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The ideal black body fully absorbs all incident rays, that is, all propagating waves created by arbitrary sources.
A known idealized realization of the black body is the perfectly matched layer (PML), widely used in numerical
electromagnetics. However, ideal black bodies and PMLs do not interact with evanescent fields that exists near
any finite-size source, and the energy stored in these fields cannot be harvested. Here, we introduce the concept
of the ideal conjugate matched layer (CML), which fully absorbs the energy of both propagating and evanescent
fields of sources acting as an ideal sink for electromagnetic energy. Conjugate matched absorbers have exciting
application potentials, as resonant attractors of electromagnetic energy into the absorber volume. We derive the
conditions on the constitutive parameters of media which can serve as CML materials, numerically study the
performance of planar and cylindrical CML and discuss possible realizations of such materials as metal-dielectric
composites.
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I. INTRODUCTION

The theoretical concept of the ideal black body that
completely absorbs all incident rays [1] is widely used
in thermodynamics, optics, and radio engineering. Many
important applications would benefit from close-to-ideal ab-
sorbers, including light harvesting, thermal emission, stealth,
decoupling of antennas and other devices, etc. Motivated by
these prospects, significant research and development efforts
have been devoted to the realization of absorbers that would
offer performance close to that of the ideal black body, see the
review papers in Refs. [2,3]. Most of the known results concern
planar absorbers, effective for a limited range of incidence
angles. Omnidirectional realizations using inhomogeneous
lossy media have been proposed [4,5] and an experimental
test at microwave frequencies has been performed [6]. A
theoretical possibility to perfectly absorb waves of all po-
larizations coming from all directions is based on the idea of
the perfectly matched layer (PML) as a layer which produces
no reflections [7–10]. All these concepts imply that the body
fully absorbs all propagating waves incident on its surface,
emulating the ideal black body. However, are these objects
truly perfect absorbers or can we perhaps do even better and
extract energy also from evanescent fields created by arbitrary
sources? Indeed, the perfectly matched layer produces no
reflections and fully absorbs the power of all propagating
modes (in the ideal case, realizing the properties of the perfect
black body), but evanescent fields of sources are not affected by
the presence of the perfectly matched layer; thus, no energy is
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extracted from them. Basically, within the known paradigm of
uniaxial perfectly matched layers [8,10], there is a conundrum
between perfect absorption of all propagating waves and
extraction of power from evanescent fields. If the conditions
for perfect absorption of propagating fields are satisfied,
evanescent modes are not absorbed at all. If the parameters
of the absorber are modified so that some power is extracted
from the evanescent fields of the source, the propagating modes
are not any more fully absorbed. In other words, evanescent
fields of sources contribute to absorbed power in lossy media,
but within all known realization scenarios it appears that if the
properties of lossy media are chosen so that all the propagating
modes are perfectly absorbed, evanescent fields do not any
more interact with the body.

A typical example is a possibility to extract power from near
fields of small sources, which has been discussed in the context
of hyperbolic media electromagnetics [11]. Hyperbolic media
are artificial materials (metamaterials), whose permittivity
tensor is indefinite, so that the real parts of its different diagonal
components have opposite signs. Due to the hyperbolic shape
of isofrequency contours, the evanescent waves exciting a
planar interface of a hyperbolic material sample are partially
converted to propagating modes [12] within the medium
and can be effectively absorbed there if the material is
lossy [13–15]. However, lossy hyperbolic bodies are not
effective absorbers for incident propagating waves. Actually,
an interface between free space and a hyperbolic medium can
be matched if the anisotropy axis is titled with respect to the
interface, but only for one incidence angle [16].

In this paper, we study possibilities to create bodies that
would act as perfect absorbers for all spatial harmonics of
incident radiation, both propagating and evanescent. Con-
ceptually, such an ideal absorber is able to extract infinite
power from a finite-size emitter located at a finite distance,
limited only by the power of the source that feeds the emitting
object (a generic antenna). This study is motivated by the
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results of theoretical studies that prove that a finite-size body,
which is conjugate impedance matched with respect to its
environment at all spatial spectrum components, has infinite
relative absorptivity when compared to the classical ideal
black body [1] of the same size, e.g., Refs. [17–19]. An
idealized realization of such a conjugate matched absorber as
a nonuniform, locally isotropic double-negative (DNG) sphere
has been proposed in Ref. [19]. In a sense, such an object acts as
a perfect sink for all incident spherical waves characterized by
arbitrary transverse wave numbers, but its practical realization
is challenging because very low levels of material losses are
required. Here, we show how one can possibly create absorbers
which are nearly perfectly working with both propagating and
evanescent incident waves using uniaxial DNG materials, both
for planar boundaries and curved surfaces. In this new scenario,
there are practical possibilities for realizations as well-
studied uniaxial backward-wave structures (see the discussion
in Sec. V).

Since our proposed structures are not only able to absorb
all propagating waves but can also extract power from the
evanescent modes, the total extracted power can go far beyond
what can be attained with known metamaterial black holes
[4,5] and even the ideal black body. In other words, we can
go beyond “the perfect absorber.” From the physical point
of view, the conjugate matching condition for evanescent
modes is similar to the condition of existence of resonant
surface modes, which can help to increase exchange of
thermal radiation between two closely located bodies [20–23].
However, in the proposed scenario, it is possible to realize the
optimal conjugate matching for all modes, both propagating
and evanescent, that is, create the ultimately effective sink
for electromagnetic energy from objects located at arbitrary
distances. The main focus of this paper is on harvesting energy
from small sources in their near-field zone, but we also discuss
more general realizations of perfect finite-size absorbers for
far-zone sources (plane-wave illumination) that have been also
proposed in Ref. [19].

II. ABSORPTION OF ALL INCIDENT MODES

A. Eliminating reflection or maximizing absorption

Our starting point is the classical circuit-theory concept
of conjugate impedance matching of a load, which is the
condition for maximizing the power delivered to the load
from a generator. Referring to Fig. 1, showing an arbitrary
time-harmonic voltage source V with a complex internal
impedance Z0, which is loaded by a complex impedance Z1,
we can distinguish two different approaches to impedance
matching [24]. The first one, illustrated in Fig. 1(a), minimizes
(nullifies) reflections from the load to the source by equalizing
the two impedances: Z1 = Z0. In this case, the power absorbed
in the load equals to (here and in what follows we use
rms values for the complex amplitudes of the time-harmonic
quantities; the time dependence is e+jωt , where j = √−1):

P = |V |2
4|Z0|2 Re[Z0]. (1)

FIG. 1. (Color online) Illustration of impedance matching: (a)
reflectionless matching where the load impedance Z1 is equal to
the source impedance Z0 (the power delivered to the load is P ) and
(b) conjugate matching where the load impedance Z1 is equal to the
complex conjugate of the source impedance Z∗

0 (the power delivered
to the load is maximized, P = Pmax).

The second one, illustrated in Fig. 1(b), maximizes the power

Pmax = |V |2
4Re[Z0]

(2)

that is transferred to the load by satisfying the conjugate match-
ing condition: Z1 = Z∗

0 . Note that in this case, reflections
from the load are in general not zero, because the matching
condition Z1 = Z0 is satisfied only if these impedances are
purely real. Obviously, Pmax > P if Im[Z0] �= 0. With the goal
to maximize the absorption in the load, the optimal approach
is to ensure that the load impedance is conjugate matched with
the source impedance.

