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We analyze a Bose-Einstein condensate (BEC) mixed with a superfluid two-component Fermi gas in the
whole BCS-BEC crossover. Using a quasiparticle random-phase approximation combined with Beliaev theory
to describe the Fermi superfluid and the BEC, respectively, we show that the single-particle and collective
excitations of the Fermi gas give rise to an induced interaction between the bosons, which varies strongly with
momentum and frequency. It diverges at the sound mode of the Fermi superfluid, resulting in a sharp avoided
crossing feature and a corresponding sign change of the interaction energy shift in the excitation spectrum of the
BEC. In addition, the excitation of quasiparticles in the Fermi superfluid leads to damping of the excitations in
the BEC. Besides studying induced interactions themselves, we can use these prominent effects to systematically
probe the strongly interacting Fermi gas.

DOI: 10.1103/PhysRevA.91.041605 PACS number(s): 03.75.Kk, 67.85.De, 67.85.Pq

The interplay between induced interactions and superflu-
idity plays an important role in low-temperature physics. In
metals, the phonon-mediated interaction between electrons
leads to the formation of Cooper pairs [1], and induced
electron-hole excitations significantly suppress the critical
temperature of a BCS superconductor [2,3]. A prominent the-
ory for high-temperature superconductivity is that it is caused
by spin fluctuations leading to an attractive interaction [4],
and induced interactions are important for understanding
the properties of liquid-helium mixtures [5]. The systems
where induced interactions are significant often consist of
fermionic and bosonic degrees of freedom. In cold-atom gases,
Bose-Fermi mixtures have been realized experimentally for
sympathetic cooling [6–8], molecule formation [9–12], and
studying few-body physics [13]. The theoretical studies have
focused on mixtures where the Fermi gas is in the normal
state [14–23]. Recently, an experimental breakthrough was
reported with the realization of a mixture of superfluid 7Li
and 6Li gases [24]. This opens up the exciting possibility
to experimentally study the role of induced interactions in a
Bose-Fermi mixture, where both components are superfluid.

Here we study a Bose-Einstein condensate (BEC) mixed
with a two-component superfluid Fermi gas in the whole
BCS-BEC crossover at zero temperature. Using a quasiparticle
random-phase approximation (QRPA) to describe the excita-
tions in the Fermi gas, combined with Beliaev theory for the
bosons, we show how the fermions give rise to an induced
frequency- or momentum-dependent Bose-Bose interaction,

which diverges at the sound mode of the Fermi gas. This results
in two qualitatively new effects. First, the dispersion relation of
the bosons in the BEC is significantly changed at frequencies
or momenta close to the sound mode of the Fermi gas. Second,
bosonic excitations are damped due to dissipation, as they can
excite quasiparticles in the superfluid Fermi gas [25]. These
effects can be used to systematically probe the single-particle
and collective properties of the strongly correlated Fermi gas.

We consider a gas of bosons with mass mB mixed with
a two-component (σ = ↑,↓) gas of fermions with mass mF.
The populations of the two fermionic states are taken to be

the same. The Hamiltonian of the Bose-Fermi mixture is H =
HB + HF + HBF, where

HB =
∑

k

εka
†
kak + 1

2V
∑

k,k′,q

VB(q)a†
k+qa

†
k′−qak′ak (1)

is the Bose Hamiltonian with εk = k2/2mB,

HF =
∑
kσ

k2

2mF
c
†
kσ ckσ + 1

V
∑

k,k′,q

VF(q)c†k+q↑c
†
k′−q↓ck′↓ck↑

(2)
is the Fermi Hamiltonian, and

HBF = 1

V
∑

k,k′,qσ

VBF(q)c†k+qσ ckσ a
†
k′−qak′ (3)

is the Bose-Fermi interaction. The operators ak (ckσ ) remove
a boson (spin-σ fermion) with momentum k, V is the
volume of the system, and we work in units where � =
kB = 1. In the following, we replace the interactions with the
corresponding low-energy scattering matrices: VB(q) → TB =
4πaB/mB, VF(q) → TF = 4πaF/mF, and VBF(q) → TBF =
2πaBF/mr, where aB, aBF, and aF are the Bose-Bose, Bose-
Fermi, and Fermi-Fermi scattering lengths, respectively, and
mr = mBmF/(mB + mF) is the reduced mass. As usual, this
corresponds to summing all ladder diagrams in a vacuum.

