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A graphene antidot lattice, created by a regular perforation of a graphene sheet, can exhibit a considerable band
gap required by many electronics devices. However, deviations from perfect periodicity are always present in real
experimental setups and can destroy the band gap. Our numerical simulations, using an efficient linear-scaling
quantum transport simulation method implemented on graphics processing units, show that disorder that destroys
the band gap can give rise to a transport gap caused by Anderson localization. The size of the defect-induced
transport gap is found to be proportional to the radius of the antidots and inversely proportional to the square
of the lattice periodicity. Furthermore, randomness in the positions of the antidots is found to be more detrimental
than randomness in the antidot radius. The charge carrier mobilities are found to be very small compared to
values found in pristine graphene, in accordance with recent experiments.
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I. INTRODUCTION

High-quality graphene can reach a mobility of about
105 cm2/(V s) even at room temperature [1], making it a
very promising material for future nanoelectronics. However,
the absence of an appropriate band gap, needed in many
applications in electronics and optoelectronics, limits its
usability. There are various proposals for creating a band gap
in graphene, including patterned hydrogenation [2] and the
formation of a graphene antidot lattice (GAL) [3] (also known
as graphene nanomesh [4]) by creating a pattern of nanometer-
sized holes in graphene. The underlying mechanism of these
methods is the generation of a periodic potential modulation
in graphene, which induces a band structure transformation
associated with a band gap opening. Electronic structure
calculations indicate [5,6] that the band gap in GALs can
be tuned by controlling the size, shape, and symmetry of
the GAL unit cell. The validity of these conclusions relies
on the crucial assumption that the antidots form a perfectly
ordered superlattice. While the self-assembly on graphene
could possibly be a promising route toward this [7], the
effect of the deviation from the perfect periodicity is still
an important question to be answered. This is especially
important because according to the scaling theory of Anderson
localization [8], electrons in low-dimensional systems become
more easily localized than in 3D materials. In a disordered low-
dimensional system at low temperature, Anderson localization
occurs when the system length exceeds the localization length,
causing a transport gap that may not be easily distinguished
from a gap in the band structure.

Experimentally produced GALs contain a significant
amount of disorder [9–15], manifesting itself in fluctuations
in both the antidot radius and location. Most experimental
works have suggested that the observed gaps are more likely
to be transport gaps rather than band gaps [9,13,14], whereas in
some studies the opposite conclusion has been reached [10,11].
In this paper we study the localization properties of GALs,
showing that only little disorder is needed for the localization
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length to become smaller than the usual size of experimental
devices.

Previous theoretical works on the transport properties
of GALs have mainly used the Landauer-Büttiker method
combined with the recursive Green’s function technique,
which, due to the cubic-scaling of the computational effort
with respect to the width of simulated system, is not suited
to study localization properties in realistically sized samples.
Thermoelectric properties of GALs in the quasi-1D limit
and the ballistic regime have been studied using this method
[16–18]. Recent work by Power and Jauho [19] showed that
the transmission of an imperfect finite GAL connected to
semi-infinite leads decays exponentially with respect to the
length of the GAL. The conduction properties of GALs with
anisotropic disorder have been studied by Pedersen et al.
[20]. Yuan et al. [21,22] have studied optical conductivity
properties of GALs using an efficient numerical method based
on Kubo formulas. Although their method can be used to
study realistically sized samples, it cannot adequately handle
localization effects; see Ref. [23] for discussion. Additionally,
also the Dirac equation with a mass term has recently been
applied to study electronic transport in GALs [24]. As such
a model is scale-invariant, it is very suitable for studying
large-sized systems, but it was found to be inaccurate for
systems with significant amounts of disorder [24].

In this work, we computationally study the electronic and
transport properties of GALs in the presence of disorder
using the tight-binding model and the linear-scaling real-space
Kubo-Greenwood (RSKG) method [25–28]. This method is
especially suitable for computing intrinsic properties of GALs,
such as density of states, conductivity, localization length,
and charge carrier mobility. The simulations are performed
with a code efficiently implemented on graphics processing
units (GPUs) [23]. By calculating the density of states and the
conductivity at different length scales, we are able to give a
detailed comparison between the band gap and the transport
gap in disordered GALs.

