corresponds to the case with θ = 0. Analytic
and numerical approaches to the ETAS model have shown
that interevent time distributions are mostly described by a
Gamma function [21], implying that α � 1. However, one
finds evidence for α > 1 in many other natural and social
phenomena [24–26]. Despite the similarity between our model
and the ETAS model, our model shows different results, such
as α > 1.

As an additional feature to the family of ETAS models, we
introduce memory loss mechanisms as most systems may lose
their memory for various reasons, e.g., noise, limited memory
capacities, or periodic resetting in circadian cycles of humans
[27]. We incorporate the sequential memory loss mechanism
by considering only a finite number L of terms in Eq. (7):

m(t) =
n∑

i=n−L+1

1

t − ti
for t > tn. (8)

This implies that once an event occurs, the memory due to
the oldest event is immediately lost. Here L = 1 implies no
memory before the latest event. Note that without memory
loss, i.e., when L is infinite, m(t) might diverge as ln t .

We can consider more realistic memory loss mechanisms
depending on the systems of interest. For example, the
condition of the fixed L can be relaxed by considering variable
L. Whenever an event occurs, m(t) is initialized except for the
latest event, i.e., by setting L = 1, with a probability

q[L(t)] = 1 −
[

L(t)

L(t) + 1

]ν

+ εL, (9)

where L(t) is the number of terms in the memory function at
time t . This can be called a preferential memory loss mecha-
nism. Here we have introduced the spontaneous initialization
of m(t) with very small εL = 10−6; otherwise, if εL = 0, q(L)
may be extremely small due to extremely large L(t) and vice
versa. With this q(L), we expect that the distribution of L is
proportional to L−ν−1e−L/Lc with Lc ≡ ε−1

L . We will study
both memory loss mechanisms separately.

We remark that our model is intrinsically nonstationary
due to the long-range memory effect. However, nonstationary
periods are limited to time scales of the order of ε−1, as to
be numerically confirmed by the decaying behavior of the
autocorrelation function for a delay time of the order of ε−1.

III. RESULTS

A. Sequential memory loss

In general, the probability of finding an interevent time τ

between events occurred at tn and tn + τ is written as

P (τ ) =
⎡
⎣tn+τ−1∏

t=tn+1

e−μm(t)−ε

⎤
⎦[1 − e−μm(tn+τ )−ε]. (10)

This formula is exact as the model is defined in the discrete
time t , while the formula for continuous time can be found in
[17]. Let us first consider the simplest case when the model
has no memory before the latest event, i.e., L = 1. Since the
distribution does not depend on tn but only on t − tn, we set
tn = 0 without loss of generality. Then we use

m(t) = 1

t
. (11)

The numerical result of m(t) is depicted in Fig. 1(a). This can
be related to time-varying priority queuing models studied in
[28], where the decaying priority of the task was considered
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FIG. 1. (Color online) Temporal evolution of memory function
m(t) in the model with a sequential memory loss mechanism, where
the number of memories is denoted by L. We used μ = 1/10 and (a)
L = 1, (b) L = 10, and (c) L = 100.

as ∼ t−a . One gets the interevent time distribution

P (τ ) =
[

τ−1∏
t=1

e−μ/t−ε

]
(1 − e−μ/τ−ε)

≈ exp[−μ ln(τ − 1) − ε(τ − 1)]
(μ

τ
+ ε

)

≈
[
μτ−(1+μ) + τ−μ

τc

]
e−τ/τc , τc ≡ ε−1. (12)

In the last line, we have assumed τ � 1. This analytic result
perfectly fits the numerical results even for small values of τ

[see Fig. 2(a)]. For numerical simulations, we have generated
the event sequence consisting of up to 106 events using μ =
1/10 for all cases. The bump observed for large τ is clearly due
to the Poisson events with positive ε. We find the power-law
exponent of interevent time distribution to be

α =
{

1 + μ for τ � μτc

μ for μτc � τ � τc.
(13)

When τc = 106 and μ = 1/10, the scaling regime with α = μ

turns out to be almost invisible. Thus the dominant scaling
behavior is characterized by α = 1 + μ.

Since all interevent times are fully uncorrelated, the bursty
train distribution is given by [13]

P�t (E) = F (�t)E−1[1 − F (�t)], (14)

F (�t) ≡
�t∑
τ=1

P (τ ). (15)

For E � 1, one gets the exponential distribution of bursty
trains as

P�t (E) ≈ e−E/Ec(�t)[1 − e−1/Ec(�t)], (16)

with Ec(�t) ≡ −[ln F (�t)]−1, which is numerically con-
firmed in Fig. 2(b). In the case of ε = 0, we have Ec(�t) ≈
(�t)μ for �t � 1.

