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Topological properties of helical Shiba chains with general impurity strength and hybridization
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Recent experiments announced an observation of topological superconductivity and Majorana quasiparticles
in Shiba chains, consisting of an array of magnetic atoms deposited on top of a superconductor. In this work
we study helical Shiba chains and generalize the microscopic theory of subgap energy bands to a regime where
the decoupled magnetic impurity energy and the hybridization of different impurity states can be significant
compared to the superconducting gap of the host material. From exact solutions of the Bogoliubov-de Gennes
equation we extract expressions for the topological phase boundaries for arbitrary values of the superconducting
coherence length. The subgap spectral problem can be formulated as a nonlinear matrix eigenvalue problem
from which we obtain an analytical solution for energy bands in the long coherence length limit. Physical
consequences and departures from the previously obtained results in the deep dilute impurity limit are discussed in
detail.
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I. INTRODUCTION

Several decades ago it was theoretically predicted that
magnetic impurity atoms bind subgap energy states in an
ordinary s-wave superconductor [1–3]. Since then these Yu-
Shiba-Rusinov states, or Shiba states in short, have been
studied in detail [4] and observed [5] in many scanning
tunneling microscopy (STM) experiments. Recent proposals
to realize topological superconductivity in chains of magnetic
impurities have renewed the interest toward these systems
[6,7]. The attractive features of topological superconductivity
in Shiba chains arise from the fact that, in principle, these
systems can be realized by garden variety materials; Majorana
end states can be directly imaged by STM, and Shiba
chains can be made atomically perfect. These extraordi-
nary properties make Shiba chains unique among magnetic
[8–11] and spin-orbit-based [12–15] realizations of topologi-
cal superconductivity. Recent experimental evidence indicates
that Shiba chains indeed support topological phases with
accompanying Majorana bound states [16]. In principle Shiba
systems enable probing the non-Abelian statistics of Majorana
bound states [17] and could serve as a platform for topological
quantum computation [18].

So far, two distinct mechanisms of topological supercon-
ductivity in Shiba chains have been introduced: one relying
on helical magnetic order arising from substrate-mediated
Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions in a
dilute chain [7,19–22] and the other arising from the interplay
of ferromagnetic order and Rashba spin-orbit interaction on
the surface [17,23]. In the experimental realization, topo-
logical superconductivity was observed in ferromagnetic Fe
chains deposited on a Pb surface [16]. In these chains, Fe
atoms are in direct contact with each other, which generally
leads to ferromagnetic ordering. Both routes to topological
superconductivity result in a p-wave pairing term in the
low-energy theory, providing the link to Kitaev’s toy model
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[24], the prototype of one-dimensional (1D) topological
superconductivity. However, microscopic theories aiming at a
quantitative understanding need to implement the long-range
coupling of Shiba states arising from a slow decay of wave
functions e−r/ξ

r
( e−r/ξ

r1/2 in two dimensions) at distances smaller
than the superconducting coherence length ξ [21–23,25,26].
The long-range nature of the effective tight-binding models
leads to significant differences from Kitaev’s model and in
physically relevant systems the long coherence length limit
ξ → ∞ provides an excellent starting point for studies [21,22].

In this work we study the topological properties of helical
Shiba chains. The formation of different magnetic textures
has been investigated recently. Here we consider the case
where the orbitals of the magnetic adatoms have insignificant
overlap and do not affect the formation of the texture. In
strictly 1D systems the response functions exhibit singular
behavior at twice the Fermi momentum k = 2kF , which favors
RKKY-mediated helical ordering of magnetic atoms with the
corresponding wave number [19,27,28]. In higher dimensions
the situation is not so clear, although numerical evidence
supports qualitatively similar behavior [29]. However, surface
effects and the crystal-field splitting of the host material may
give rise to ferromagnetic and antiferromagnetic ordering [30].
Disorder effects may modify this picture [31] but it is not clear
at this point which sources of disorder are relevant for Shiba
systems.

Following the pioneering paper by Pientka et al. [21], we
study helical chains with arbitrary pitch and tilt angles. The
important energy scales in the problem are the single-impurity
energy εα = |�| 1−α2

1+α2 determined by α = πνJS, where ν

is the density of states, J is the exchange coupling, S is
the magnitude of the impurity spin, and α|�|

kF a
, which is the

hybridization energy scale of two sites separated by distance
a � ξ . In the treatment of Refs. [21,22] the topological
properties of Shiba chains are solved from an effective long-
range tight-binding Hamiltonian. This description is valid
for deep impurities close to the Fermi level with energies
εα/� � 1 (or α ≈ 1) in the dilute limit kF a � 1 where the
hybridization of different impurity sites is small compared
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to �. In this work we relax these requirements and devise
a theory valid for when εα and �

kF a
may become significant

compared to �. Theoretical modeling assumes that a should
be larger than the lattice constant of the underlying bulk, which
is of the order of a few angströms, so we consider the case
where a is of the order of nanometers. Typically kF is of
the order of the inverse bulk lattice constant, so parameters
satisfy k−1

F < a. Motivation for our work is twofold: on one
hand we generalize the theory of subgap bands to a new
parameter regime which is physically relevant; on the other
hand, we can systematically assess the applicability and error
of the effective Hamiltonian method in the deep dilute impurity
limit.