Our simulations show that while the band gap of an
antidot lattice vanishes in the presence of sufficiently strong
disorder, it also gives rise to a transport gap through Anderson
localization. Thus disorder effectively causes a transition from
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a band insulator into an Anderson insulator. The size of the
transport gap depends on the spatial parameters of the antidot
lattice, and our numerical results suggest a linear dependence
on the antidot radius and inverse proportionality to the area of
the unit cell of the antidot lattice. We also study charge carrier
mobilities in disordered antidot lattices, and obtain realistic
values compared with recent experimental results.

II. MODELS AND METHODS

A. Models

There can be various kinds of GALs, formed by different
geometrical structures. To be specific, we follow Ref. [3] and
consider a GAL consisting of a triangular lattice of circular
holes (antidots) in a graphene sheet. The radius of the holes is
R and the separation between the centers of nearest-neighbor
holes is S; see Fig. 1(a) for an illustration. We also require that
in the pure antidot lattice the centers of the holes are always
located in the middle of a hexagonal ring of the corresponding
pristine graphene lattice. One can associate a hexagonal cell

with side length L = S/
√

3 to each hole. A GAL with a side
length L and radius R is labeled as (L,R)-GAL. Here, L and R

are given in units of a, the lattice constant of pristine graphene,
which is set to be 0.246 nm is this work. The hexagonal cell
with side length L contains 6L2 carbon atoms before the hole
is created inside it. In order to match the triangular lattice of
the GAL with the hexagonal lattice of pristine graphene, L

should be an integer. On the other hand, R can be arbitrary, but
one should note that for some values of R, there are carbon
atoms with only a single neighboring atom. Such atoms are
not likely to exist in real systems and are thus removed by
hand. Also, carbon atoms with only two neighboring atoms are
assumed to be passivated with hydrogen atoms. In this way, the
electronic properties of the system close to half filling can be
well described by the widely used nearest-neighbor pz-orbital
tight-binding Hamiltonian with a hopping parameter of 2.7 eV.

There can be various kinds of disorder in GALs. In this
work, we focus on disorders which are specific to GAL, leaving
complications of coexistence of other conventional disorders
found in graphene for a possible future study. In pristine GAL,

(a) (b)

(c) (d)

FIG. 1. (Color online) Sketch of (6, 3)-GALs with (a) perfect periodicity, (b) radius disorder, (c) center disorder, and (d) mixed disorder. In
(a), S = √

3L and R represent the distances between the centers of two adjacent holes (antidots) and the radius of the holes, respectively. Periodic
boundary conditions are applied on both directions. Here, we have only shown relatively small systems for clarity, but in our simulations, we
have considered much larger systems.
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the radii of the antidots are uniformly R and the centers of
the antidots form a perfect triangular lattice. Fluctuations of
radii and centers can be regarded as radius and center disorder,
respectively, which are collectively referred to as geometrical
disorder [19,21,22]. We quantify the radius disorder by δR in
such a way that the radii Ri of the antidots take the following
values with uniform probability:

R − δR < Ri < R + δR. (1)

Figure 1(b) is an illustration of the radius disorder. Similarly,
we quantify the center disorder by δxy in such a way that the
positions (xi,yi) of the centers of antidots take the following
values with uniform probability:

x0
i − δxy < xi < x0

i + δxy, (2)

y0
i − δxy < yi < y0

i + δxy, (3)

where (x0
i ,y

0
i ) are the positions of the centers of antidots in

the pristine GAL. Figure 1(c) illustrates this disorder. While
previous works [19,21,22] studied these disorders separately,
we also consider the situation where these two types of disorder
coexist, as illustrated in Fig. 1(d). Both δR and δxy are in units
of a.

Since our focus is to study the 2D transport properties of
GAL, we consider GALs with realistically large sizes. In all our
calculations, we create GAL from a pristine graphene of size
about 0.25 μm2 (containing about 107 carbon atoms). We have
tested that the results do not change upon further increasing the
simulation size, suggesting that finite-size effects have mostly
been eliminated. We have ensemble-averaged over 5 different
realizations of disorder for a given system.