If the impedances are predominantly reactive (the imag-
inary parts of Z0,1 are large compared with the real parts),
the power delivered to the load tends to zero when the load
resistance tends to zero [Eq. (1)], while for the conjugate
matched load it diverges to infinity [Eq. (2)]. In the general
electromagnetics context, this resonant behavior suggests that
by conjugate matching wave impedances of two media, in the
limit of zero losses, unlimited power can be delivered from
sources in one medium into another medium. This fact was
noticed in Ref. [25], in studies of maximizing the radiative heat
flow between two bodies. As a possible approach to realizing
the conjugate match condition for all modes, in Ref. [25], it was
proposed to insert dense arrays of thin conducting wires into
both bodies (orthogonally to the interface), which makes the
wave impedances of a wide range of modes approximately
real. This approach is clearly not possible if the sources
are in free space, and in this paper we will study means to
ensure all-mode conjugate matching by properly selecting the
material parameters of the absorbing body.
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FIG. 2. (Color online) (a) A uniaxial material sample (region 1,
ε0[εr ],μ0[μr ]) excited by a plane wave (propagating or evanescent)
traveling in free space (region 0, ε0,μ0) along the direction of vector u.
The corresponding transmission-line model representing the vacuum
(β0,Z0) and the sample (β1,Z1) is also depicted, together with the
utilized Cartesian coordinate system (x,y,z). (b) The variation of
the normalized free-space TM impedance Z0/η0 as a function of the
normalized spectral parameter uy (the real and imaginary parts).

Let us consider an infinite planar interface between free
space and a half-space filled by some lossy material, excited
by electromagnetic fields created by some arbitrary sources
in free space, as shown in Fig. 2(a). We can use the
concept of conjugate matching to understand the conditions
for maximizing the power absorbed in the medium. To do
that, we expand the incident fields into plane-wave spatial
Fourier components with the wave vectors k = k0u (u =
x̂ux + ŷuy + ẑuz), where k0 = 2πf

√
ε0μ0 is the free-space

wave number and u is a dimensionless vector. The axis x̂
is directed normally to the interface between free space and
the absorbing medium and points from free space into the
medium. To simplify considerations, without loss of generality

we will consider fields of only one polarization—the TM
polarization (magnetic field possesses a sole ẑ component and
electric field vector lies on the xy plane)—and assume that
the fields do not depend on the coordinate z. The normal to
the interface component of the propagation constant in free

space reads β0 = −jk0

√
u2

y − 1 = −jk0s0(uy), where uy ∈
R. When |uy | < 1, the excitation corresponds to propagating
waves and when |uy | > 1, we deal with exponentially decaying
evanescent modes of free space. The corresponding TM wave
impedance in vacuum (the ratio of the tangential to the
interface field components) is expressed as

Z0 = −jη0s0(uy) = −jη0

√
u2

y − 1, (3)

where η0 = √
μ0/ε0 is the free-space wave impedance. The

branches of all square roots are defined as having positive real
parts.

In view of our goal to conjugate match the impedances of
all modes, we demand the uniaxial symmetry of the material
tensors of the absorbing medium, with the axis directed
normally to the interface (along ẑ), to ensure a possibility of
matching to the isotropic free space. Let us write the relative
permittivity and permeability tensors as

[εr ] =
⎡
⎣εrn 0 0

0 εrt 0
0 0 εrt

⎤
⎦, [μr ] =

⎡
⎣μrn 0 0

0 μrt 0
0 0 μrt

⎤
⎦.

(4)

The propagation constants of transverse magnetic (TM-
polarized) plane waves in the medium read [26]: β1 =
−jk0s(uy) with

s(uy) =
√

εrt

εrn

u2
y − εrtμrt , (5)

where the real part of the square root is positive, ensuring
decaying waves along the positive direction of the axis ẑ (away
from the sources). The corresponding impedance equals

Z1 = −jη0
s(uy)

εrt

. (6)

To understand the conditions for the optimal absorption of
all modes we can use the concept of conjugate impedance
matching for all plane-wave components of the fields. In
the configuration of Fig. 2, the load impedance is the wave
impedance of a certain mode in the medium and the source
impedance Z0 is the impedance of the corresponding (the same
uy) mode in free space. The transmission-line model with
voltage V (corresponding to the electric field E) and current I

(measuring the magnetic field H) is also depicted at the bottom
of Fig. 2(a), where the two lines with different propagation
constants (β0,β1) and wave impedances (Z0,Z1) represent the
source and the load, respectively.

The variation of the normalized free-space wave impedance
(with infinitesimally small losses added to ensure the correct
choice of the square-root branch) of TM waves Z0/η0 as a func-
tion of the relative tangential component of the propagation
constant uy = (k · ŷ)/k0 = ky/k0 is shown in Fig. 2(b) (only
positive uy are considered since all the impedance functions
are even with respect to uy). It is apparent that the quantity Z0
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is positive real for |uy | < 1 (propagating modes) and negative
imaginary for |uy | > 1 (evanescent modes). With the objective
to maximize the absorption of electromagnetic energy by the
medium, next, we will look for such constituent parameters
(εrt ,μrt ,εrn) that Z1 = Z∗

0 for all real values of uy .

B. Double-negative conjugate matched layer

Given the fact that the TM wave impedance of vacuum
(3) is real for |uy | < 1, the reflectionless matching is identical
to conjugate matching for the propagating waves. Therefore,
for that part of the incidence spectrum, we are searching for a
uniaxial medium that does not reflect incoming traveling fields.
Such a medium is the famous uniaxial perfectly matched layer
(PML) with [8]

εrt = μrt = 1

εrn

. (7)

Indeed, substitution of (7) into (6) and comparison with (3)
shows that Z1 = Z0 for any value of uy . However, the fact that
a half-space with these characteristics exhibits no reflections
also for evanescent modes, namely that Z1 = Z0 also for
|uy | > 1, does not fit well with the maximal absorption goal.
Given the fact that the PML concept is expanded also for the
TE polarization by demanding additionally that μrn = 1/μrt

[8], whatever conclusion we derive hereinafter is valid for both
polarizations just by considering a medium with an electrically
and magnetically uniaxial response.

It is known that a planar interface with an isotropic
Veselago medium (εr = μr = −1) is conjugate matched with
free space for all modes [26], which is the enabling property
for the perfect lens operation [27]. However, this material
is lossless for both propagating and evanescent waves. If
we introduce small losses in order to extract energy from
evanescent waves, the perfect matching for propagating modes
is destroyed. The power generated by evanescent fields can
be increased by making losses small [Eq. (2)], but at the
same time, absorption of propagating modes gets smaller
and smaller (the imaginary part of the propagation constant
tends to zero). To overcome this deficiency, we propose
to use double-negative materials whose parameters satisfy
(7), but Re[εrt ] = Re[μrt ] < 0. Obviously, the real part of
the normal component of the permittivity is also negative:
Re[εrn] = Re[1/εrt ] < 0. Using such materials, conjugate
matching for all propagating modes can be realized also
in lossy configurations, where all propagating plane waves
quickly decay inside the absorbing medium. This property
allows us to expect that we can effectively extract power from
both propagating and evanescent waves. We will call such
structures (double-negative) conjugate matched layers (CML).

It is needless to say that if the constituent parameters
are purely real, no absorption takes place. Accordingly, we
should add some losses to the transversal components; in
this situation, all propagating waves exponentially decay and
give up their energy to the medium. However, in this case,
the normal permittivity components εrn = 1/εrt = 1/μrt are
inevitably active. Indeed, the sign of the imaginary parts of
εrn and μrn is the opposite to that of the imaginary parts
of εrt and μrt , as the material parameters comply with the
PML conditions (7). Thus the material parameters of the ideal

double-negative conjugate matched layer do not have any
active components only in limiting cases when losses tend
to zero or the real parts of the transverse components are very
large.