In Sec. II, we introduce the studied model and show how
the Bogoliubov-de Gennes (BdG) equation for a Shiba chain
can be formulated as a nonlinear eigenvalue problem for the
subgap energy bands and further show how this problem
reduces to the effective Hamiltonian description of Ref. [21]
in the deep dilute impurity limit. In Sec. III we derive an
analytical description of the topological phase diagram as a
function of α and kF a and analyze the deviations from the deep
dilute impurity results of Ref. [21]. In Sec. IV we present an
analytical solution of the subgap energy bands in the ξ → ∞
limit and compare it to those found in Ref. [21]. We conclude
that the topological properties of the models are practically in
perfect agreement for kF a > 10π . In Sec. V we summarize
our findings and discuss the prospects of treating ferromag-
netic spin-orbit-coupled Shiba chains beyond the deep dilute
regime.

II. MICROSCOPIC MODEL OF HELICAL CHAINS AND
THE NONLINEAR EIGENVALUE PROBLEM

We consider a number of magnetic impurities on a bulk
s-wave superconductor. Assuming the impurities are placed
at locations rj , the BdG Hamiltonian describing the system
is

H =
(

k2

2m
− μ

)
τz − J

∑
j

Sj · σδ(r − rj ) + |�|τx, (1)

where k and r denote the momentum and position of the
electron, � is the superconducting pairing amplitude, J is
the exchange coupling, and Sj describes the direction and
magnitude of the magnetic moment of the j th atom. We
will assume that the magnetic ordering of atoms is given
by Ŝj = ( cos(2khaj ) sin θ, sin(2khaj ) sin θ, cos θ ), where kh

is the wave number of the magnetic helix pitch angle,

θ is the tilt of the moments, and a is the distance between
two adjacent moments. The BdG Hamiltonian is expressed in
the Nambu basis �̂ = (ψ̂↑,ψ̂↓,ψ̂

†
↓,−ψ̂

†
↑)T and Pauli matrices

τi and σi describe the particle-hole and the spin degree of
freedom [and σ ≡ (σx,σy,σz)]. In Ref. [21] it was shown that
the BdG equation H� = E� leads to the relation

[Ŝi · σ − JE(0)]�(ri)

= −
∑
j 
=i

(Ŝi · σ )(Ŝj · σ )JE(ri − rj )�(rj ), (2)

where

JE(r) = − α√
|�|2 − E2

e
−

√
|�|2−E2

vF
r

kF r

× [E sin(kF r) Iτ +
√

|�|2 − E2 cos(kF r)τz

+ |�| sin(kF r)τx], r > 0, (3)

and for a vanishing argument

JE(0) = − α√
|�|2 − E2

[E Iτ + |�| τx] . (4)

In this expression α = πνJS as before and Iτ is the 2 × 2 unit
matrix in Nambu space. The basic assumption in our work
is that Eqs. (2) and (3) provide an accurate description of
the physical situation. In contrast to treatments in the deep
dilute limit [21–23], we do not require that 1

kF a
� 1. The 1/r

envelope of the Shiba wave functions and JE(r) are ultimately
cut off by microscopic mechanisms sensitive to the precise
band-structure effects of the substrate metal and details of
superconductivity beyond the BCS cutoff scale. However,
STM experiments show that the decaying behavior of Shiba
states persists to distances comparable to the Fermi wavelength
[5]. Therefore we expect that employing Eq. (3) does not pose
a serious restriction.