The presence of the Fermi gas induces an effective
interaction between the bosons since one boson tends to attract
or repel fermions, giving rise to a local change in the fermion
density, which is felt by the second boson. Combined with the
direct Bose-Bose interaction, this results in total interaction

V (q,ω) = TB + T 2
BFχ (q,ω). (4)

Here χ (q,ω) is the density-density response function for the
fermions with momentum q and frequency ω. The corre-
sponding Feynman diagram for V (q,ω) is given in Fig. 1(a).
The momentum dependence reflects the long range of the
interaction, as density perturbations propagate in the Fermi
gas. Similarly, the frequency dependence of the interaction
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FIG. 1. (a) The effective interaction V (q,ω) (double wavy line)
between the bosons. The dashed line is the bare Bose-Bose interaction
TB, single wavy lines are the Bose-Fermi interaction TBF, and the
solid lines are the Fermi Green’s function. (b) The Bose self-energies
�11(q,ω) and �12(q,ω). The dotted lines are excitations in and out of
the BEC.

is due to the fact that it is not instantaneous since these
perturbations have a finite speed.

In the weak-coupling BCS limit, kFaF → 0−, with kF being
the Fermi momentum of the Fermi gas, the density-density
response function is given by

χ (q,ω) =
(

vF

cs

)2 N (εF)

3
[(

ω
csq

)2 − 1
] (5)

for frequency or momenta close to the Anderson-
Bogoliubov sound mode ω = csq. The velocity is cs =
vF

√
1 + 2kFaF/π/

√
3 [26–28], the density of states at the

Fermi level εF = k2
F/2mF is N (εF) = mFkF/π

2, and vF =
kF/m. In the BEC regime, kFaF → 0+, the Fermi gas becomes
a BEC consisting of diatomic molecules (dimers) with mass
2mF and density nF/2, where nF = k3

F/3π2 is the total density
of the fermions. The density-density response function is then,
from Bogoliubov theory, given by [29]

χ (q,ω) = nFq
2

4mF
(
ω2 − ω2

q

) �
(

vF

cs

)2 N (εF)

12
[(

ω
csq

)2 − 1
] . (6)

Here ω2
q = q2(4mF)−1(q2/4mF + 0.6TFnF/2) is the Bogoli-

ubov spectrum of the dimer BEC, where we have used the
fact that the scattering length between the dimers is 0.6aF

in the BEC limit [30]. The second equality in (6) follows
from the fact that ωq � csq for small momenta, where cs =√

0.6aFnFπ/2m2
F is the Bogoliubov sound speed.

In general, the density-density correlation function of the
Fermi gas has a pole at ω = csq in the whole BCS-BEC
crossover, where cs is the velocity of sound for a given
scattering length −∞ < aF < ∞. It follows from (4) that
the induced interaction between the bosons has the same
pole structure: it is attractive for ω � csq, repulsive for
ω � csq, and diverges when ω = csq. In addition, it has a
nonzero imaginary part for frequency or momenta inside the
quasiparticle continuum of the Fermi gas. It also follows
from (4)–(6) that the strength κ of the induced interaction
scales as

κ = T 2
BFN (εF)

v2
F

c2
s

, (7)

which should be compared with the strength TB of the direct
Bose-Bose interaction.