Let us next show that double-negative materials whose
parameters satisfy (7) are indeed conjugate matched to free
space for all modes. For propagating waves (|uy | < 1), we

have s(uy) =
√

ε2
rt (u

2
y − 1) = εrt

√
u2

y − 1, which corresponds
to the normal component of the propagation constant β1 =
−jk0s(uy) having a negative real part (propagating backward
waves, as in any double-negative material). The chosen
branch Re[

√· ] > 0 corresponds to the proper direction of
the power flow from the sources into the absorbing medium.
The corresponding impedance reads Z1 = −jη0s(uy)/εrt =
−jη0

√
u2

y − 1 = Z0 = Z∗
0 , because this is a real number. For

evanescent modes (|uy | > 1), we get s(uy) =
√

ε2
rt (u

2
y − 1) =

−εrt

√
u2

y − 1, where the sign is chosen so that the fields
decay away from the sources in free space. The corresponding
impedance becomes Z1 = −jη0s(uy)/εrt = jη0

√
u2

y − 1 =
Z∗

0 .
In Fig. 3, we show the variation of the real [Fig. 3(a)] and

imaginary [Fig. 3(b)] parts of the normalized wave impedance
Z1/η0 (6) as functions of uy for materials with the parameters
approximating the ideal values of the CML layer. We examine
three possible routes towards CML: (i) an isotropic lossy
DNG material with εrn = εrt = μrn, which has the CML
properties in the limit εrn = εrt = μrn → −1; this approach
is labeled as the “isotropic route.” (ii) A lossy uniaxial
double-negative material with the lossless normal component
of the permittivity, satisfying εrn = Re[1/εrt ] = Re[1/μrt ],
which formally has the ideal CML properties in the limit
Re[εrt ] = Re[μrt ] → −∞; this approach is labeled as the
“nonactive route.” Finally, (iii) a double-negative lossy CML
medium with εrn

∼= 1/εrt = 1/μrt ; this approach is labeled as
the “PML route.” The impedances Z1 are compared with the
ideal complex conjugate wave impedance Z∗

0 of free space: the
equality of the two quantities guarantees maximal absorption.
Note that in the nonactive route the assumption that εrn is
purely real is an idealization, since all material parameters are
complex numbers due to inevitable losses in passive media.
However, this is a justified assumption, because in the limit of
large εrt = μrt the effect of losses in the normal components
becomes negligible. A major purpose of the present study
which will be elaborated in the following numerical results
is to compare the electromagnetic behavior of the ideal CML
case (iii) with those of practically more realistic scenarios (i)
and (ii) based on passive media.

It is clear that the choice of negative real parts for
(εrt ,μrt ,εrn) is successful in terms of ensuring the desired sign
of Im[Z1]; one should take into account that for the usual PML
with positive real constituent parameters (double-positive,
DPS), we obtain Z1 = Z0 for all real uy and thus Im[Z1] < 0,
as seen in Fig. 2(b). It is also apparent that for both real
and imaginary parts, the uniaxial material with lossless εrn

performs better than the isotropic material. Most importantly,
the double-negative lossy CML corresponds to exact conjugate
matching, the fact that verifies our initial assumption. Note that
such a selection of a “PML” with Re[εrt ] < 0 and Im[εrt ] < 0
changes (compared to the normal DPS PML) only the wave
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FIG. 3. (Color online) The variation of (a) the real and (b) the
imaginary parts of the normalized TM impedance Z1/η0 for a uniaxial
medium as a function of the normalized spectral parameter uy . We
examine three cases (routes) based on the PML concept: (i) normally
matched lossy double-negative (DNG) isotropic medium with εrn =
εrt = μrn (isotropic route), (ii) DNG lossy PML-type medium with a
lossless normal component, where εrn = Re[1/εrt ] = Re[1/μrt ], so
that none of the three constituent parameters (εrt ,μrt ,εrn) is active
(nonactive route), and (iii) DNG lossy PML-type medium with εrn =
1/εrt = 1/μrt (active εrn, PML route). In all the cases, εrt = μrt =
−1 − j0.3.

impedance of evanescent modes since Z1 is purely real along
the propagating spectrum.

One can say that we misapply the concept of PML since
the choice of double-negative components inflicts strong
reflections (Z1 = Z∗

0 ) for the evanescent modes, namely for
|uy | > 1, contrary to the usual reflectionless matching property
of DPS PML (Z1 = Z0). However, within our paradigm, all
propagating waves are fully absorbed, and evanescent fields, in
the limit of ideal conjugate matching, generate infinitely strong
fields in the medium and deliver infinite power to the absorber

in the limit of Re[Z1] → 0 [Eq. (2)], in the assumption that
the illuminating antennas are fed by ideal voltage or current
sources capable to supply unlimited power.

III. INFINITE PLANAR CONFIGURATION

A. Incident field and absorbed power

To test and demonstrate the absorbing efficiency of double-
negative conjugate matched layers, we consider the planar
structure depicted in Fig. 4. A grounded slab of thickness
L (region 1) filled with a uniaxial medium (εrt ,μrt ,εrn) is
excited by an electric dipole line source [12] located at the
point (x,y) = (−g,0) in the vacuum region (region 0). The
dipole moment per unit length of the line is denoted as pl .
The dipoles form an angle θ with the horizontal axis x̂. The
distance between the slab and the source is much smaller than
the free-space wavelength (in order for the evanescent waves
not to vanish before reaching the sample), and is denoted by
g. To study absorption of evanescent fields, we choose such
a source since its evanescent spectral components are much
more pronounced compared to that of more typical cylindrical
wave sources such as lines of electric or magnetic currents
[28]. The problem is effectively two-dimensional (2D), due to z

independence, and the magnetic field has a single ẑ component.
We write the solutions in spectral domain, as a plane-

wave decomposition in the form exp(−jkyy). The expres-
sion (A4) of the Fourier-transformed incident magnetic field
H0,inc(x,ky) = ẑH0,inc(x,ky) obtained in Appendix can be
evaluated at x = 0 as follows:

H0,inc(x = 0,ky) = jωpl

2
e−jβ0g

(
ky

β0
cos θ − sin θ

)
, (8)

where pl = |pl|. This field excites the uniaxial slab located
at x > 0. We note that identical plane-wave field compo-
nents are generated by sheets of surface electric current

FIG. 4. (Color online) A grounded uniaxial slab of thickness L

is excited by an electric dipole line source forming an angle θ with
the horizontal axis, placed at a close distance g from the boundary.
The corresponding transmission-line model is also depicted.
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Js = −2ŷH0,inc(0,ky) placed right in front of the grounded
slab. Therefore the excitation of the slab by the line of electric
dipoles (Fig. 4, top) can be equivalently represented by the
transmission-line model shown at the bottom of Fig. 4, with
the external current source Js inserted at x = 0. Using this
circuit model, the power delivered to the slab by each incident
spatial harmonic is straightforwardly calculated as

p(ky) = 4|H0,inc(0,ky)|2|Z0(ky)|2
|Z0(ky) + Zin(ky)|2 Re[Zin(ky)]. (9)

As above, by Z0 we denote the free-space wave impedance,
and Zin is the input impedance of the metal-backed uniaxial
slab evaluated from the corresponding transmission-line model
as Zin = jZ1 tan(β1L). Finally, the total power absorbed in
the slab is found by integration over all the wave-number
spectrum:

P = 1

2π

∫ +∞

−∞
p(ky)dky

= ω2p2
l

2π

∫ +∞

−∞
e−2β ′′

0 (ky )g

∣∣∣∣ ky

β0(ky)
cos θ − sin θ

∣∣∣∣
2

× Re[Zin(ky)]∣∣1 + Zin(ky )
Z0(ky )

∣∣2 dky, (10)

Here it is denoted β ′′
0 = − Im[β0] (for propagating waves,

β ′′
0 = 0, and for evanescent waves, β ′′

0 =
√
k2
y − k2

0).