We will now proceed to present Eq. (2) in the basis of
decoupled impurity eigenstates [21]. This equates to projecting
the spinor onto the basis

�j = (〈+↑|�j 〉 〈−↓|�j 〉 〈+↓|�j 〉 〈−↑|�j 〉)T ,

where |+↑〉 = |+〉 ⊗ |↑〉, etc.; |±〉 denote eigenstates of
τx ; and |�j 〉 = |�(rj )〉. We have chosen the order of the
spinor elements so that the first two components correspond
to the low-energy subspace with decoupled energies εα =
±|�| 1−α2

1+α2 . In the transformed basis Eq. (2) takes the form
of a 4N × 4N matrix equation:

λ2

⎛
⎜⎜⎜⎝

1 + h↑↑ 0 −h↑↓ 0

0 0 0 0

−h↓↑ 0 1 + h↓↓ 0

0 0 0 0

⎞
⎟⎟⎟⎠� − λ

⎛
⎜⎜⎜⎝

1
α

D↑↓ 0 −D↑↑

D↓↑ − 1
α

−D↓↓ 0

0 −D↓↓ − 1
α

D↓↑

−D↑↑ 0 D↑↓ 1
α

⎞
⎟⎟⎟⎠� −

⎛
⎜⎜⎜⎝

0 0 0 0

0 1 + h↓↓ 0 −h↓↑

0 0 0 0

0 −h↑↓ 0 1 + h↑↑

⎞
⎟⎟⎟⎠� = 0.

(5)
In the above we have introduced the N × N matrices

hσσ ′
ij ≡ Cij sin(kF rij )〈σ |σ ′〉ij , Dσσ ′

ij ≡ Cij cos(kF rij )〈σ |σ ′〉ij (6)

064502-2



TOPOLOGICAL PROPERTIES OF HELICAL SHIBA . . . PHYSICAL REVIEW B 91, 064502 (2015)

and defined

λ ≡ |�| + E√
|�|2 − E2

, Cij ≡ e
−

√
|�|2−E2

vF
rij

kF rij

=
exp

(− rij

ξE

)
kF rij

,

(7)

with the prescription Cij = 0 for i = j . Equation (5) should
be regarded as a nonlinear eigenvalue problem (NEVP) for E

and 4N component eigenspinors �. In deriving Eqs. (2) and
(3) one has to assume that |E| < |�|, so the treatment is valid
only for the subgap spectrum. We emphasize that the energy
dependence in Eq. (5) only enters through λ and Cij . The fact
that also the matrix elements—not only λ—depend on the
energy will generally complicate the treatment considerably.
However, we will find efficient techniques to work around this
problem.

Following Ref. [21], we perform a unitary transformation
after which the spin matrix elements become

〈↑|↑〉ij = cos2

(
θ

2

)
eikH xij + sin2

(
θ

2

)
e−ikH xij ,

〈↑|↓〉ij = 〈↓|↑〉ij = i sin θ sin kHxij ,

〈↓|↓〉ij = cos2

(
θ

2

)
e−ikH xij + sin2

(
θ

2

)
eikH xij .

(8)

The transform makes the hopping matrix elements translation
invariant, enabling us to work in Fourier space. The Fourier
transforms

hσσ ′
k =

∑
j

hσσ ′
ij eikxij (9)

and Dσσ ′
k can be evaluated as discussed in Appendix A. This

transforms the 4N × 4N NEVP in Eq. (5) into a compact 4 × 4
form:

λ2

⎛
⎜⎜⎝

1 + h
↑↑
k 0 −h

↑↓
k 0

0 0 0 0
−h

↑↓
k 0 1 + h

↑↑
−k 0

0 0 0 0

⎞
⎟⎟⎠� − λ

⎛
⎜⎜⎜⎜⎝

1
α

D
↑↓
k 0 −D

↑↑
k

D
↑↓
k − 1

α
−D

↑↑
−k 0

0 −D
↑↑
−k − 1

α
D

↑↓
k

−D
↑↑
k 0 D

↑↓
k

1
α

⎞
⎟⎟⎟⎟⎠� −

⎛
⎜⎜⎝

0 0 0 0
0 1 + h

↑↑
−k 0 −h

↑↓
k

0 0 0 0
0 −h

↑↓
k 0 1 + h

↑↑
k

⎞
⎟⎟⎠� = 0,

(10)

h
↑↑
k = cos2

(
θ
2

)
kF a

[A(k + kF + kH ) + A(kF − k − kH )] + sin2
(

θ
2

)
kF a

[A(k + kF − kH ) + A(kF − k + kH )] ,

h
↑↓
k = sin(θ )

2kF a
[A(k + kF + kH ) + A(kF − k − kH ) − A(kF + k − kH ) − A(kF − k + kH )] ,

D
↑↑
k = cos2

(
θ
2

)
2kF a

[f (kF + k + kH ) + f (kF − k − kH )] + sin2
(

θ
2

)
2kF a

[f (kF + k − kH ) + f (kF − k + kH )] ,

D
↑↓
k = sin θ

4kF a
[f (k + kF + kH ) − f (kF + k − kH ) + f (kF − k − kH ) − f (kF − k + kH )] ,

h
↓↓
k = h

↑↑
−k, D

↓↓
k = D

↑↑
−k, h

↓↑
k = h

↑↓
k , D

↓↑
k = D

↑↓
k ,

(11)

expressed in term of the functions

f (k) ≡ − ln

(
1 + e

−2
√

|�|2−E2

vF
a − 2e

−
√

|�|2−E2

vF
a cos(ka)