In order to calculate the autocorrelation function, we first
denote the event sequence by x(t), which has a value of
1 at the moment the event occurred and 0 otherwise. The
autocorrelation function with delay time td is defined as

A(td ) = 〈x(t)x(t + td )〉t − 〈x(t)〉2
t

〈x(t)2〉t − 〈x(t)〉2
t

. (17)

For the power-law interevent time distribution, one may find
that A(td ) ∼ t

−γ

d . For the uncorrelated interevent times, it
has been proven that α + γ = 2 [12]. This scaling relation
is numerically confirmed with the estimated value of γ in
Fig. 2(c).

Next we consider the case of L = 2, when the memory
function is composed of two terms corresponding to the latest
event and the next latest event, respectively. The interevent
time between those two events is denoted by τ1. Again we set
tn = 0 in Eq. (10). The conditional memory function reads

m(t |τ1) = 1

t
+ 1

t + τ1
, (18)

leading to the conditional interevent time distribution P (τ |τ1),

P (τ |τ1) ≈ e−μf (τ |τ1)−τ/τc
[
μg(τ |τ1) + τ−1

c

]
, (19)

f (τ |τ1) ≡ ln τ + ln(τ + τ1) − ln τ1, (20)

g(τ |τ1) ≡ 1

τ
+ 1

τ + τ1
. (21)

If τ � τ1, we get

P (τ |τ1) ≈ μτ−(1+μ) +
(

μ

τ1
+ 1

τc

)
τ−μ. (22)

On the other hand, if τ � τ1, we get

P (τ |τ1) ≈ τ
μ

1

[
2μτ−(1+2μ) + τ−2μ

τc

]
e−τ/τc . (23)

Then P (τ ) could be obtained by solving the following self-
consistent equation:

P (τ ) =
∑
τ1

P (τ |τ1)P (τ1), (24)

which is however not trivial. Instead we find that the leading
term of Eq. (22) is not explicitly dependent on τ1 and that τ

μ

1
appears in Eq. (23) only as a coefficient. Thus we expect that
P (τ ) ≈ P (τ |τ×) with τ1 in Eq. (19) replaced by a crossover
interevent time τ×. We numerically estimate τ× ≈ 70.2 by
fitting P (τ |τ×) to the simulation result of P (τ ), shown in
Fig. 2(d). In sum, provided that τ× � 2μτc � τc, one can get
the power-law exponent

α =
⎧⎨
⎩

1 + μ for τ � τ×
1 + 2μ for τ× � τ � 2μτc

2μ for 2μτc � τ � τc.

(25)
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JO, PEROTTI, KASKI, AND KERTÉSZ PHYSICAL REVIEW E 92, 022814 (2015)

10-6

10-4

10-2

100

 0  4  8  12  16

P
Δt

(E
)

E

(b)
Δt=1

4
16
64

10-6

10-4

10-2

100

 0  4  8  12  16  20  24  28

P
Δt

(E
)

E

(e)
Δt=1

16
64

256

10-6

10-4

10-2

100

100 101 102

P
Δt

(E
)

E

(h)
β=1.55(5)

Δt=16
64

256
1024

10-6

10-4

10-2

100

100 101 102 103 104

P
Δt

(E
)

E

(k)

β=1.46(3)

Δt=16
64

256
1024

10-6

10-4

10-2

100

100 101 102 103 104 105

A
(t

d)

td

(c)
numeric

γ=0.90(1)

10-5

10-4

10-3

10-2

10-1

100

100 101 102 103 104 105

A
(t

d)

td

(f)
numeric

γ=0.81(1)

10-5

10-4

10-3

10-2

10-1

100

100 101 102 103 104 105

A
(t

d)

td

(i)
numeric

γ=0.58(1)

10-5

10-4

10-3

10-2

10-1

100

100 101 102 103 104 105

A
(t

d)

td

(l)
numeric

γ=0.53(1)

10-12

10-9

10-6

10-3

100

100 102 104 106 108

P
(τ

)

τ

(a)

L=1

α=1.1

numeric
analysis

10-12

10-9

10-6

10-3

100

100 102 104 106 108

P
(τ

)

τ

(d)

