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In this paper, we study a topological phase transition in a wire medium operating at infrared frequencies. This
transition occurs in the reciprocal space between the indefinite (open-surface) regime of the metamaterial and
its dielectric (closed-surface) regime. Due to the spatial dispersion inherent to a wire medium, a hybrid regime
turns out to be possible at the transition frequency. Both such surfaces exist at the same frequency and touch one
another. At this frequency, all values of the parallel wave vector correspond to propagating spatial harmonics.
The implication of this regime is the overwhelming radiation enhancement. We numerically investigate the gain
in radiated power for a subwavelength dipole source submerged into such medium. In contrast to previous works,
this gain (called the Purcell factor) turns out to be higher for a parallel dipole than for a perpendicular one.
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I. INTRODUCTION

Electromagnetic metamaterials are artificial media struc-
tured on the subwavelength level which exhibit extraordi-
nary electromagnetic features and functionalities that are
not found in nature. The most popular examples of these
unusual functionalities can be the negative refractive index [1],
transformation optics [2], and perfect lens [3].

Many metamaterials possess unusual dispersion properties.
For regular metamaterials (lattices), their dispersion properties
are described in terms of dispersion surfaces, also called
Fresnel’s wave or isofrequency surfaces. A dispersion surface
defines wave vectors for all propagation directions at the given
frequency in the reciprocal space of the lattice. One striking
example of metamaterials is hyperbolic ones, so called because
their dispersion surface is hyperboloid. Such metamaterials are
exploited in a variety of applications, including subwavelength
imaging [4], radiative heat transfer [5,6], and enhancement of
radiation (called the Purcell factor [7]) for emitters embedded
into such media [8–10]. Indeed, a nonmagnetic hyperbolic
metamaterial is most popular in optics, where magnetic
properties are very difficult to realize. Optical hyperbolic meta-
materials are anisotropic media whose principal components
(more exactly, real parts) of the effective permittivity tensor
have different signs. Because of the indefinite sign of the per-
mittivity tensor trace, such media are also called indefinite [11].
The most expanded are the indefinite (hyperbolic) media of
uniaxial type. The different signs of two principal components
of the permittivity tensor imply the hyperboloid of revolution
in the reciprocal space.

Uniaxial hyperbolic metamaterials operating in the optical
range are usually implemented as a stack of bilayers. One
layer of the unit cell is a material with negative dielectric
response and the other layer is a transparent material. Another
known implementation of hyperbolic metamaterial is a regular
optically dense array of parallel wires called a wire medium
(see, e.g., Refs. [8,12]). The homogenization models known for
both kinds of hyperbolic metamaterials (see Refs. [8,12–14])
point to the possibility of a sharp qualitative change of their dis-
persion regime versus frequency. When the frequency varies,
one of two principal components of the permittivity tensor may

keep its sign whereas the sign of the other component changes.
Then the hyperboloid (open surface) in the reciprocal space
transforms into a closed surface, e.g., an ellipsoid. This tran-
sition is similar to the known Lifshitz topological transitions
in metals [15] (when the Fermi surfaces change their topology
similarly). Therefore, this jump of the dispersion properties
was entitled “topological phase transition” in Ref. [16]. One
interesting problem is the topological transition happening in
the reciprocal space. To have such an exotic phenomenon, the
open and closed surfaces should be connected to each other
in the reciprocal space. The coexistence of open and closed
surfaces has been observed in photonic crystal media [17]
which are not subwavelength structures. For typical hyperbolic
metamaterials, the coexistence of these two surfaces is due to
the different propagating modes (ordinary and extraordinary)
in the medium [18]. The open surface corresponds to the
extraordinary mode and the closed surface corresponds to the
ordinary mode. However, in Ref. [19], a metamaterial has been
suggested with both surfaces for one mode. In this paper, we
show that in a wire medium of polaritonic rods operating at
midinfrared, it is also possible to have the coexistence of the
proposed surfaces at the same frequency only for the extraordi-
nary mode. Most importantly, the surfaces touch one another at
two specific points in the reciprocal space. The phenomenon
arises from the nonlocal response of the wire medium and
this kind of topological phase transition is different from that
studied in Refs. [16,20,21]. It provides an unbounded spatial
spectrum which should cause a high Purcell factor due to the
absence of any cutoff for spatial harmonics. Hence, we validate
our finding via the exact calculation of the Purcell factor. We
show how a huge Purcell factor is achieved for a subwavelength
electric dipole oriented in parallel to the optical axis of the
medium. This result diverges from the previously known
results. The Purcell factor of “standard” (purely hyperbolic)
wire media attains two orders of magnitude for a dipole
oriented perpendicular to the optical axis, whereas for a parallel
dipole, it is much smaller [8,10,22,23]. Here, we show that
in the transition regime, the Purcell factor of a perpendicular
dipole stays nearly the same as in the hyperbolic regime, while
for a parallel dipole, it exceeds two orders of magnitude.
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Our paper is organized as follows: in Sec. II, we introduce
the approach used to achieve the unbounded spatial spectrum
in a wire medium. Section III presents the numerical results
for the Purcell factor and gives some discussion of their
interpretation. Finally, Sec. IV concludes the paper.