B. Important limiting cases

Let us now consider some limiting cases under the simplify-
ing assumption of a half-space emulating an electrically thick
absorbing slab (valid when β ′′

1 L 
 1, where β ′′
1 = −Im[β1]).

In this case, the input impedance of the metal-backed uniaxial
slab approaches its wave impedance: Zin

∼= Z1. In our study,

the material parameters of the uniaxial layer are chosen so that
the conjugate matching condition is closely approached: Z1

∼=
Z∗

0 . When |ky | < k0 (propagating waves), Z0 = η0β0/k0 is
purely real and, thus, Z1

∼= Z0. Therefore the power delivered
by the propagating modes to the conjugate-matched layer can
be calculated as

P0
∼= η0ω

2p2
l

8π

∫ k0

−k0

∣∣∣∣ ky

β0
cos θ − sin θ

∣∣∣∣
2
β0

k0
dky = μ0ω

3p2
l

16
.

(11)

Note that this result is independent of the angle θ because (11)
is nothing more than 1/2 of the total power emitted by a line
of dipoles in unbounded free space. This power also equals
the total amount of power absorbed by an ideal PML layer (or,
equivalently, by a perfect black body) in the structure shown
in Fig. 4.

When |ky | > k0 (evanescent waves), Z0 is purely imaginary
and, thus, fulfilling the conjugate matching condition results
also in almost purely imaginary Z1: Z1

∼= Zin
∼= −j Im[Z0]. In

this case, the denominator of (10) approaches zero. Therefore,
in order to analyze this limiting case, we must consider a
particular model for the material parameters of the uniaxial
layer. Here we select the PML route with εrt = μrt = a −
jb and εrn = 1/εrt − jδ, where real δ is such that |δ| � 1.
Performing the Taylor expansion with respect to small δ under
the aforementioned assumption |ky | > k0 and keeping only the
first-order term, we obtain the following approximation for Z1:

Z1(ky) = η0β1

εrt k0

∼= sgn(a)Z0(ky)

[
1 + jδ

(a − jb)k2
y

2
(
k2
y − k2

0

) ]
. (12)

Separating the real and imaginary parts and taking into account
that

√
(a − jb)2 = sgn(a)(a − jb), we come to the following

formula:

Re[Z1(ky)]

|1 + Z1(ky)/Z0(ky)|2
∼= η0

|a|k2
y

2k0

√
k2
y − k2

0

δ[
aδk2

y

2
(
k2
y−k2

0

)]2

+
[

1 + sgn(a) + b sgn(a)
δk2

y

2
(
k2
y−k2

0

)]2 , δ → 0. (13)

Now, we can substitute (13) into (10) and calculate the integral over the evanescent part of the spectrum (|ky | > k0). This
calculation results in the following approximate expression for the power absorbed from the evanescent modes:

Pevan
∼= 8|a|

k2
0π

P0

∫ +∞

k0

k2
y

(
k2
y − k2

0 sin2 θ
)

(
k2
y − k2

0

)3/2 e−2g
√

k2
y−k2

0
δ

[1 + sgn(a)]2 + δ2

[
k2
y |εrt |

2
(
k2
y−k2

0

)]2 dky, δ → 0. (14)

In the denominator of the integrand of (14), we have
dropped the term proportional to δ, because in the DNG
case (a < 0) it is multiplied by 1 + sgn(a) = 0 and in this
case the first nonvanishing term is the second-order term in δ

[this term is present in (14)], while in the DPS case (a > 0)
the main term is [1 + sgn(a)]2 = 4 
 δ 
 δ2. Equation (14)
demonstrates the dramatic influence of the sign of the real part
of εrt = μrt . In particular, for the CML case when a is negative,
the denominator of (14) is approximately proportional to δ2,

and the following formula results from (14):

Pevan

P0

∼= 32|a|
πδ|εrt |2

∫ +∞

0
e−2k0gs0

s2
0

(
s2

0 + cos2 θ
)

(
1 + s2

0

)3/2 ds0, (15)

where a change of the integration variable s0 =
√
k2
y − k2

0/k0=√
u2

y − 1 has been made. We notice that the absorbed power
is proportional to 1/δ, which means that for small δ, we

245402-6



ELECTROMAGNETIC ENERGY SINK PHYSICAL REVIEW B 92, 245402 (2015)

have huge magnitudes either of absorbed (δ > 0) or emitted
(δ < 0) powers. Such a limiting regime is explained by the
singularity of (2) for Re[Z1] → 0. Since the vast portion of
absorbed/emitted power is owed to the evanescent modes, it is
obvious that the corresponding substantial field concentrations
exist only in the near field, namely close to the interface of
vacuum and our material at x = 0. Such a feature means that
the proposed device cannot act as a superemitter and “launch”
the developed field in the far field without an extra equipment
which would be the objective of a future work. On the other
hand, evanescent modes couple to far-field radiation if the
surface of the body is curved (see Sec. IV).

Expression (14) can be applied also for the nonactive route
when εrn = Re[1/εrt ]. Indeed, when δ = b/(a2 + b2) � 1,
the imaginary part of εrn vanishes and the normal component of
the permittivity dyadic acquires the value εrn = a/(a2 + b2) =
Re[1/εrt ]. Respectively, Eq. (14) becomes

Pevan

P0

∼= 32|a|
πb

∫ +∞

0
e−2k0gs0

s2
0

(
s2

0 + cos2 θ
)

(
1 + s2

0

)3/2 ds0. (16)

In this case, the absorbed power increases with the decrease of
b and the increase of |a|.

On the other hand, for the conventional DPS PML case,
expression (14) takes the following form:

Pevan

P0

∼= 2a

π
δ

∫ +∞

0
e−2k0gs0

√
s2

0 + 1
(
s2

0 + cos2 θ
)

s2
0

ds0. (17)

In this case, when δ → 0 (approaching the ideal impedance
matching condition), the relative power delivered to the slab by
the evanescent waves tends to zero. This result confirms that
within the know PML scenario, the goal of full absorption of
propagating waves is incompatible with the goal of extraction
power from evanescent fields.

Note that the above approximate formula makes sense only
when θ = π/2, because only in this case the integral (17)
converges. The divergence of the integral (17) at any other
values of θ is an artifact of the Taylor expansion approximation
(12). This approximation is not applicable when ky approaches
k0 (i.e., when s0 → 0). However, direct evaluation of the inte-
grand in (14) shows no singularity at ky = k0, even when θ �=
π/2. Therefore, when θ �= π/2, the lower limit of the integra-
tion in Eq. (17) must be replaced by σ ∼ √

δ|εrt |/2, because
at this point the first term of the Taylor expansion (12) is about

unity:
|εrt |k2

y

2(k2
y−k2

0 )
δ ∼= 1. In this case, Eq. (17) qualitatively agrees

with the accurate result (10) (when only the contribution of the
domain |ky | > k0 is considered), with the dominant contribu-
tion to the integral coming from a narrow region in the vicinity
of the lower limit. Therefore, when θ �= π/2 and k0g � 1,

Pevan

P0

∼= 2a

π
δ

∫ +∞

σ

cos2 θ

s2
0

ds0 =
√

8δ

|εrt |
a cos2 θ

π
, (18)

i.e., the power delivered by the evanescent modes in this case
is roughly proportional to

√
δ and also vanishes when δ → 0.

C. Performance of the proposed structure

Here we characterize the proposed conjugate matched
layers qualitatively, studying the ratio of the total absorbed

power and the power that can be harvested only from the
propagating part of the spatial spectrum of the excitation in the
layer of the infinite thickness (11). Basically, this normalized
parameter is the ratio of the power absorbed by our structures
and the power absorbed in the classical ideal black body at the
same position and excited by the same source. In particular,
the output quantity is the logarithm (base 10) of this ratio
log (P/P0) since we are expecting huge magnitude variations
of |P |, as discussed in the previous section.