L=2

α=1.1 α=1.2

numeric
analysis

10-12

10-9

10-6

10-3

100

100 102 104 106 108

P
(τ

)

τ

(g)

L=10

numeric

10-9

10-6

10-3

100

100 101 102 103 104 105

P
(τ

)

τ

(j)

L=100

numeric

1
2
3
4

100 102 104

α l
oc

al

τ

1

2

100 103 106

α l
oc

al

τ

FIG. 2. (Color online) Interevent time distributions P (τ ) (left column), bursty train distributions P�t (E) (middle column), and
autocorrelation functions A(td ) (right column) in the model with a sequential memory loss mechanism, where the number of memories
is denoted by L. We used μ = 1/10 and (a)–(c) L = 1, (d)–(f) L = 2, (g)–(i) L = 10, and (j)–(l) L = 100.

The bursty train distribution can be calculated as

P�t (E) = C

∞∑
τ0,τE=�t+1

�t∑
τ1,...,τE−1=1

P (τE)
E−1∏
i=0

P (τi |τi+1), (26)

with a normalization constant C. An example of an event train
is shown in Fig. 3. Here we decompose the interevent times
in Eq. (26) by assuming that P (τi |τi+1) ≈ P (τi |1), because
τi+1 = 1 will contribute the most. We get

P�t (E) ∝ F (�t |1)E−1, (27)

F (�t |τ ′) ≡
�t∑
τ=1

P (τ |τ ′), (28)

FIG. 3. Event train of E events, where τ0,τE > �t and τi � �t

for i = 1, . . . ,E − 1.
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where τ ′ denotes the previous interevent time. This approx-
imation is compared to the numerical results in Fig. 2(e). In
addition, for the autocorrelation function we numerically find
γ = 0.81(1) in Fig. 2(f), which fits the scaling relation α +
γ = 2 with α = 1.2 for the regime of large τ in Eq. (25). This
implies that the dependence between consecutive interevent
times is not strong enough to lead to violations of the scaling
relation α + γ = 2.

In general, we have L terms in the memory function

m(t |{τi}) = 1

t
+

L−1∑
i=1

1

t + si

, (29)

where si ≡ ∑i
j=1 τj , with τj denoting the time interval

between the j th latest and (j + 1)th latest events. We straight-
forwardly get

P (τ |{τi}) ≈ e−μf (τ |{τi })−τ/τc [μg(τ |{τi}) + τ−1
c ], (30)

f (τ |{τi}) ≡ ln τ +
L−1∑
i=1

ln

(
1 + τ

si

)
, (31)

g(τ |{τi}) ≡ 1

τ
+

L−1∑
i=1

1

τ + si

. (32)

For sk−1 � τ � sk we get

f (τ |{τi}) ≈ k ln τ −
k−1∑
i=1

ln si, (33)

g(τ |{τi}) ≈ k

τ
+

L−1∑
i=k

1

si − sk−1
, (34)

leading to P (τ ) ∼ τ−α with α = 1 + kμ. Similarly to the case
of L = 2, one can infer the scaling behavior of P (τ ) ∼ τ−α as
follows:

α =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 + μ for τ � τ×1

1 + 2μ for τ×1 � τ � τ×2
...

...
1 + Lμ for τ×L−1 � τ � Lμτc

Lμ for Lμτc � τ � τc,

(35)

with crossover interevent times τ×i for i = 1, . . . ,L − 1, pro-
vided τ×1 � · · · � τ×L−1 � Lμτc � τc. This implies that
the scaling behavior cannot be described by a single value
of the power-law exponent. We instead calculate the local
exponent αlocal,

αlocal(τ ) = − ln P (uτ ) − ln P (τ )

ln(uτ ) − ln τ
, (36)

with a proper constant u ≈ 3.3. Indeed, such local exponents
show gradually increasing behaviors as τ increases for the
cases of large L, shown in the insets of Figs. 2(g) and 2(j).