B. Methods

We use the RSKG method [25–28] to study the quantum
transport properties of GALs. In this method, the dc electrical
conductivity as a function of energy E and correlation time t

at zero temperature is given by

σ (E,t) = e2ρ(E)
d�X2(E,t)

2dt
. (4)

Here, ρ(E) is electronic density of states (with spin degeneracy
taken into account) defined as

ρ(E) = 2Tr[δ(E − H )]

�
, (5)

where H is the Hamiltonian and � is the area of the system
in 2D, which is taken to be the area of the pristine graphene
sheet uniformly. The crucial quantity in the RSKG method is
the mean square displacement defined by

X2(E,t) = Tr{[X,U (t)†]δ(E − H )[X,U (t)]}
Tr[δ(E − H )]

, (6)

where X is the position operator and U (t) = exp[−iH t/�] is
the time evolution operator. The first crucial step of achieving
linear-scaling computation is to approximate the traces in
Eq. (6) by using random vectors [29] |φ〉, Tr[A] ≈ 〈φ|A|φ〉,
where A is an arbitrary operator. To evaluate the numerator of
Eq. (6) in a linear-scaling way, we evaluate the time-evolution

[X,U (t)]|φ〉 using a Chebyshev polynomial expansion. Last,
we use the kernel polynomial method to achieve linear scaling
in the evaluation of the Dirac δ functions involved in both
the density of states and the mean square displacement. All
the calculations have been significantly accelerated by using
GPUs and the detailed algorithms can be found in Ref. [23].

One of the advantages of the RSKG method over other vari-
ants of Kubo-Greenwood formula-based numerical methods is
that a definition of length (which can be regarded as the average
propagating length of the electrons) is possible [23,30–33] in
terms of the mean square displacement,

L(E,t) = 2
√

�X2(E,t). (7)

This time-dependent length, different from the simulation
cell length, provides a connection between the conductivity
and the conductance in a quasi-1D geometry. In purely
ballistic systems, the calculated conductance becomes time-
independent (length-independent) in a short correlation time,
and was found [23] to be consistent with Landauer-Büttiker
calculations except for numerical problems around Van Hove
singularities. This definition was also found [23,32] to be
usable in the localized regime, except for the extreme
regime where the mean square displacement converges. The
converged mean square displacement, on the other hand,
provides a means for computing the localization length directly
using [32,33]

ξ (E) = lim
t→∞

√
�X2(E,t)

π
. (8)

III. PRISTINE GRAPHENE ANTIDOT LATTICES

We start presenting our results by first considering the
electronic properties of perfect GALs, taking the (10, 6)-GAL
as an example system. The band structure calculated using
the nearest-neighbor tight-binding Hamiltonian is shown in
Fig. 2(a). Due to the particle-hole symmetry in the nearest-
neighbor tight-binding model, only a relevant part on one side
of the charge neutrality point (CNP) is shown for clarity. It is
clear to see that there are two major band gaps in the range of
0 eV < E < 1 eV.

While the density of states of the perfect system can be
readily obtained from the band structure, a more efficient
method, also applicable to disordered systems, is to use
Eq. (5) and the linear-scaling techniques mentioned above.
The results, however, depend on the energy resolution used,
as shown in Fig. 2(b). Here, Nm is the number of Chebyshev
moments used in the kernel polynomial method [29], which
is associated with an energy resolution of order of �E/Nm,
where �E is the spectral width of the system. Our test shows
that Nm = 10 000 is large enough to capture all the essential
details of the band structure, while Nm = 5000 is a little too
small. Comparable values of Nm are used by Pieper et al. [34]
in the study of gate-defined graphene dot lattices using the
kernel polynomial method. We have used Nm = 10 000 in all
the subsequent calculations.

We can similarly calculate the density of states of GALs
with other values of (L,R) using Eq. (5). Figure 3 shows the
densities of states of four different GALs. The values of L are
chosen to be 10, 20, 40, and 60, with the ratio L/R being 5/3
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FIG. 2. (Color online) (a) Band structure of a pristine (10, 6)-
GAL. (b) Density of states of a pristine (10, 6)-GAL calculated using
different energy resolutions, corresponding to different numbers
of moments Nm, with that of pristine graphene also shown for
comparison.

in all cases. Since the band gap scales as [3] R/L2, the band
gap of a (20, 12)-GAL is much smaller than that of a (10, 6)-
GAL around the CNP. For GALs with even larger constituent
antidots, such as a (40, 24)-GAL and a (60, 36)-GAL, there is
neither a band gap nor a Dirac point around the CNP. Instead,
relatively flat bands appear around the CNP, resulting in a peak
of density of states.