)
, A(k) ≡ arctan

⎛
⎝ sin(ka)

e

√
|�|2−E2

vF
a − cos(ka)

⎞
⎠ . (12)

To make the connection to the effective two-band Hamil-
tonian employed by Pientka et al. [21], we recall that the first
two components of � span the low-energy subspace relevant
in the deep dilute impurity regime. Therefore the approach
of Ref. [21] can be recovered by considering the upper left
2N × 2N block of Eq. (5) and ignoring its coupling to the
lower block, expanding to linear order in E, and considering
the case α ≈ 1. This results in the equation

E� =
(

ε0 − |�|h↑↑
ij |�|D↑↓

ij

|�|D↓↑
ij −ε0 + |�|h↓↓

ij

)
�, (13)

where ε0 = |�|(1 − α) is the single-impurity energy in the
deep impurity limit (α ≈ 1). The matrix on the right-hand side
of Eq. (13) coincides with the effective two-band Hamiltonian

derived in Ref. [21]. The effective Hamiltonian in momentum
space is given by

Hk =
(

ε0 − |�|h↑↑
k |�|D↑↓

k

|�|D↑↓
k −ε0 + |�|h↑↑

−k

)
. (14)

In the following sections we will elucidate the relationship
between the full four-band model (10) and the two-band
Hamiltonian description (14) and study what happens beyond
the deep dilute regime.

III. TOPOLOGICAL PHASE DIAGRAMS

In the previous section we derived the NEVP describing
subgap properties of helical Shiba chains in real space [Eq. (5)]
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and Fourier space [Eq. (10)]. The real-space version can
be employed in studying properties of finite chains with
open boundary conditions while Eq. (10) provides a tractable
starting point for analytical analysis in an infinite chain.
However, in both cases we are faced with a NEVP which
poses a considerable complication in terms of solvability. The
NEVPs are generalizations of the familiar linear eigenvalue
problems (LEVPs)—instead of (A − λ1)ψ = 0, we have an
equation of the form A(λ)ψ = 0, where the N × N matrix
A is a nonlinear function of λ. As in the case of LEVPs, the
eigenvalues of a NEVP can be solved from the noninvertibility
requirement det[A(λ)] = 0. For this to be feasible, the λ

dependence of A(λ) should be relatively simple, for example,
A(λ) = f1(λ)A1 + f2(λ)A2 + · · · + fp(λ)Ap, where p � N

in case N � 1. In the case of polynomial eigenvalue prob-
lems A(λ) = λpAp + λp−1Ap−1 + · · · + A0, the NEVP can
be transformed to a pN × pN generalized LEVP by defining
new variables yp = ψp, so that polynomial NEVPs can be
treated by the familiar methods of linear algebra. At first
glimpse Eqs. (5) and (10) appear as polynomial NEVPs for
the transformed variable λ = |�|+E√

|�|2−E2
; however, the matrix

elements also depend on the eigenvalue E through Eqs. (7)
and (12). Nevertheless, we can make progress in two important
cases: extracting a topological phase diagram for arbitrary ξ0

and solving the subgap spectrum in the limit ξ0 → ∞ (the
latter will be presented in the next section).

The solution of the topological phase diagram for planar
helix θ = π/2 does not require a complete solution of the
NEVP (10) but can be obtained by examining the gap closing
at the special points k = 0,π/a (mod 2π ). The logic behind
this approach is the following: from the work of Kitaev [24], we
know that the topological phase for the two-band model (14)
can be determined by evaluating the invariant Q = sign[h(k =
0)h(k = π

a
)], where h(k) = ε0 − |�|h↑↑

k . Thus the invariant
in the two-band symmetry class (Altland-Zirnbauer class D)
can only change when the energy gap closes E(k) = 0 at
k = 0 and π/a. The topological significance of band-touching
points at k = 0,π/a is shared by the parent four-band model
(10) since topological properties must be shared by the two
models.