In Fig. 5, we represent the absorption enhancement pa-
rameter log (P/P0) on the complex permittivity map (a,b)
with εrt = μrt = a − jb for the three considered routes. In the
isotropic scenario [Fig. 5(a)], the overall absorption is small
while a local maximum is exhibited along the line a = −1,
which corresponds to the Veselago material [29]. This result
is expected, because in the absence of losses this medium is
conjugate matched for all modes at this single point [26,27].
As far as the nonactive route [Fig. 5(b)] is concerned, we
observe much better performance compared to the isotropic
route: the power extracted from the source is large in a wide
range of material parameters, and it is monotonically growing
when |a| increases along the negative semiaxis (a < 0). Most
importantly, in Fig. 5(c), where the PML case is examined, we
clearly notice a huge change in the absorbed power P from
double-positive (a > 0) to double-negative (a < 0) cases, as
expected from (14). In fact, extremely high enhancement of
absorption is achieved for the CML case (P ∼= 104P0) which
means that the structure is sucking all the power (for every
single mode, propagated or evanescent) from the source.

In Figs. 6 and 7, we show the variation of log (P/P0) with
respect to the electrical thickness of the grounded slab k0L

and the loss factors b of its relative constituent parameters
for the three routes (isotropic, nonactive, and lossy PML)
for different signs of a (see Fig. 6 for a > 0 and Fig. 7 for
a < 0). In the isotropic scenario of the double-positive case
[Fig. 6(a)], we observe resonances when k0L is moderate and
the reflected fields from x = L are quite strong to interfere
with the incident waves, while the absorption P is positively
related to the loss parameter b. When it comes to the DPS
nonactive scenario [Fig. 6(b)], we have very small absorption
for b → 0 (as physically anticipated), but there is an optimal
range of b, for each fixed k0L across which the absorbed
power gets maximized. It is also remarkable that the DPS
PML configuration [Fig. 6(c)] performs worse than the other
two in terms of absorption; furthermore, note that P is not
substantially dependent on losses b, as is clear from (17)
and (18). As far as the double-negative configurations are
concerned, we remark that the behavior of the structure
following the isotropic route [Fig. 7(d)] is similar to that of the
corresponding double-positive configuration [Fig. 6(a)]. On
the contrary, the nonactive realization [Fig. 7(e)] does well for
small losses b and its absorbing efficiency deteriorates with
increasing b. Finally, the CML structure [Fig. 7(f)] absorbs,
on the average, extremely high power P , as predicted by (15),
and the harvested power is practically not fluctuating with
the electrical thickness k0L, because the evanescent mode
absorption is due to resonant surface modes.

In Fig. 8, we represent the logarithm of the relative absorbed
power log (P/P0) with respect to the electrical distance from
the source to the boundary k0g. All the three scenarios are
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FIG. 5. (Color online) Contour plots of the quantity log (P/P0)
on the complex plane of the transversal constituent relative pa-
rameters (a = Re[εrt ] = Re[μrt ],b = −Im[εrt ] = −Im[μrt ]) for the
three considered routes. (a) The isotropic route (εrn = εrt = μrt =
a − jb). (b) The nonactive route (εrn = Re[1/εrt ] = Re[1/μrt ] =
a/(a2 + b2)). (c) The PML route [(εrn = 1/εrt − jδ = 1/μrt − jδ =
1/(a − jb) − jδ]. Plot parameters: k0L = 20, k0g = 0.5, θ = 90◦,
δ = 0.001.

considered for double-positive [Fig. 8(a)] and double-negative
[Fig. 8(b)] configurations. One can notice that the DPS

FIG. 6. (Color online) Contour plots of the quantity log (P/P0)
with respect to the electrical thickness of the grounded slab k0L and
the losses of the transversal constituent parameters b = −Im[εrt ] =
−Im[μrt ] for the three considered DPS routes. (a) The isotropic
route (εrn = εrt = μrt = a − jb). (b) The nonactive route (εrn =
Re[1/εrt ] = Re[1/μrt ] = Re[1/(a − jb)] = a/(a2 + b2)). (c) The
PML route [εrn = 1/εrt − jδ = 1/μrt − jδ = 1/(a − jb) − jδ].
Plot parameters: a = Re[εrt ] = Re[μrt ] = 2, k0g = 0.5, θ = 90◦,
δ = 0.001.

PML absorbs power P0 only from propagating waves since
a > 0 and δ → 0, as suggested by (17) and (18); in other
words, PML is outperformed by the other two scenarios in
the double-positive paradigm. Again, we remark a similar
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FIG. 7. (Color online) Contour plots of the quantity log (P/P0)
with respect to the electrical thickness of the grounded slab
k0L and the losses of the transversal constituent parameters
b = −Im[εrt ] = −Im[μrt ] for the three considered DNG routes.
(a) The isotropic route (εrn = εrt = μrt = a − jb). (b) The
nonactive route (εrn = Re[1/εrt ] = Re[1/μrt ] = Re[1/(a − jb)] =
a/(a2 + b2)). (c) The PML route [εrn = 1/εrt − jδ = 1/μrt − jδ =
1/(a − jb) − jδ]. Plot parameters: a = Re[εrt ] = Re[μrt ] = −2,
k0g = 0.5, θ = 90◦, δ = 0.001.

response of the isotropic structure, regardless of the source
location k0g (the blue curves in the two figures), while the
nonactive configuration performs always in-between the other

FIG. 8. (Color online) The quantity log (P/P0) as a function of
the electrical distance of the source k0g from the boundary for the
three considered routes. (a) Double-positive cases a = Re[εrt ] =
Re[μrt ] = 2. (b) Double-negative cases a = Re[εrt ] = Re[μrt ] =
−2. Plot parameters: b = −Im[εrt ] = −Im[μrt ] = 0.5, k0L = 20,
θ = 90◦, δ = 0.001.

two scenarios (which are switching positions when changing
the sign of a). In Fig. 7(b), we observe huge absorption
for the DNG CML case at moderate distances to the source
(P ∼= 105P0), as expected from (15). In other words, our device
acts extremely efficiently as an absorber when it the source is
close to the boundary but as the conventional ideal black body
under propagating plane-wave excitation. In particular, when
k0g → +∞, according to all the scenarios, the device tends to
absorb power P = P0, which indicates that only propagating
waves survive and excite the boundary. The magnitude is the
same since, due to the position of the source (θ = 90◦), the
illumination is almost normally incident on the grounded slab
and only the transversal relative parameters (the same for all
the scenarios, εrt = μrt ) are activated.

To conclude this section we note that although we have
considered only one (TM) polarization, all the results are
general and hold also for the TE polarization, which can be
studied in the same way, as mentioned above.
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FIG. 9. (Color online) The variation of (a) the real and (b) the
imaginary parts of the normalized TM impedance Z1/η0 for a uniaxial
hyperbolic medium with εrt = a − jb, μrt = 1, εrn = −1/a − jb

as function of the normalized spectral parameter uy for various a.
The ideal for conjugate matching impedance Z∗

0/η0 is also shown.