IV. DISORDERED GRAPHENE ANTIDOT LATTICES

We now turn to discuss the effects of the geometrical
disorder on the electronic and transport properties of GALs.
We first study the effects of different types of the geometrical

0 0.1 0.2 0.3
0

0.1

0.2

0.3

energy (eV)

D
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S
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1/
eV

/a
to

m
) (10, 6)−GAL

(20, 12)−GAL
(40, 24)−GAL
(60, 36)−GAL

FIG. 3. (Color online) Densities of states of pristine graphene
antidot lattices.

disorder. Three types of disorder are considered: radius
disorder, center disorder, and a combination of these two.

A. Effects of disorder type

For the different disorders, we again use the (10, 6)-GAL
as a test case. Figure 4(a) shows the densities of states of
these systems. It is clear that the original band gap found in
a pristine (10, 6)-GAL vanishes in the presence of each kind
of disorder. An apparent difference between radius and center
disorder is that there is a peak in the density of states at the
CNP in the presence of the latter while it is absent in the
presence of the former. This difference may be explained by
the preservation of the rotational symmetry in the presence
of pure radius disorder [cf. Fig. 1(b)]. The center disorder,
on the other hand, results in antidots with irregular edges and
breaks the rotational symmetry [Fig. 1(c)]. The atoms at the
irregular edges behave similarly as resonant scatterers, such
as vacancies, whose presence also results in a sharp peak of
density of states at the CNP [23,33].

Transport properties can also be efficiently obtained by
the RSKG method. In the presence of disorder, the diffusive
(ohmic) transport is mainly characterized by the semiclassical
conductivity, which in the RSKG method is commonly defined
to be the maximal conductivity over the correlation time at
each energy. Figure 4(b) shows the maximal conductivities in
a (10, 6)-GAL with different types of geometrical disorder.
These exhibit an energy dependence similar to that of the
densities of states. However, it should be noted that the sharp
peaks in the maximal conductivity at the CNP in the presence
of center and mixed disorder cannot be simply interpreted as
the semiclassical conductivity. This is similar to the case of
graphene with vacancy disorder [33], as also the zero-energy
peak in the density of states plays a major role at that point.

No matter how well the semiclassical conductivity is
approximated by the maximal conductivity, it is not a quantity
that can be measured in samples with a fixed size. The reason
is that localization takes place when the sample length exceeds
the mean free path. At low temperature, the conductivity
becomes vanishingly small when the sample length is several
times larger than the localization length. Interestingly, the
calculated localization lengths [via Eq. (8)] are found to be only
of the order of 10 nm [Fig. 4(c)]. These localization lengths
are comparable to those which can be extracted from the
exponential decays of the transmissions in a (7, 3)-GAL with
similar geometrical disorder studied by Power and Jauho [19].
It can also be seen that in the largest part of the energy range
tested here, the charge carriers in a GAL with center disorder
become more easily localized than those in a GAL with radius
disorder.

B. Scaling of the transport properties with respect
to the GAL parameters

Above, the GAL lattice was, apart from the disorder, fixed
to a certain geometry. Next, we keep the distance between the
antidot centers fixed and study how changing the antidot radius
affects the electronic and transport properties of the system.
Both kinds of disorder are present in our simulations, as the
results might then be best comparable with experiments.

125434-4
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FIG. 4. (Color online) (a) Density of states, (b) maximal conductivity, and (c) localization length as a function of energy for a (10, 6)-GAL
with different types of geometrical disorder: radius disorder δR = 0.5 (solid lines), center disorder δxy = 0.5 (dashed lines), and mixed disorder
δR = δxy = 0.5 (dot-dashed lines).

For simplicity, we first fix the disorder strength to be
δR = δxy = 1.0.