We can extract the topological phase boundaries in a
form α(kF a) from the condition det[A(λ)] = 0, by setting
λ = 1 (E = 0) and k = 0, π

a
. Here A(λ) denotes the three

terms in Eq. (10) when written in the form A(λ)� = 0. This
approach has the great advantage that important information
can be extracted without solving the full NEVP and the method
works for arbitrary coherence lengths ξ0. The only caveat is
that this technique does not capture the boundary between
the gapless phase present for nonplanar helices θ 
= π

2 . The
gapless phase, arising from a gap closing at generic k 
=
0, π

a
, is always present for nonplanar helices [21]. However,

this approach will yield correct phase boundaries between
topological and normal gapped phases even in a nonplanar case
if the gapless phase does not overlap with the predicted phase
boundary.

We emphasize that the results obtained in this section only
fully describe the topological phases in the case θ = π/2.
The detailed calculation, which proceeds as indicated above,
is relegated to Appendix B. The condition for the phase

4 4.2 4.4 4.6 4.8 5
0.2

0.15

0.1
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0.1
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0.2
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2 3 4 5 6
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0.8

0.9

1

1.1

1.2

1.3

1.4

kFa/

0

(a)

(b)

FIG. 1. (Color online) (a) Topological phase diagram of a planar
helix. Topological and gapped nontopological regions are marked
with T and N, respectively. The light gray pattern in the background
is a numerical calculation of the gap closings based on the two-
band model. The dashed line is the topological phase diagram solved
analytically as outlined in the text. It is evident that they give the same
phase boundaries, but the analytical result does not capture the gap
closing in the middle which is not associated with a topological phase
transition. The solid red line shows the topological phase diagram
for the full four-band model. The parameters used are kH a = π/8,
θ = π/2, ξ = 50, with energies in units of �. Note that the parameters
are equal to those used in Fig. 6(a) in Pientka et al. [21]. (b) A plot
of the topological phase diagram over a wider range of values. The
topological and nontopological regions are easily identified using (a).
We notice that the two models deviate more from each other for low
values of kF a, and as kF a increases the difference between the two
models becomes small. The other parameters used are the same as
above.

boundaries becomes

α0,π = 1√
(1 + h

↑↑
k )2 + (D↑↑

k )2

∣∣∣∣
k=0, π

a

, (15)

which is used to plot out the topological phase diagram—note
that there is no θ dependence in this equation. We can compare
this result to the equivalent solution for the two-band model in
Eq. (14):

αk = 1 − 1

kF a
[A(kF − kH + k) + A(kF + kH − k)] , (16)
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(a)

(b)

FIG. 2. (Color online) (a) A comparison between the topological
diagrams of ξ0 = 50 and ∞ in the the four-band model, with the same
ξ0 comparison for the linear two-band model in the inset. (b) A similar
comparison as in (a) over a wider range of values. We can infer the
topological regions from (a). Both (a) and (b) use kH a = π/8, and
energies are in units of �. Numerical calculations for 50 < ξ0 < ∞
yield lines that lie between those seen in the figures, as would be
expected.

where, as in Eq. (15), k can either be zero or π
a

. A
comparison between the two models is presented in Fig. 1. As
expected, the phase diagrams of the full four-band model and
effective two-band model are in good agreement in the dilute
limit kF a � 1. However, for moderate values kF a � 4π the
difference of the two models becomes apparent. Nevertheless,
we can conclude that the two-band approximation provides
a reasonable description of the topological phases even for a
relatively dense impurity chain. Some qualitative differences
arise when ξ0 = vF

|�| increases, as seen in Fig. 2. Most notably,
the corners of the topological region in the four-band model
either acquire sharp tails or are rounded compared to the
two-band approximation. The qualitative appearance of the
phase diagram at high values of ξ0 ∼ 100 quickly approaches
that of ξ0 → ∞.

IV. SUBGAP ENERGY BANDS IN THE LONG
COHERENCE LENGTH LIMIT

The technique introduced in the previous section to extract
the phase diagram does not allow for a more detailed descrip-
tion of the system. To investigate the magnitude of the energy

2 6 10 14 18 22 26 30
0

0.02

0.04

0.06

0.08

0.1

(a)

(b)

FIG. 3. (Color online) (a) The difference between the minimum
gap sizes for the four-band and two-band models. Darker shades
generally indicate the four-band gap is larger, while the black areas
indicate zones where the gaps are equal. Parameters used are kH a =
π/8, θ = π/2, ξ0 = ∞, with energies given in units of �. (b) A
comparison between the band gap of the two-band model and the
absolute difference in minimum gap between the two models. We
notice that as kF a increases the difference tends to zero faster than
the band gap decreases, as is to be expected. The parameters are the
same as previously, except we have fixed α = 1.