The bursty train distribution can be written as

P�t (E) = C ′
∞∑

τ0,τE=�t+1

�t∑
τ1,...,τE−1=1

∞∑
τE+1,...,τE+L−2=1

P (τE)
E−1∏
i=0

P (τi |τi+1, . . . ,τi+L−1), (37)

where C ′ is a normalization constant and τE+1, . . . ,τE+L−2 are
dummy variables once τE > �t . For small �t , by assuming
that P (τi |τi+1, . . . ,τi+L−1) ≈ P (τi |1, . . . ,1), one gets P�t (E)
being proportional to F (�t |1, . . . ,1)E−1 with

F (�t |{τ ′}) ≡
�t∑
τ=1

P (τ |{τ ′}), (38)

where {τ ′} denotes the set of L − 1 previous interevent times.
This result implies the exponential bursty train distribution.
For large �t , we numerically find scaling behaviors P�t (E) ∼
E−β with β ≈ 1.55(5) for L = 10 and β ≈ 1.46(3) for L =
100, but limited to the range of E < L as depicted in Figs. 2(h)
and 2(k), respectively. Here P�t (E) has a natural exponential
cutoff Ec ≈ L because L directly controls the range of
memory effect. The autocorrelation functions for general L

also show scaling behaviors with γ ≈ 0.58(1) for L = 10 and
γ ≈ 0.53(1) for L = 100 in Figs. 2(i) and 2(l), respectively.
Since interevent time distributions are not described by a
single value of the power-law exponent and the memory effect
induces a dependence between interevent times, we do not
expect the scaling relation α + γ = 2 to hold.

Finally, let us consider the extreme case of L → ∞. As
all the past events contribute to the memory function, the
fluctuation of m(t) must be considerably reduced so that the
system eventually shows the memoryless Poissonian behavior,
as supported by the decreasing fluctuation of m(t) as L

increases in Fig. 1. In order to test our expectation, we
measure the burstiness parameter B in Eq. (3) and the memory
coefficient M in Eq. (2) for a wide range of L. As depicted in
Fig. 4, we find that both B and M increase and then decrease

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

100 101 102 103 104

L

B
M

FIG. 4. (Color online) Estimated values of the burstiness param-
eter B in Eq. (3) and the memory coefficient M in Eq. (2) for different
values of L in the model with a sequential memory loss mechanism.
We used μ = 1/10.
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with increasing L, implying that there exists an optimal range
of L (30 < L < 50) maximizing the burstiness and memory
effect between interevent times. However, such optimal values
of L, which play the role of cutoff in bursty train distributions,
turn out to be too small compared to the empirical observations,
e.g., in [13].

B. Preferential memory loss

In order to overcome the strong exponential cutoffs due to
L itself, we study the preferential memory loss mechanism
using Eq. (9). The number of past events contributing to the
memory function until a new event occurs is now a random
variable, denoted by L. The distribution of L is given by
P (L) ∝ L−ν−1e−L/Lc , with Lc = ε−1

L . The interevent time
distribution can be obtained from

P (τ ) =
∞∑

L=1

PL(τ )P (L), (39)

where PL(τ ) denotes the interevent time distribution for fixed
L in the model with a sequential memory loss mechanism,
i.e., Eq. (30) but with {τi} replaced by {τ×i}. Numerical results
for μ = 1/10 and for several values of ν are shown in Fig. 5

and the estimated values of α, β, and γ as functions of ν are
plotted in Figs. 6(a) and 6(b). As ν increases, α monotonically
decreases, while β and γ monotonically increase. The value
of β turns out to be larger than that of ν + 1. Since Ec ≈ L

for each L, it is expected that β � ν + 1. We also find that the
scaling behavior in bursty train distributions is more robust
with respect to the value of �t and hence is comparable to
the empirical observations. The empirical values of power-law
exponents are plotted in Figs. 6(a) and 6(b) for comparison
[13].

If ν is sufficiently large, i.e., ν � 2, the term for L = 1
becomes dominant in Eq. (39), leading to P (τ ) ≈ P1(τ ) ∼
τ−α , with α = 1 + μ = 1.1 from Eq. (13). This is consistent
with observations that as ν increases, γ approaches 2 − α =
0.9 and β increases considerably, implying that the bursty train
distribution becomes exponential. The values of the burstiness
parameter B and memory coefficient M also become closer to
those for the model with a sequential memory loss mechanism
with L = 1.

For ν < 2, as ν approaches 0 from 2, we find that the tail of
interevent time distribution becomes thinner because P (τ ) in
Eq. (39) is influenced more by the terms of PL(τ ) with L > 1,
which typically have larger values of the power-law exponent.
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FIG. 5. (Color online) Interevent time distributions P (τ ) (left column), bursty train distributions P�t (E) (middle column), autocorrelation
functions A(td ) (right column) in the model with a preferential memory loss mechanism. We used μ = 1/10 and (a)–(c) ν = 3, (d)–(f) ν = 1,
and (g)–(i) ν = 0.1. The value of β was measured for �t = 1024 in all cases.
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FIG. 6. (Color online) Estimated values of (a) α and γ , (b) β, and (c) B and M for different values of ν in the model with a preferential
memory loss mechanism. We used μ = 1/10. The value of β was measured for �t = 1024 in all cases. We also plot the empirical values of α,
β (closed symbols), and γ (open symbol) for neuron firings (diamonds), earthquakes in Japan (inverse triangle), and mobile calls (square) [13].