The density of states depends strongly on the antidot radius,
as shown in Fig. 5(a). When the antidot radius decreases, the
zero-energy peak in the density of states becomes lower and
the values at finite energies become larger. The large peaks at
the CNP do not, however, contribute to the transport properties
of the system, as the peaks correspond to localized states. This
can be seen in Fig. 5(b), which shows the conductivity at
a fixed propagation length of 1000 nm. In the cases where
the propagation length of the simulation has not reached
this value, an extrapolation has been performed to reach the
desired system size. All the peaks around the CNP are in a
regime where the conductivity is low. One should note that the
conductivity of the GAL with the largest antidots is nearly zero
for all the energies shown, having nonzero contributions only
around energies ±1 eV. Furthermore, the figure shows that the
effect of decreasing antidot radius on the conductivity is even
more dramatic than on the density of states. The transport gap
of around 2 eV in the case with the largest value of antidot
radius reduces to around half of that as the antidot radius is
halved. This suggests a linear dependence of the gap on the
antidot radius. The scaling is analyzed in more detail below.

In order to make more direct comparisons with experiments,
one can extract the mobility μ from the conductivity using

σ (E,n) = en(E)μ(E,n),

where the carrier concentration n is calculated from the density
of states as n(E) = ∫ E

0 ρ(E′)dE′ and the zero of the energy
corresponds to the CNP. The mobility obtained in this way
is presented in Fig. 5(c). For the largest antidot radius, the
mobility remains close to zero for the whole range of charge
carrier densities shown. For smaller radius sizes, there is a
clear increase of mobility with decreasing antidot radius at
finite charge carrier densities. This would suggest that a GAL
with a small antidot radius would be beneficial for electronics
applications that require a large mobility outside the gap. It is
also clear that the mobility of GAL is rather low even when
the charge carrier density is fairly large and the dot radius is
small. This agrees very well with experimental findings [14].

In the analysis above, the distance between the antidot
centers was fixed and only the antidot radius was allowed
to change. Next, we vary both the antidot radius and distance,
keeping the ratio of these two constant. We start with the
density of states, shown in Fig. 6(a). All the system sizes shown
have a very sharp peak at the CNP, with the peak becoming
even sharper with larger lattice parameters. Apart from that,
however, the density of states of the different lattices shows
now more similar behavior than in the case above where only
the antidot radius was varied. Furthermore, like above, the
states at the CNP region are localized as can be seen from
Fig. 6(b) that shows the corresponding conductivities. This
time the larger lattices show irregular plateaus outside the
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FIG. 5. (Color online) (a) Density of states as a function of energy, (b) conductivity at a propagation length of 1000 nm as a function of
energy, and (c) mobility at the same length as a function of carrier concentration for a (20, 12)-GAL (solid line), a (20, 10)-GAL (dashed line),
a (20, 8)-GAL (dot-dashed line), and a (20, 6)-GAL (dotted line) with the same mixed geometrical disorder of δR = δxy = 1.0.
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FIG. 6. (Color online) (a) Density of states, (b) conductivity at a propagation length of 1000 nm as a function of energy, and (c) mobility at
the same length as a function of carrier concentration for a (20, 12)-GAL (solid line), a (40, 24)-GAL (dashed line), a (60, 36)-GAL (dot-dashed
line), and a (80, 48)-GAL (dotted line) with the same mixed geometrical disorder of δR = δxy = 1.0.

transport gap. This is possibly caused by the more complicated
band structures, which is also reflected in the density of states
of the pure systems shown in Fig. 3. The gap region is very
clear with all lattice sizes, and the gaps become smaller as the
lattice parameters increase.

Again, the most direct comparison with the experiments
can be done using the mobility, extracted similarly as in the
previous case of varying antidot radius. The mobility, shown
in Fig. 6(c), is still rather low but larger than in Fig. 5(c)
above. The mobility at finite charge carrier densities increases
rather linearly as a function of lattice size. This can be used to
obtain extrapolated values for experimentally relevant system
sizes. The experimental results of Ref. [14] were obtained
for a GAL with similar R/L ratio, but with an around four
times larger antidot lattice size. A room temperature mobility
of 750 cm2/(V s) was measured, which very interestingly
agrees rather well with an approximation based on a linear
extrapolation of our simulation data.

The results above suggest a scaling of the transport gap,
which we now analyze in more detail. We define the gap as the
energy range where conductivity is below 0.1e2/h. Although
this definition of a transport gap is somewhat arbitrary, it does
not affect our conclusions. The gap for the conductivity data
presented in Figs. 5(b) and 6(b) is shown in Fig. 7. It can be
seen that the transport gap is indeed linearly proportional to
the antidot radius. Furthermore, the gap is inversely dependent
on the square of the lattice constant of the GAL. Surprisingly,
the zero-temperature transport gap of disordered GALs scales
thus similarly as the band gap of pristine GALs [3].