gaps and the dispersion of the subgap Shiba bands we need to
solve the NEVP in Eq. (10). Finding a general solution, even
for the 4 × 4 k-space NEVP in Eq. (10), is a very challenging
problem since the energy dependence enters the matrix
elements in a very complicated way through the functions
f (k) and A(k) in Eq. (12). However, considering the long
coherence length limit ξE = vF /

√
|�|2 − E2 → ∞ a crucial

simplification takes place. In that case the energy dependence
in Eqs. (5) and (10) only enters through λ. Therefore we
can regard the NEVPs (5) and (10) as quadratic polynomial
eigenvalue problems of λ in the long coherence length limit.
Since E is given straightforwardly by E = |�| λ2−1

λ2+1 we can
solve the problem by solving the quadratic NEVP for λ. As
discussed in Refs. [21] and [22], the long coherence length
limit is not a mathematical curiosity but provides an excellent
starting point in considering an experimental situation.

Writing Eq. (10) in the form A(λ)� = 0 and evaluating
the characteristic polynomial det[A(λ)] = 0 we obtain an
algebraic equation of degree 8 for the eigenvalues λ. The
solution of this problem is obtained in Appendix C. It turns
out, remarkably, that we can find an analytical solution for this
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FIG. 4. (Color online) (a) Topological phase diagram of a non-
planar helix with ξ = ∞ calculated from the spectrum of the
four-band model. We have indicated the gapless regions with G and,
as before, topological and gapped nontopological regions with T and
N. Parameters used are kH a = π/8, θ = π/5. (b) The corresponding
plot for the two-band model; parameters are the same as in (a).

problem in relatively compact form given by Eq. (C1). Even
more surprisingly, the solution for the planar helix is given even
more compactly by Eq. (C4). The full energy spectrum is easily
calculated from Eqs. (C1) and (C3). The found spectrum for
the full four-band model can now be compared to the spectrum
in the deep dilute case. From Eq. (14) we find that in the deep
dilute limit the energy of an infinite 1D chain [21] is

Ek = |�|h
↑↑
−k − h

↑↑
k

2
± |�|

√
(D↑↓

k )2+
(

ε0

|�|−
h

↑↑
−k + h

↑↑
k

2

)2

.

In Fig. 3 we have compared the spectra of the two models. The
difference between the minimum gap sizes of the two models is
plotted in Fig. 3(a). One clearly sees that in approximately half
of the parameter space the four-band model supports a larger
gap than the two-band model. In Fig. 3(b) we see that for small
kF a the gap difference is significant but vanishes faster than
the actual gap size, thus indicating that the two-band model
is accurate in the dilute limit. Consequently, our model will
agree with Ref. [21] in the appropriate limit.

The analytical solution of the full problem also allows us
to plot study phase diagrams for nonplanar helices θ 
= π/2,
which we have done in Fig. 4. As in the two-band model, these
values of θ also give rise to a gapless phase. The true behavior

of the gapless phase have noticeable departures from that of
the two-band model in some parts of the phase diagram. As
seen by comparing Figs. 4(a) and 4(b), in the full four-band
model the gapless phase occasionally extends to regions that
in the deep dilute limits were gapped, reducing the size of the
topological region.

V. SUMMARY AND OUTLOOK

Motivated by recent developments in the pursuit of topo-
logical superconductivity in Shiba systems, we generalized
the microscopic theory of helical Shiba chains beyond the
deep dilute impurity regime studied in Refs. [21,22]. We
formulated the Bogoliubov-de Gennes equation for a chain
of magnetic impurities as a nonlinear eigenvalue problem
which allowed us to solve the topological phase diagram of
the system. We also presented an exact analytical expression
for the subgap energy bands in the long coherence length
limit. We find that in general the topological properties of the
four-band and the two-band effective Hamiltonian method of
Ref. [21] are in excellent agreement when the parameter kF a

determining the hybridization of two impurity states separated
by a satisfies kF a � 10π . Even for smaller values of kF a the
two-band approximation produces reasonable predictions for
topological phase diagrams and energy gaps. The differences
in the topological phase diagram between the exact solution
and the two-band model become pronounced when kF a � 4π

and ξE → ∞. In addition, since the two-band model applies
only to the deep-lying states, the subgap dispersion away from
the gap center deviates significantly from the exact solution of
the four-band model (C1).

In this work we concentrated on bulk properties of the
system. In the topological phase, a finite chain with open
boundary conditions supports Majorana end states. Wave
functions of Majorana end states are generically algebraically
decaying in the bulk, but for certain values of the magnetic
helix pitch angles they can be essentially exponentially
localized, as discovered in Ref. [22] based on the effective
two-band approximation in the deep dilute regime. Going
beyond the two-band approximation, Majorana end states can
be found by solving the NEVP (5) in real space with open
boundary conditions. This task is feasible in the long coherence
length limit where the energy dependence is restricted to λ and
does not appear in the matrix elements in Eq. (5). We have
numerically studied the end states and find that the results of
the two-band approximation are in excellent agreement with
the exact solution when kF a � 10π .