D. Comparison with hyperbolic media

Probably the only known alternative approach to enhance
absorption of evanescent fields in large lossy bodies is the
use of hyperbolic media [11–15]. Due to the transformation
of evanescent waves to propagating ones in hyperbolic me-
dia, substantial absorption enhancement has been observed
[14,15]. Therefore it would be meaningful to compare our re-
sults with those obtained when utilizing hyperbolic materials.
In hyperbolic media, the real parts of different eigenvalues of
the permittivity tensor have opposite signs. Thus we consider
the same structure of Fig. 4 with εrt = a − jb, μrt = 1,
and εrn = − 1

a−jb
for a > 0 and small b > 0. We assume

that Re[εrt ]Re[εrn] = −1, because the maximal absorption is
achieved under this assumption [13]. In Fig. 9, we present
the relative wave impedance Z1/η0 (the real and imaginary
parts) of the hyperbolic material as functions of the normalized
spectral parameter uy for several a. It is apparent that along
the entire uy axis, the differences from the ideal Z∗

0/η0

FIG. 10. (Color online) The quantity log (P/P0) as function of
the transversal permittivity a for several losses b, evaluated for
(a) the hyperbolic case εrt = a − jb, μrt = 1, εrn = −1/a − jb

with a > 0, (b) the nonactive route case εrt = μrt = a − jb, εrn =
Re[1/(a − jb)] = a/(a2 + b2) with a < 0, and (c) the PML route
case εrt = μrt = a − jb,εrn = 1/(a − jb) − jδ with a < 0. Plot
parameters: k0L = 10, k0g = 0.5, θ = 90◦, δ = 0.001.

are substantial, which means that the absorption would be
dramatically smaller than in our conjugate-matching scenarios.
This expectation is confirmed by the results shown in Fig. 10,
where the logarithm of the absorbed power log (P/P0) is
presented as a function of the real part of the permittivity
a for various loss factors b. In the hyperbolic scenario
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[Fig. 10(a)], the power absorption is, on the average, two orders
of magnitude smaller as compared to the absorbed power
along the DNG nonactive [Fig. 10(b)] or the PML [Fig. 10(c)]
routes. Furthermore, one can point out that for large |a| [a < 0
for Figs. 10(b) and 10(c)], the nonactive route gives better
outcomes than the PML route. This property follows from
the fact that we have assumed a constant additional loss
factor δ for the PML route. In particular, for |a| → +∞,
the normal permittivity component of the nonactive material
tends to zero (which is the ideal value in the PML route case,
corresponding to conjugate matching), but for the PML route,
we have εrn → −jδ. In other words, when |a| is increasing
without limit while δ and b remain fixed, the CML response to
evanescent excitations appears more lossy than the response
of our nonactive device.

IV. FINITE CYLINDRICAL CONFIGURATION

A. Conjugate matched cylinder via coordinate transformation

Let us next study possibilities for the use of the double-
negative conjugate matched materials to create ideal absorbing
bodies of finite sizes (in cross sections normal to ẑ). In contrast
to an infinite planar surface, studied above, finite-sized bodies
can in principle absorb infinite power carried by a single
propagating plane wave, generated by sources at infinity
[17–19]. A conceptual example of a spherical body having
these properties has been described [19], where the sphere
was filled with a locally isotropic low-loss double-negative
material. As discussed above, double-negative materials can
be ideally conjugate matched to free space, but only in the
limit of negligible loss factors. Here, we study a cylindrical
configuration and explore additional design possibilities of-
fered by double-negative radially uniaxial perfectly matched
layers, which have more free parameters to tune.

With the goal of finding the material parameters of a
cylindrical CML, we adopt an already proposed approach [19]
and consider first a complementary infinitely long cylindrical
shell filling the space from ρ = r to ρ = ∞ [see Fig. 11(a),
where the used cylindrical coordinate system (ρ,ϕ,z) is also
defined]. We first assume that the shell is filled with a medium
characterized by the following, more general (compared to the

FIG. 11. (Color online) (a) Complementary cylindrical infinitely
thick mantle with the internal boundary ρ = r filled with the
conventional PML relative constituent parameters (ε0[εr ],μ0[μr ])
located in the unprimed coordinate system (ρ,ϕ,z). (b) Cylindrical
core with the external boundary ρ ′ = r filled with a material having
transformed constituent parameters (ε0[ε′

r ],μ0[μ′
r ]) of (20), located

in the primed coordinate system (ρ ′,ϕ′,z′).

PML case) permittivity and permeability dyadics in cylindrical
coordinates: [εr ] = [μr ] = diag(εrρ,εrϕ,εrz).

In order to obtain the corresponding material parameters
for a cylinder with a finite radius r , we map the outer space of
the cylindrical volume (ρ > r) into the internal vacuum hole
(ρ < r) and vice versa, as shown in Fig. 11(b). This mapping
can be done using the concept of transformation optics [30,31],
and it has been already performed in the analogous case
of isotropic media and the spherical shape of the conjugate
matched body [19]. More specifically, we can use the following
coordinate transformation from the unprimed (ρ,ϕ,z) to the
primed (ρ ′,ϕ′,z′) coordinates:

ρ ′ = rn+1

ρn
, ϕ′ = ϕ, z′ = −z, (19)

where n can be any positive real number. Note that the sign
of the z component changes in the transformation. As ρ ′ is
inversely proportional to ρ, the corresponding coordinate axes
have opposite directions. Therefore, in order to map a right-
handed coordinate system to a right-handed coordinate system,
we also change the direction of either the ϕ̂ or ẑ axes.

The material parameters transform according to the well-
known coordinate transformation equations [31]:

[ε′
r ] = A · [εr ] · AT

det(A)
, [μ′

r ] = A · [μr ] · AT

det(A)
, (20)

where �T denotes the transpose of a matrix, [εr ] and [μr ]
are the original material parameter matrices (i.e., the material
parameters of the infinite mantle at ρ > r), [ε′

r ] and [μ′
r ] are

the transformed material parameter matrices (i.e., the material
parameters of the finite core, ρ < r), and A is the Jacobian
matrix of the transformation. The Jacobian matrix in this
particular case of (19) is given by

A =

⎡
⎢⎣

∂ρ ′
∂ρ

1
ρ

∂ρ ′
∂ϕ

∂ρ ′
∂z

ρ ′ ∂ϕ′
∂ρ

ρ ′
ρ

∂ϕ′
∂ϕ

ρ ′ ∂ϕ′
∂z

∂z′
∂ρ

1
ρ

∂z′
∂ϕ

∂z′
∂z

⎤
⎥⎦ =

⎡
⎢⎣−n

(
r
ρ

)n+1
0 0

0 ρ ′
ρ

0
0 0 −1

⎤
⎥⎦.

(21)

By inserting the above expressions into (20), the transformed
relative material parameters for the core can be written in
cylindrical coordinates as

[ε′
r ] = [μ′

r ] =
⎡
⎣nεrρ 0 0

0 εrϕ

n
0

0 0 εrz

n

(
r
ρ ′

)2+2/n

⎤
⎦. (22)

Furthermore, if we assume that the initial cylindrical shell has
PML characteristics, that is, its relative constituent parameters
are defined as εrϕ = εrz = 1/εrρ = a − jb (still assuming
[εr ] = [μr ]), we can write the transformed parameters as

[ε′
r ] = [μ′

r ] =

⎡
⎢⎣

n
a−jb

0 0

0 a−jb

n
0

0 0 a−jb

n

(
r
ρ ′

)2+2/n

⎤
⎥⎦. (23)

It should be noted that we can derive the same material
parameters if we, alternatively, demand ϕ′ = −ϕ instead of
z′ = −z in the initial coordinate transformation. At this stage,
we are free to choose any real values for a,b ∈ R and any
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positive value for n; however, in this study, we limit the analysis
to the case n = 1. Furthermore, we confine ourselves to the
TM case with no harm to generality.

As we did in the case of an infinite planar slab, we
consider three different routes approaching the ideal conjugate
matched cylinder, namely, the isotropic, nonactive, and PML
routes. Here, the isotropic route corresponds to isotropic shell
parameters, that is, εr = μr = a − jb. Clearly, according to
(22) this corresponds to transformed parameters that are not
isotropic. However, we will use the term “isotropic” also in
this case to maintain harmony of the terminology with the
planar slab example. In the nonactive scenario, as before for the
planar case, the normal (radial) permittivity and permeability
are assumed to be real (ε′

rρ ′ = Re[ 1
a−jb

] = a
a2+b2 ) while the

other material parameters are given by (23). In the PML route,
we again assume that the normal components of permittivity
and permeability are slightly more lossy than it is dictated by
the ideal PML rule [given in (23)] in order to avoid possible
numerical instabilities owed to the limiting nature of the ideal
CML (ε′

rρ ′ = 1
a−jb

− jδ).