The results above were obtained for GALs with a fixed
amount of disorder, and by varying the lattice size and the
antidot radius. We now study the effects of varying the disorder
strength in a fixed lattice geometry, using a (80, 48)-GAL
as a test system. We start by comparing the densities of
states, shown in Fig. 8(a) and obtained with the disorder
strengths of δR = δxy = 1.0, 2.0, 3.0, and 4.0. The results
for all of these values of disorder strength are very similar
in the whole energy range, suggesting that arbitrary shifts
of the GAL centers by a single lattice constant of pristine
graphene is sufficient to cause significant disorder effects
in the density of states. Furthermore, the conductivity and
mobility, shown in Figs. 8(b) and 8(c), indicate that the
transport properties of the disordered GALs are also very

similar. Although in the presence of less disorder there are
more fluctuations in the conductivity, the transport gaps and
mobilities are strikingly similar in all cases. The results
indicate that although even a small amount of disorder in GALs
is enough to cause a transport gap, the transport properties of
GALs are not especially sensitive to the disorder strength.
This highlights the importance of taking the disorder into
account in modeling GALs. Furthermore, this indicates that
the correspondence between our theoretical predictions and
the experimental measurements presented in Ref. [14] is likely
not a coincidence, although the amount of disorder in the
experimental setup is not easy to extract.

V. DISCUSSION

Before concluding, we discuss the theoretical implications
of our results regarding Anderson localization in graphene-
based systems.

Localization properties in graphene-based systems have
been extensively studied. Generally, short-range disorders
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FIG. 7. (Color online) Transport gap as a function of the antidot
radius divided by the lattice size squared in GALs with the same mixed
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(such as vacancy disorder and Anderson disorder) lead to
weak and strong (Anderson) localization with a negative
renormalization β function [33], while long-range disorder
(such as charge impurity) leads to weak antilocalization, with
a positive renormalization β function [35–37].

In this study, we found that the geometrical disorder in
GALs leads to Anderson localization around the CNP. This is,
on the one hand, expected from well-established theories of
Anderson localization in disordered low-dimensional systems
where interaction effects are not important [8]. On the other
hand, the special localization behaviors (such as antilocal-
ization) of Dirac fermions in pristine graphene may be not
relevant for disordered GALs, because a (pristine) GAL has
a very different band structure than pristine graphene; there
are no charge carriers with linear dispersion anymore. This
difference in band structure is especially significant for GALs
with small antidot lattice periodicity L. However, when L is
large, there are large patches of graphene between the andidots,
and the band structure gets closer to that of pristine graphene.
In this case, an interpretation of the results in terms of graphene
with short-range vacancy disorder is possible, as given below.

In GALs with center or mixed disorder, the latter being our
major interest of study, the edges of the antidots are irregular,
which can be approximately regarded as regular edges with
vacancies. The number of vacancies in one antidot unit cell
is of order of 2πR and the effective vacancy concentration
is n = 2πR/6L2 ≈ R/L2 (recall that the antidot unit cell
contains 6L2 carbon atoms before the antidot is created).
Therefore, the scaling of the transport gap in geometrically
disordered (center or mixed) GALs with respect to R/L2 may
be intimately related to scaling of localization properties in
graphene with vacancies with respect to n. An explicit example
may be useful here. Figure 10 of Ref. [33] presents the density
of states and maximal conductivity of graphene with n = 1%
vacancies. This vacancy concentration corresponds roughly to
(60, 36)-GAL with mixed geometrical disorder considered in
the current work. One can see that the density of states for

graphene with 1% vacancies calculated with Nm = 10 000 in
Ref. [33] is in good accordance with that for (60, 36)-GAL
calculated with the same Nm. Moreover, there is a plateau of
energy in which a state has σmax ≈ 4e2/πh and will undergo
Anderson localization in sufficiently large (1000 nm, say)
systems. The range of that plateau is about 0.6 eV, which
is surprisingly in agreement with that predicted by our scaling
law for disordered GALs: Eg/eV = 60R/L2.