In Ref. [17] it was realized that a ferromagnetic chain with
Rashba coupling supports topological states, and in Ref. [23]
an effective two-band Hamiltonian was derived for a system
consisting of a deep dilute magnetic chain embedded in a
two-dimensional electron system with a Rashba spin-orbit
coupling. The calculation of Ref. [23] proceeds along the
derivation of the two-band model in Ref. [21] after obtaining
the corresponding form of JE(r) which is given for the
helical model in Eq. (3). A suitable modification of our work
could be employed to study the Rashba model of Ref. [23]
beyond the deep dilute limit. The Rashba model can also
be formulated as a nonlinear eigenvalue problem analogous
to Eq. (5). By employing the same change of variables
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λ = |�|+E√
|�|2−E2

, the corresponding problem can be transformed

to a polynomial NEVP in the long coherence length limit.
The main difference to Eq. (5) arises from the specific form
of the hopping matrix elements that cannot be expressed
in terms of elementary functions. Although this complicates
analysis, the corresponding NEVP can be treated numerically
in real space at least in the long coherence length limit. The
ferromagnetic chain is closely related to the experimental
realization and the experimental situation seems to reside in
the strong hybridization (and long coherence length) regime so
the dilute limit is not applicable. Therefore modification of our
theory to ferromagnetic chains offers an interesting direction
of future research.

ACKNOWLEDGMENT

The authors acknowledge the Academy of Finland for
support.

APPENDIX A: FOURIER TRANSFORMS

In this Appendix we consider the Fourier transforms of the
matrices

hσσ ′
ij ≡ Cij sin(kF rij )〈σ |σ ′〉, Dσσ ′

ij ≡ Cij cos(kF rij )〈σ |σ ′〉.
The treatment, again, follows that of Pientka et al. [21].
Consider, for example, the matrix h↑↓. Inserting its expression
into the Fourier transform h(k)σσ ′ = ∑

j hσσ ′
ij eikxij we find,

after some algebraic manipulation,

h
↑↓
k = sin θ

4kF a
Im

∞∑
j=1

1

j
[e− aj

ξE
+kaj+kH aj+kF aj − e

− aj

ξE
+kaj+kH aj−kF aj − e

− aj

ξE
+kaj−kH aj+kF aj + e

− aj

ξE
+kaj−kH aj−kF aj ]

− sin θ

4kF a
Im

∞∑
j=1

1

j
[e− aj

ξE
−kaj+kH aj+kF aj − e

− aj

ξE
−kaj+kH aj−kF aj − e

− aj

ξE
−kaj−kH aj+kF aj + e

− aj

ξE
−kaj−kH aj−kF aj ].

Recognizing the sums as logarithms, ln(1 − x) = −∑
n

xn

n
,

and using Im[ln(z)] = arctan[Im(z)/ Re(z)], we obtain the
expression used in Eq. (11) in the main text. The other matrices
are transformed similarly; in some cases, we may have to take
the real part instead of the imaginary part, which of course
gives Re[ln(z)] = ln(|z|).

APPENDIX B: TOPOLOGICAL PHASE DIAGRAMS

We derive the formula for the topological phase diagram
as seen in Eq. (15), starting from Eq. (10). First we note
that at the border between two topological phases E = 0.
This corresponds to setting λ = 1. Topological gap closings
occur at k = 0 or ±π/a. We notice that both D

↑↓
k and h

↑↓
k

vanish for these values of k, so those terms can be removed.
We also notice that h

↑↑
−π/a = h

↑↑
π/a and D

↑↑
−π/a = D

↑↑
π/a , further

simplifying the problem. We are left with the equation⎛
⎜⎜⎜⎝

1 + h
↑↑
k − 1

α
0 0 D

↑↑
k

0 1
α

− 1 − h
↑↑
k D

↑↑
k 0

0 D
↑↑
k 1 + h

↑↑
k + 1

α
0

D
↑↑
k 0 0 −1 − h

↑↑
k − 1

α

⎞
⎟⎟⎟⎠

×�k = 0, k = 0,±π/a. (B1)

Taking the determinant of the matrix to be zero and solving
for α then returns Eq. (15). The calculation does not require
fixing θ (in fact, the solution will not depend on θ at all), but
the parameter curve thus obtained does not take gapless phases
into account and is therefore of limited value unless θ = π/2.