B. Performance of the proposed structure

In Figs. 12 and 13, we consider the case of two cylinders
having material parameters corresponding to the three routes
described in the previous section (“isotropic,” nonactive, and
PML routes) and depicted in Fig. 11(b). We position the source
line symmetrically in-between two cylinders of radius r which
are separated by a distance d. When the source is that depicted
in Fig. 4, namely, a TM dipole line source, we again choose
θ = 90◦ for maximal excitation of the system. In Figs. 12(a)–
12(c), we consider the DPS (PML) cases with a = 2, while
in Figs. 13(a)–13(c), the DNG (CML) ones with a = −2. By
inspection of the contours, one directly infers that the DNG
approach is much more efficient in terms of absorption: in the
DNG case, practically all the power created by the source is
absorbed by the cylinders. On the contrary, in all the DPS cases
a considerable amount of power propagates away from the
cylinders. A similar effect was observed for the DNG cylinders
even if the dipole line excitation was replaced by a z-directed
current line, despite the fact that the incident field is nonzero
along the ŷ axis. The difference between Figs. 12(b), 12(c) and
between Figs. 13(b), 13(c) is negligible due to small losses b

combined with the choice of fairly large |a|. Figures 13(b) and
13(c) show that surface plasmon modes are strongly excited
due to smaller overall losses compared to the other cases. In the
nonactive and PML routes with a = −2 shown in Figs. 13(b)
and 13(c), surface plasmon modes are strongly excited on the
surface of the cylinders which does not happen for the isotropic
DNG case shown in Fig. 13(a) due to higher losses in the radial
material parameters compared to the other cases.

In Fig. 14(a), we show the variations of the absorbed power
P normalized by P0, which corresponds to the absorbed
power in the DPS-PML case with a = 1, with respect to
a. Given the fact that the conventional PML absorbs only
propagating waves, the physical meaning of P0 is identical to
the corresponding one of the planar slab cases. Regardless of
the considered route (isotropic, nonactive, PML), there is a
substantial switch in absorption efficiency from a < 0 (DNG
case) to a > 0 (DPS case): the absorbed power P is always

FIG. 12. (Color online) The spatial variation of the axial mag-
netic field Hz(x,y) on the map (x,y) for the three considered DPS
routes: (a) the isotropic route (ε′

rρ = a − jb), (b) the nonactive
route (ε′

rρ = Re[1/(a − jb)] = a/(a2 + b2)), and (c) the PML route
[ε′

rρ = 1/(a − jb) − jδ]. Plot parameters: a = 2, k0r = 20, k0d = 3,
θ = 90◦, b = 0.05, δ = 0.005, n = 1.

much higher for a < 0. For positive values of a, all routes lead
to similar results. The higher absorption in the isotropic shell
case is simply due to the lossy radial component (as opposed
to nonactive/active εrρ used in the other two cases). When
it comes to the isotropic shell case, the maximal absorption
is achieved when a = −1, since the power drops quickly as
a deviates from −1 in either direction; similar behavior has
been observed also for the planar slab case, as well as for
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(a)

(b)

(c)

FIG. 13. (Color online) The spatial variation of the axial mag-
netic field Hz(x,y) on the map (x,y) for the three considered DNG
routes: (a) the isotropic route (ε′

rρ = a − jb), (b) the nonactive
route (ε′

rρ = Re[1/(a − jb)] = a/(a2 + b2)), and (c) the PML route
[ε′

rρ = 1/(a − jb) − jδ]. Plot parameters: a = −2, k0r = 20, k0d =
3, θ = 90◦, b = 0.05, δ = 0.005, n = 1.

the double-negative sphere [19]. It should be noted that at
a = ±1 practically the only difference between the material
parameters given by the three scenarios are the losses in the
radial permittivity and permeability. Furthermore, it should
be stressed that in the nonactive DNG case, the maximum
absorbed power (exhibited at a ∼= −2.5) is smaller than in the
PML scenario but larger than in the isotropic shell case, as
could be expected. Similarly to the planar case, the highest

FIG. 14. (Color online) (a) The normalized absorbed power
P/P0 by the two cylinders and (b) the escaping power P +/P0 from the
system as functions of the material parameter a in the three different
scenarios (isotropic, nonactive, PML). Plot parameters: k0r = 20,
k0d = 3, θ = 90◦, b = 0.05, δ = 0.005.

P is recorded for the PML route. In Fig. 14(b), we present
the escaped power P + with respect to the real part of the
transversal relative permittivity a. P + denotes the power
carried away by the surviving fields at ρ ′ → +∞. The values
of P + for a < 0 are greatly diminished compared to the
DPS cases, a feature that demonstrates the higher absorption
effectiveness of the DNG structures. For |a| > 1, the escaped
power is the smallest for the isotropic scenario which is, again,
due to higher losses compared to the other cases.

Finally, in Fig. 15, we examine absorption effectiveness
of double-negative conjugate matched cylinders illuminated
by a single propagating plane wave. According to the results
of Ref. [19], in the limiting case of the ideal CML, the
effective absorption width can be arbitrarily large, although
the sources of illumination are infinitely far from the cylinder.
We consider only the PML route for a = 2 [DPS, Fig. 15(a)]
and a = −2 [DNG, Fig. 15(b)]. Note that in both cases, there
are practically no reflections from the cylinder and a huge
shadow is formed behind. Furthermore, resonant plasmonic
modes are excited on the surface of the cylinder in the
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(a)

(b)

FIG. 15. (Color online) Plane-wave illumination. The spatial
variation of the axial magnetic field Hz(x,y) on the map (x,y) for the
PML route [ε′

rρ = 1/(a − jb) − jδ] with (a) a = 2 and (b) a = −2.
Plot parameters: k0r = 20, k0d = 3, b = 0.05, δ = 0.005, n = 1.

DNG case, which increases the shadow due to stronger field
coupling. Although the excitation is a single propagating plane
wave, coupling to predominantly evanescent resonant modes
of the absorbing cylinder is possible because the surface is
curved. In this particular example, the power absorbed by the
cylinder is about 18% higher in the DNG case compared
to the DPS case (the latter case corresponds to the ideal
black body as defined in Ref. [1]). In other words, even in
the absence of incident evanescent plane-wave modes we
can achieve improved absorption using DNG cylinders as
compared to the perfectly nonreflecting DPS cylinder, thanks
to the aforementioned activation of resonant surface plasmon
modes. However, for the same material parameters, the effect
is quite modest compared to the increased power absorption
when evanescent wave modes are strongly present in the spatial
spectrum of the source.

V. PRACTICAL REALIZATION OF THE CML CONCEPT

As is clear from the above results, two scenarios are
promising for realizations of the proposed conjugate matched
bodies: the nonactive route and the PML route. In the nonactive
route, the required material parameters correspond to well-

studied uniaxial double-negative (backward-wave) metama-
terials [32]. A wide variety of micro- and nanostructures,
which realize double-negative response in different frequency
ranges, have been proposed and studied in the literature. For
the application proposed here, the materials should have a
controllable degree of anisotropy: in particular, the case when
the absolute values of the tangential components are much
larger than those of the normal components is of interest. With
this in view, one of the most promising topologies is the so-call
fishnet structure [32–35]. This is a multilayer structure where
thin metal sheets with periodically positioned holes (usually of
the square or round shape) are separated by dielectric spacers.