VI. CONCLUSIONS

We have simulated intrinsic transport properties of
graphene antidot lattices using the Kubo-Greenwood for-
malism. We have shown that geometrical disorder, which
is associated with deviation from the perfect superlattice
structure, easily causes the graphene antidot lattice to undergo
a transition from a band insulator to an Anderson insulator.
Our results support the conclusions of several experimental
studies [9,13,14], where the measured transport gap has been
attributed to localization rather than resulting from a band gap.

We have also shown that the size of the zero-temperature
transport gap of a disordered graphene antidot lattice is
linearly proportional to the radius of the antidots and inversely
proportional to the square of the antidot lattice periodicity. The
computed charge carrier mobilities in disordered graphene
antidot lattices agree well with experimentally measured
values and have been found to be fairly insensitive to the
strength of the geometrical disorder.

ACKNOWLEDGMENTS

This research has been supported by the Academy of
Finland through its Centres of Excellence Program (Project
No. 251748) and the National Natural Science Foundation
of China (Grants No. 11404033 and No. 51202032). We
acknowledge the computational resources provided by the
Aalto Science-IT project and Finland’s IT Center for Science
(CSC).

[1] K. I. Bolotin, K. J. Sikes, J. Hone, H. L. Stormer, and P. Kim,
Phys. Rev. Lett. 101, 096802 (2008).

[2] R. Balog, B. Jorgensen, L. Nilsson, M. Andersen, E. Rienks,
M. Bianchi, M. Fanetti, E. Laegsgaard, A. Baraldi, S. Lizzit,

125434-7

http://dx.doi.org/10.1103/PhysRevLett.101.096802
http://dx.doi.org/10.1103/PhysRevLett.101.096802
http://dx.doi.org/10.1103/PhysRevLett.101.096802
http://dx.doi.org/10.1103/PhysRevLett.101.096802


ZHEYONG FAN, ANDREAS UPPSTU, AND ARI HARJU PHYSICAL REVIEW B 91, 125434 (2015)

Z. Sljivancanin, F. Besenbacher, B. Hammer, T. G. Pedersen,
P. Hofmann, and L. Hornekaer, Nat. Mater. 9, 315 (2010).

[3] T. G. Pedersen, C. Flindt, J. Pedersen, N. A. Mortensen, A.-P.
Jauho, and K. Pedersen, Phys. Rev. Lett. 100, 136804 (2008).

[4] J. Bai, X. Zhong, S. Jiang, Y. Huang, and X. Duan, Nat.
Nanotechnol. 5, 190 (2010).

[5] R. Petersen, T. G. Pedersen, and A.-P. Jauho, ACS Nano 5, 523
(2011).

[6] F. Ouyang, S. Peng, Z. Liu, and Z. Liu, ACS Nano 5, 4023
(2011).

[7] P. Jarvinen, S. K. Hamalainen, K. Banerjee, P. Hakkinen,
M. Ijas, A. Harju, and P. Liljeroth, Nano Lett. 13, 3199 (2013).

[8] E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V.
Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979).

[9] J. Eroms and D. Weiss, New J. Phys. 11, 095021 (2009).
[10] M. Kim, N. S. Safron, E. Han, M. S. Arnold, and P. Gopalan,

Nano Lett. 10, 1125 (2010).
[11] X. Liang, Y.-S. Jung, S. Wu, A. Ismach, D. L. Olynick,

S. Cabrini, and J. Bokor, Nano Lett. 10, 2454 (2010).
[12] Z. Zeng, X. Huang, Z. Yin, H. Li, Y. Chen, H. Li, Q. Zhang,

J. Ma, F. Boey, and H. Zhang, Adv. Mater. 24, 4138 (2012).
[13] A. J. M. Giesbers, E. C. Peters, M. Burghard, and K. Kern, Phys.

Rev. B 86, 045445 (2012).
[14] H. Zhang, J. Lu, W. Shi, Z. Wang, T. Zhang, M. Sun, Y. Zheng,

Q. Chen, N. Wang, J.-J. Lin, and P. Sheng, Phys. Rev. Lett. 110,
066805 (2013).

[15] M. Wang, L. Fu, L. Gan, C. Zhang, M. Rümmeli, A. Bachmatiuk,
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