We now examine the effects of the induced interaction on
the excitation spectrum of the Bose gas. To this end, we need
to calculate the density-density response function of the Fermi
gas in the whole BCS-BEC regime. The density response
function χ (1,2) is defined as a measure for how much the
density of the Fermi gas changes at point (and time) 1 when a
potential perturbation δφ is applied at point 2:

χ (1,2) = −δ〈n(1)〉
δφ(2)

. (8)

We apply a QRPA for calculating the Fourier transform of
χ (1,2) in the superfluid state [28,31–34]. This is the simplest
microscopic scheme which recovers the Anderson-Bogoliubov
mode in the BCS regime and the Bogoliubov mode in the BEC
regime. It yields a response function of the form

χ (q,ω) = χ0(q,ω)

1 − TFL(q,ω)
, (9)

where χ0(q,ω) is a four-dimensional vector giving response
due to quasiparticle excitations in the superfluid and L is a 4 ×
4 matrix describing the couplings of the densities and the order
parameter field. The collective modes manifest themselves as
poles of the density response χ (q,ω), i.e., as the zeros of the
determinant,

det [1 − TFL(q,ω)] = 0. (10)

The input parameters needed for the QRPA are the chemical
potential μ and the pairing gap � of the Fermi superfluid,
which are obtained self-consistently from BCS theory. We have
for convergence added a small imaginary part iη = i10−3 εF

to the frequencies and checked that the final numerical results
do not depend on η, as long as η � εF. The details of this
QRPA calculation can be found, for example, in Refs. [28,31].

Figure 2 shows the speed of the Anderson-Bogoliubov
mode as a function of 1/kF a, determined by finding the
frequency ω at which the imaginary part of χ (q,ω) is maximal
for a given momentum q. The value of the momentum q needs
to be chosen small enough so that it probes the linear part of the
collective mode branch. The speed of sound is then the slope
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FIG. 2. (Color online) Speed of sound cs in the two-component
Fermi superfluid as calculated from the pole of the density response
function χ (q,ω). It approaches cs = vF/

√
3 in the BCS limit (green

dotted line) and the Bogoliubov result cs = vF
√

kFaF/3π in the BEC
limit (blue dash-dotted curve).
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FIG. 3. (Color online) The blue (dark gray) and red (light gray)
regions show Re χ (q,ω) for kFaF = −1. The black solid line is the
weak-coupling Anderson-Bogoliubov mode, and the quasiparticle
continuum for ω > 2� is indicated by a dashed region. The green
dashed line is the Bogoliubov spectrum εk of the atomic BEC, and the
red solid line is the Beliaev spectrum Ek for the coupled Bose-Fermi
mixture. The damping δk of the Beliaev excitations is shown as a red
dash-dotted line.

cs = ω/q. In the BCS limit, the speed of sound approaches the
weakly interacting limit vF/

√
3. The numerically calculated

speed of sound deviates slightly from this in the very weakly
interacting regime due to the difficulty of determining the slope
when the pairing gap is very small. Our numerics reproduce to
an excellent accuracy the speed of sound results in Ref. [35].
Note that this theory is, of course, not quantitatively correct
in the whole BCS-BEC crossover. For instance, the speed of
sound approaches cs = vF

√
kFaF/3π in the BEC limit (see

Fig. 2). This corresponds to a molecular BEC with a scattering
length 2aF instead of the correct value 0.6aF. We emphasize,
however, that the effects discussed below are completely
general and do not depend on which approximate theory we
apply to describe the strongly correlated system.

Figure 3 depicts the real part of the calculated density-
density response for kFa = −1. At low frequency or momenta,
we clearly see a sharp Anderson-Bogoliubov mode where
Reχ (q,ω) changes sign. The dispersion of this mode is close
to the weak-coupling result cs = vF/

√
3. For higher momenta,

the dispersion curves downwards when it approaches the
quasiparticle continuum starting at energies above 2�, with
� � 0.21εF.