While the response in the tangential plane is strongly
modified by large induced currents flowing along the metal
sheets, the response to fields along the normal direction is
modified only due to the quasistatic electric polarization of
thin sheets. In the microwave domain, the normal components
of the material parameters usually have positive real parts. To
achieve the necessary negative permittivity value of the normal
component, it is possible to insert an array of thin metal wires
passing through the holes in the fishnet layers. If the wires
are made of a good conductor, the microwave response will
correspond to a negative and nearly real value of the normal
component of the permittivity tensor, exactly as required for
the CML realization.

At infrared and optical frequencies, it is possible to exploit
the negative permittivity of metals from which the fishnet
layers can be fabricated. In this case, metal wires are not
needed, and the values of the normal component of the
permittivity can be controlled by choosing the thickness ratio
of the metal and dielectric layers in the fishnet structure.
In particular, if rectangular holes are etched in a layer of
magnesium fluoride (MgF2) sandwiched between silver slabs,
one can achieve negative refractive index [36] at the optical
frequencies under the necessary homogenization conditions
[37]. Furthermore, the nonlinearity of liquid crystals can be
exploited in order to develop tunable fishnets metamaterials
whose reflection/transmission (and accordingly their effective
εrt ,μrt ) is externally controlled. More generally speaking,
it is well known that if we insert metallic particles such as
cylindrical pins, strips, spirals or flakes, which have negative
permittivity in the visible spectrum [38], we can [39] obtain
materials with Re[εrn] < 0.

The conclusion that the performance of nonactive-route
CML improves when the absolute value of the real part of the
tangential permittivity increases (Sec. III) is very important for
choosing practically realizable material parameters. As was
discussed above, high absorption of energy from evanescent
fields requires that the overall losses in the medium are small
[this is in fact clear already from Eq. (2)]. Realization of passive
low-loss DNG metamaterials is a challenge, although some
successful approaches are known, e.g., Eq. [40]. However, for
the nonactive PML with large magnitudes of negative a, high
absorption is observed even when the imaginary part of the
tangential permittivity b is not very small and corresponds to
practically realizable structures. The normal component of the
permittivity in this case corresponds to epsilon-near-zero mate-
rials, which are also known to be practically realizable [41,42].

The required overall small level of losses can achieved also
using active (pumped) structures. This can be done by using
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active parts such as optically pumped laser dyes to balance
the losses of the background structure [43]. In this way, one
can realize an effective DNG medium possessing additional
negative normal components (Re[εrn] < 0) with controllable
loss factors of the tangential components: Im[εrt ],Im[μrt ] <

0. Active control of the normal permittivity and permeability
components can be used to implement also the active PML
route towards CML. Based on the fishnet-wire medium
approach described above, instead of metallic rods or spirals
one can insert nanogenerators [44] or pumps [45] into the
holes of the background structure, which can provide energy
to the system and make the normal component of the effective
parameters active.

VI. CONCLUSIONS

In this paper, we have introduced the concept of the double-
negative conjugate matched layer (CML), which has the prop-
erty of acting as an ideal sink for energy of electromagnetic
fields. Arbitrary propagating waves illuminating such a layer
produce no reflections and are fully absorbed in the medium.
Evanescent fields, existing in the vicinity of small sources or
scatterers, induce very strong resonant fields, oscillating in the
vicinity of the CML surface. The energy stored in the reactive
evanescent modes sinks into the layer and is transformed into
heat or delivered to loads in its constitutive elements.

There is an analogy of this phenomenon in the circuit-
theory concept of the ideal voltage or current source. An ideal
voltage source delivers infinite power to the load in the limit
of infinitely small resistive load [Eq. (2)], because the current
through a resistor tends to infinity when the resistance tends
to zero. Likewise, for every evanescent mode, the sum of the
wave impedances of fields in free space and that in the CML is
real and can be made very small. Thus the layer dramatically
enhances the near fields created by given sources and sacks
their energy into the material layer. This phenomenon can be
compared also with the Purcell effect of enhancement of the
spontaneous emission rate of small sources due to the presence
of resonant and efficiently radiating bodies in the vicinity of the
source [46,47]. However, resonant cavities or antennas used
to enhance radiation from a small emitter work only at one or
a few resonant modes of the resonator. The introduced CML
concept brings the Purcell effect to the limit of extracting all
available energy from a small source. In this paradigm, every
mode of the source field resonates with a corresponding mode
of the CML, so that the complete system of the source and the
absorbing body is tuned for the optimal power extraction from
all modes of the fields created by the source.

Although the ideal double-negative conjugate matched
layer requires active inclusions for its practical realization
[10] (the normal components of the material parameters have
the imaginary parts that correspond to active media), the
flexibility of the CML concept suggests a more practical
possibility for realizations, where only passive materials are
used: the nonactive route, described in this paper, requires
double-negative lossy values of the tangential components
and low-loss negative values of the normal components of
the permittivity and permeability matrices. The results of
extensive studies of various possibilities to design and realize
double-negative (backward-wave) materials can be used to

realize the proposed structures. While the earlier introduced
isotropic double-negative design [19] requires very small
levels of losses, which are probably not possible to achieve
in practice, at least with the use of only passive materials,
the radially uniaxial double-negative structure proposed here
appears to offer possibilities to overcome this limitation.

Because the absorbing properties of material bodies are
related to their thermal emissivity, the results of this study can
be applied to the understanding and engineering of thermal
radiation from hot bodies. In the case of an infinite planar
interface with a CML body, the resonantly excited surface
modes are evanescent in free space, and one needs some
additional near-field scatterers to couple radiation to the far
field. In this scenario, there will be a lot of thermal energy
stored in the near field of the body. On the other hand, modes
of finite-sized bodies with curved surfaces (such as the cylinder
considered in Sec. IV) couple to far-field propagating modes
of free space. The results shown in Fig. 15 mean that at this
frequency the spectral emissivity of the cylinder is greater than
that of the ideal black body of the same shape and size. This
result is similar to an earlier example of a spherical, locally
isotropic thermal superemitter [19].

We hope that the results of this study will have interesting
and important implications for a wide variety of applications:
in light harvesting, thermal emission control, heating and
cooling devices, stealth, decoupling of radiators, receiving
and transmitting antennas, and other microwave and optical
devices.
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APPENDIX: EXPRESSION FOR THE INCIDENT FIELD
CREATED BY THE DIPOLE LINE

In the spectral domain, the free-space vector potential
created by the line of dipoles shown in Fig. 4 can be written
for this 2D problem as

A0,inc(kx,ky) = jk0η0ple
−jkxg

k2
x + k2

y − k2
0

, (A1)

where pl is the electric dipole moment linear
density. Taking the inverse Fourier transform
(A0,inc(x,ky) = 1

2π

∫ +∞
−∞ A0,inc(kx,ky)e−jkxxdkx) with respect

to kx , we obtain

A0,inc(x,ky) = jk0η0pl

2

e−jβ0|x+g|

β0
, (A2)

where β0 = β0(ky) = −j

√
k2
y − k2

0. When ky = 0, (A2) re-

duces to the well-known expression for the vector potential of
a uniform electric dipole moment sheet. The magnetic field of
the same line of dipoles is found using

H0,inc(x,ky) = 1

μ0
∇ × A0,inc(x,ky), (A3)
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where ∇ = x̂ ∂
∂x

− ŷjky (recall that there is no dependence on
z). The result reads

H0,inc(x,ky) = ẑ
jωpl

2
e−jβ0|x+g|

[
ky

β0
cos θ − sin θ

]
, (A4)

where pl = |pl|. Because the vector pl lies in the xy plane,
the incident magnetic field has just a single component along
the ẑ axis, i.e., the incident waves are TM-polarized plane
waves.
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