This is evidenced by the increasing behavior of α from 1.1 to 2
in Fig. 6(a). Since the very small ν leads to the very small q(L)
in Eq. (9), the memory function is rarely initialized, so some
parts of the event sequence can be approximated by the model
with the sequential memory loss mechanism for very large
L. We indeed observe for ν = 0.1 that the event sequence is
made of dense event clusters spanning relatively long periods
separated by long interevent times, as partly depicted in Fig. 7.
In each dense event cluster m(t) overall increases, but such
nonstationary periods are limited to a time scale of the order
of ε−1

L = 106. As m(t) increases, but very slowly, it can be
roughly approximated by a Poissonian process, supported by
the estimation of γ ≈ 0 and M ≈ 0 in Fig. 6. In addition to
γ ≈ 0, the autocorrelation function remains finite for a wide
range of td [see Fig. 5(i)] because of the nonstationarity in m(t)
in dense event clusters. Note that the scaling relation α + γ =
2 seems to hold for ν = 0.1 even when β ≈ 1.5 and B ≈ 1,
implying a strong dependence between interevent times and a
strong burstiness effect. These can be understood as follows.
As bursty trains are mostly measured in dense event clusters,
they tend to contain more events, leading to a heavier tail for
bursty train distributions and a smaller value of β, i.e., β ≈ 1.5.
Relatively few but very large interevent times separating dense
event clusters force B to get close to 1.

IV. CONCLUSION

In order to investigate the underlying mechanism behind
correlated bursts widely observed in natural phenomena and
human activities, we have devised and studied a simple model
that is able to generate correlated bursts using a self-exciting
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FIG. 7. (Color online) Temporal evolution of memory function
m(t) in the model with a preferential memory loss mechanism. We
used μ = 1/10 and ν = 0.1.

point process with a variable range of memory. In contrast to
the previous two-state model for correlated bursts, our model
does not need to declare the bursty trains. In our model, a new
event can occur depending on the memory function, defined as
the sum of decaying memories of past events. For incorporating
noise and/or the limited memory capacity of systems, we apply
two different memory loss mechanisms: a fixed number or a
variable number of memories, which we call sequential and
preferential memory loss mechanisms, respectively. For each
case, we obtain the interevent time distribution, bursty train
distribution, and autocorrelation function, all of which are
characterized by power-law decaying exponents α, β, and γ ,
respectively, to study scaling relations among them.

For the model with sequential memory loss mechanism, the
memory function is given by the sum of decaying memories of
L latest events, where L is a control parameter. The simplest
case with L = 1 has been exactly solved, also satisfying the
scaling relation α + γ = 2 [12]. Other simple cases could
be analytically solved, while the general cases have been
numerically studied. As L becomes larger, the bursty train
distribution shows scaling behavior for a limited range of
parameters, implying the emergence of correlated bursts.
However, the number of events in bursty trains is strongly
limited by L. Interestingly, if L is extremely large, too much
memory effect effectively reduces the model to the Poisson
process, which is confirmed by both the memory coefficient
and burstiness parameter approaching 0, i.e., no memory effect
and no burstiness.

In order to overcome the strong cutoff effect due to the fixed
L, we have numerically studied the model with a preferential
memory loss mechanism. Here the number of memories L

in the memory function increases gradually but is set as 1,
i.e., memory function initialization, with probability controlled
by the exponent ν. For sufficiently large ν, the memory
function is initialized frequently so that the model can reduce
to the case with a sequential memory loss mechanism using
L = 1. On the other hand, for very small ν, the event sequence
is composed of dense event clusters spanning long periods
that are separated by very large interevent times. Dense event
clusters may correspond to the case with a sequential memory
loss mechanism using very large L, i.e., close to the Poisson
process. For an intermediate range of ν, we find evidence that
our model generates correlated bursts and hence is comparable
to the empirical findings.
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As a follow-up, our models can be extended to incorporate
a number of complex realistic situations. For example, we
can consider the context of events [29] and a network of
interacting individuals, each of which shows activities with
correlated bursts.
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