Once χ (q,ω) is calculated, we use Beliaev theory [36]
to describe the effects of the resulting induced Bose-Bose
interaction on the excitation spectrum of the atomic BEC.
The single-particle propagator Ḡ(k,ω) for the BEC is a 2 × 2
matrix, and the Dyson equation reads

Ḡ(k,ω) = Ḡ0(k,ω) + Ḡ0(k,ω)�̄(k,ω)Ḡ(k,ω). (11)

The bare propagator is

Ḡ0(k,ω) =
[
G0(k,ω) 0

0 G0(k, − ω)

]
, (12)

and the self-energy is

�̄(k,ω) =
[
�11(k,ω) �12(k,ω)

�21(k,ω) �11(k, − ω)

]
, (13)

where we have used the inversion symmetry k ↔
−k. The effects of interactions are included via the
“Hartree-Fock” self-energies illustrated in Fig. 1(b), given
by �11(k,ω) = �11(k, − ω)∗ = n0V (0,0) + n0V (k,ω) and
�12(k,ω) = �21(k,ω) = n0V (k,ω). Solving these equations
for Ḡ(k,ω) yields the Green’s functions for the diagonal
elements,

G(k,ω) = ω + εk + n0V (k,ω)

ω2 − E(k,ω)2
, (14)

where E(k,ω) = ε2
k + 2εknBV (k,ω). The off-diagonal

elements are G12(k,ω) = G21(k,ω) = −nBV (k,ω)/[ω2 −
E(k,ω)2], where nB is the density of the BEC. The
theory satisfies the Hugenholtz-Pines relation for the
chemical potential μ = �11(0) − �12(0) = nBV (0,0). These
interacting Green’s functions describe excitations with energy
dispersion Ek given by solving

Ek = Re E(k,ω = Ek). (15)

In the absence of the induced interaction, this results in
the usual Bogoliubov dispersion εk =

√
ε2
k + 2nBTBεk . How-

ever, due to the momentum and frequency dependence of
V (k,ω), (15) is implicit and needs to be solved numerically.
The equation also yields damping of the excitations given by
δk = Im E(k,Ek).

Figures 3–5 show the dispersion Ek obtained from (15),
in the BCS (kFaF = −1), unitarity 1/kFaF = 0, and BEC
(kFaF = 1) regimes of the Fermi gas, respectively. The cal-
culations are performed using parameters corresponding to
densities nF = nB = 1013 cm−3 and scattering lengths aB =
aBF = 400a0, and inspired by the superfluid Bose-Fermi
mixture experiment [24], we use the masses of 6Li and 7Li
atoms. From (7), this yields κ = 4πaindmB

−1v2
F/c

2
s for the

strength of the induced interaction with the effective scattering
length aind � 70a0.

Consider first the BCS regime with kFaF = −1 shown in
Fig. 3. Comparing the Bogoliubov spectrum εk for the atomic
BEC decoupled from the Fermi gas with the Beliaev spectrum
Ek for the coupled Bose-Fermi mixture obtained from (15), we
see that coupling to the Anderson-Bogoliubov mode results
in an avoided crossing. Since we are neglecting backaction
effects on the Fermi gas, this avoided crossing becomes a
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FIG. 4. (Color online) Same as Fig. 3, but for a unitary Fermi gas
with kFaF = ∞. Here � ≈ 0.69 EF.
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FIG. 5. (Color online) Same as Figs. 3 and 4, but for the Fermi
superfluid in the BEC regime with kFaF = 1. Here � ≈ 1.35 εF.

discontinuous jump in the bosonic excitation frequency. We
expect this prediction to be qualitatively correct, except very
close to the avoided crossing, since the induced interaction
diverges when the two excitation frequencies are equal, making
the corresponding avoided crossing sharp. Figure 3 also shows
that the excitations of the BEC become damped when their
energy is inside the quasiparticle continuum of the Fermi gas.
This reflects that the excitation dissipates energy by exciting
quasiparticles in the superfluid Fermi gas.

Figure 4 depicts the spectrum Ek when the Fermi gas is in
the unitarity regime with 1/kFaF = 0. We again see that there
is an avoided crossing, evidenced by a jump in the Beliaev
dispersion Ek , when the Bogoliubov mode approaches the
collective mode of the Fermi gas. In fact, the resulting energy
shift is larger than in the BCS case since the spectral weight
of the collective mode is larger in the unitarity regime. The
bosonic excitations are again damped for energies ω > 2�.
The small residual damping near the avoided crossing reflects,
however, the small imaginary part iη that we have built into
the Fermi theory to obtain convergence. In the limit η → 0,
the bosonic excitations are undamped outside the quasiparticle
continuum, even at the avoided crossing since it corresponds
to the coupling of two undamped excitations.