Calculating the determinant of the matrix in Eq. (B1) and
setting it to zero gives us the equation

α2[(1 + h
↑↑
k )2 + (D↑↑

k )2] = 1. (B2)

This can be directly compared to the corresponding expression
for the two-band model, which is obtained by doing a similar

analysis of the upper 2 × 2 block matrix in the diagonal of
Eq. (B1):

α(1 + h
↑↑
k ) = 1. (B3)

Note, however, that one furthermore needs to expand Eq. (B3)
to linear order in 1 − α and 1/kF a (E was already set to zero)
to get an expression equivalent to Eq. (16).

From Eqs. (B2) and (B3) it is evident that the phase diagram
for the two-band model is approximately equal to the four-band
phase diagram when

(1 + h
↑↑
k )2 � (D↑↑

k )2,

or, equivalently,

[f̃ (kF + kH ) + f̃ (kF − kH )]2

� 4[Ã(kF + kH ) + Ã(kF − kH ) + kF a]2, (B4)

where f̃ (k) and Ã(k) are the same as f (k) and A(k) defined
in the article, except for a sign change on the trigonometric
terms if k = ±π/a. The inequality (B4) necessarily holds
when kF a � 1, as both f̃ (k) and Ã(k) are bounded for all
finite ξ0.

APPENDIX C: ANALYTICAL SOLUTION OF THE
FOUR-BAND MODEL

Beginning with Eq. (10), we take the determinant of the
complete matrix and require that it be zero. While this is at
first glance a polynomial equation of degree 8, straightforward
manipulation of terms will reduce it to an equation of the form
aλ4 + bλ3 + cλ2 − bλ + a = 0, where all the parameters are
functions of k. Because of the simple form of this fourth-
degree polynomial equation, the solutions are reasonably
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short:

λβγ (k) = β

√
b2 − 4ac − 8a2

4a
+ γ

2

√
b2

2a2
+ β

8b + 4 bc
a

− b3

a2

2
√

b2 − 4ac − 8a2
− c

a
+ 2 − b

4a
, (C1)

where β = ±1, γ = ±1. This assumes a 
= 0, which is the case for all parameters used in this article. The terms in the quartic
equation defined above are found to be

a = α2[(h↑↓
k )2 − (1 + h

↑↑
k )(1 + h

↑↑
−k)],

b = α3[(1 + h
↑↑
k )(D↑↑

−k)2 − (1 + h
↑↑
−k)(D↑↑

k )2 + 2D
↑↓
k h

↑↓
k (D↑↑

k − D
↑↑
−k)]

+ α3(h↑↑
−k − h

↑↑
k )[(1 + h

↑↑
k )(1 + h

↑↑
−k) + (D↑↓

k )2 − (h↑↓
k )2 + α−2],

c = α4[(D↑↓
k )2 − (h↑↓

k )2 + (1 + h
↑↑
k )(1 + h

↑↑
−k) − D

↑↑
k D

↑↑
−k]2 + α4[2D

↑↓
k h

↑↓
k − (1 + h

↑↑
k )D↑↑

−k − D
↑↑
k (1 + h

↑↑
−k)]2

+ α2[2(D↑↓
k )2 − (D↑↑

k )2 − (D↑↑
−k)2 − (h↑↑

k − h
↑↑
−k)2] + 1.

(C2)

In total we obtain four energy bands

Eβγ (k) = |�|λβγ (k)2 − 1

λβγ (k)2 + 1
, (C3)

with a high degree of symmetry: there is only one independent band, and the other three can be obtained by reflecting this over
E = 0 and/or k = 0. Two of these bands are redundant solutions stemming from the mathematical formalism used; the correct
bands are the ones that reduce to the two-band solutions in the deep dilute limit [these turn out to be E++(k) and E−+(k)].

If we further restrict the system to θ = π/2, the term denoted b vanishes, resulting in an equation of the form aλ4 + cλ2 + a =
0, from which it is easy to solve λ2:

λ2 = − c

2a
±

√
c2

4a2
− 1, (C4)

where

a = α2[(h↑↓
k )2 − (1 + h

↑↑
k )2],

c = α4[(D↑↓
k )2 − (h↑↓

k )2 + (1 + h
↑↑
k )2 − (D↑↑

k )2]2 + α4[(2D
↑↓
k h

↑↓
k − 2(1 + h

↑↑
k )D↑↑

k )2 − (D↑↓
k )2(h↑↓

k )2]

+α2[2(D↑↓
k )2 − 2(D↑↑

k )2] + 1. (C5)

Since the energy only depends on λ2, we only find two separate energy bands, one with negative and one with positive energy
and both of which are k symmetric.
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