Finally, Fig. 5 shows the dispersion Ek in the BEC regime
of the Fermi gas with kFaF = 1. The avoided crossing feature
and the energy shift in Ek are now even more pronounced due
to a smaller sound velocity of the Fermi gas, which approaches
the Bogoliubov sound speed of a dimer BEC, thereby making
κ larger, as can be seen from (7). The quasiparticle continuum
of the Fermi gas is outside the range of the plot due to the
large pairing energy in the BEC regime. There is, therefore,
no damping of the bosonic modes shown.

The above results show how the coupling between the
superfluid bosons and fermions leads to significant effects
on the spectrum of the atomic BEC, which depend on the
properties of the Fermi gas. In the recent experiment on the
superfluid 6Li and 7Li mixture, the Fermi-Fermi scattering
length aF could be tuned using a Feshbach resonance. We
therefore plot in Fig. 6 the difference Ek − εk between the
Beliaev and Bogoliubov excitation spectra as a function of aF,
keeping all other parameters as in Figs. 3–5. We also plot the
damping of the mode. Two effects are apparent. First, since the
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FIG. 6. (Color online) (top) Correction (Ek − εk)/εF to the BEC
dispersion due to the induced interaction as a function of Fermi-Fermi
scattering length kFaF and momentum k. (bottom) Decay δk/εF of the
excitations in the BEC.

sound velocity in the Fermi gas depends on aF, the momentum
where the bosonic mode exhibits the avoided crossing depends
on aF. Also, the induced interaction in general decreases
(increases) Ek for energies below (above) the avoided crossing,
as expected. The magnitude of the energy shift increases
towards the BEC regime since spectral weight of the collective
mode in the Fermi superfluid increases. Second, Fig. 6 clearly
shows the damping caused by the coupling to the quasiparticle
excitations of the superfluid Fermi gas. This quasiparticle
continuum moves to higher momenta as the system approaches
the BEC limit and the pairing gap increases. The residual
damping below the quasiparticle continuum shown in Fig. 6
is, as explained above, a result of using a nonzero η in the
numerics, and it vanished for η → 0. This illustrates how the
collective and single-particle spectra of the strongly correlated
Fermi gas can be mapped out by measuring its effects on
the excitations in the BEC. We note that the effects can be
increased significantly by increasing aBF since κ ∝ a2

BF. In
addition to varying aF and aBF, one can also vary aB, which will
increase even further the ways one can probe the excitations
in this Bose-Fermi mixture. The excitations of a BEC have
already been measured using Bragg spectroscopy [37–44].

In conclusion, we examined a mixture of a BEC and a
superfluid Fermi gas using Beliaev theory for the bosons
combined with quasiparticle random-phase approximation
for the fermions. The fermions were shown to mediate a
frequency- or momentum-dependent interaction between the
bosons, which leads to two qualitatively new effects. First,
the induced interaction diverges at the sound mode of the
Fermi gas, which results in a sharp avoided-crossing feature
in the excitation spectrum of the BEC. Second, the excitation
of quasiparticles in the Fermi gas leads to a damping of the
excitations of the BEC. By varying the densities and scattering
lengths of the system, these effects can be used to systemat-
ically probe the properties of the Fermi gas in the strongly
correlated BCS-BEC crossover. Our work may be extended in
a number of directions: It would be interesting to include the
backaction of the bosons on the superfluid Fermi gas to obtain
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a detailed description of the avoided crossing of the sound
modes. Trapping effects can be included using a local density
approximation, which has proven to work well when consider-
ing short-wavelength Bragg scattering [39]. Finally, the theory
can be extended to finite temperatures, which would result in
a damping of BEC excitations for all momenta due to the
presence of thermally excited quasiparticles in the Fermi gas.
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