II. THEORY

The electromagnetic properties of a general wire medium,
shown in Fig. 1(a), are described through a homogeneous
effective permittivity tensor as

ε =
⎛
⎝

εxx 0 0
0 εyy 0
0 0 εzz

⎞
⎠ =

⎛
⎝

ε⊥ 0 0
0 ε⊥ 0
0 0 ε‖

⎞
⎠. (1)

As Fig. 1(a) illustrates, z0 is the optical axis of the medium
that coincides with the wire axis. In the case of thin and
negative-dielectric constant wires, the perpendicular (ε⊥) and
parallel (ε‖) components of the effective tensor are given

FIG. 1. (Color online) (a) Long parallel wires which are set
in a square lattice. The host material is air. (b) Isofrequency
surface of ordinary mode. (c) Topological phase transition for the
extraordinary mode giving unbounded spatial spectrum. The typical
type-I hyperbolic dispersion (green surface) coexists with a connected
ellipsoidal dispersion (purple surface).

by [14]

ε⊥ = εh + 2εh

εr + εh

fv(εr − εh)
− 1

,

(2)
ε‖ = εh + εh

εh

fv(εr − εh)
− k2

h − β2

k2
p

.

Here, εh and εr are the permittivity of the host medium and
the wires, respectively, and fv denotes the volume fraction. In
this paper, we assume that the host medium is air, i.e., εh = 1.
In addition, kh = k0 is the free-space wave number, β is the
parallel component of the wave vector in the wire medium,
and kp is called the plasma wave number:

kp = 1

b

√√√√ 2π

0.5275 + ln
( b

2πa

) . (3)

Since the wire medium is a uniaxial, two modes exist in it. The
first mode is the ordinary transverse-electric (TE) wave and
the second one is the extraordinary transverse-magnetic (TM)
wave. Solving Maxwell’s equations, the dispersion relation of
ordinary and extraordinary waves can be expressed as [24]

q2 + β2 = k2
0ε⊥, ordinary (TE) mode

(4)
q2

ε‖(β)
+ β2

ε⊥
= k2

0, extraordinary (TM) mode,

where q is the perpendicular component of the wave vector.
Here, ε‖ is a function of β. Normally, purely local effective
medium theories are sufficient for optically dense composites
unless the impact of ultralarge lateral wave vectors is strong.
This refers also to stacked hyperbolic metamaterials of metal
(or, generally, a material with negative dielectric response) and
transparent layers [25]. For wire media, the spatial dispersion
is linked to nonzero β [14].

For simplicity, let us assume that the wires are lossless.
If their volume fraction is small enough and the relative
dielectric constant of the wire material is not very close
to −1, the perpendicular component ε⊥ is positive and
approximately equals unity (in the general case, to that of
the host dielectric material). Based on Eq. (4), the ordinary
wave has a closed-surface dispersion, as shown in Fig. 1(b)
(a sphere with a radius equal to

√
ε⊥ ≈ 1), and therefore does

not support large wave vectors. We are definitely interested
in the extraordinary wave because the hyperbolic dispersion
corresponds only to this mode. Equation (4) indicates that
if ε‖ < 0, a hyperbolic dispersion arises (hyperbolic media
of type I; see, e.g., Ref. [26]) that implies propagation of
waves with high values of both parallel and perpendicular wave
vectors. In this case, the evanescent waves usually produced by
a subwavelength dipole source are converted into propagating
waves, resulting in the high Purcell factor.

However, in hyperbolic dispersion, as seen from Eq. (4),
there is a cutoff for the parallel component of the wave
vector: β � k0

√
ε⊥. To prominently increase the Purcell factor,

we need to eliminate this cutoff. For β < k0
√

ε⊥, based on
Eq. (4), the propagation becomes possible if ε‖ > 0 (elliptical
dispersion). We need to unify both the elliptical and hyperbolic

075139-2



UNBOUNDED SPATIAL SPECTRUM OF PROPAGATING . . . PHYSICAL REVIEW B 92, 075139 (2015)

dispersions at the same frequency so that these branches touch
each other at the transition point β = k0

√
ε⊥, as shown in

Fig. 1(c). This is possible because the parallel component of
permittivity in Eq. (4) depends on the wave vector.

If we substitute Eq. (2) in Eq. (4), the perpendicular wave
vector can be expressed as

q2 = 1

ε⊥
[β2−R1][β2−R2]

fv(1 − εr)

k2
p − fv(εr − 1)

(
k2

0 − β2
) , (5)

where

R1 = fv(εr − 1)k2
0 − (1 + fv(εr − 1))k2

p

fv(εr − 1)
,

R2 = k2
0ε⊥. (6)

If the roots R1 and R2 are equivalent and fv(1 − εr) > 0, then
the value q2 is always positive, which results in the propagating
mode for any β. The cutoff of the spatial spectrum is removed
at this frequency, and we have

fv(1 − εr) = k2
p

k2
p + (ε⊥ − 1)k2

0

. (7)

Since the plasma wave number is very large compared to√
ε⊥ − 1k0 [k2

p � (ε⊥ − 1)k2
0], the needed permittivity of the

wire material can be approximated as

εr = 1 − 1

fv
. (8)

The condition expressed in Eqs. (7) and (8) results in ε‖ = 0
at the point β = k0

√
ε⊥ in the isofrequency surface. Based

on Eq. (2), it can be easily shown that for β < k0
√

ε⊥, ε‖ is
positive (corresponding to nearly elliptical dispersion), and for
β > k0

√
ε⊥, ε‖ is smaller than zero (corresponding to nearly

hyperbolic dispersion). Figure 1(c) shows the topological
phase transition. Since the permittivity tensor depends on
the wave vector, we do not obtain exactly hyperboloidal and
ellipsoidal parts of the dispersion surface. Therefore, instead of
hyperboloid and ellipsoid, we prefer to use more exact terms:
open surface and closed surface, respectively.

Figure 2(a) shows the parallel component of the effective
permittivity versus the normalized parallel wave vector at
the optimized wavelength in which the topological transition
happens. In this example, the fraction of wires is fv = 0.05 that
makes the relative dielectric constant of the wire material equal
to εr = −19 in according to Eq. (8). The figure has specified
the closed-surface (positive-permittivity) and the open-surface
(negative-permittivity) regimes. The transition happens at
βb = ±1, where ε‖(β) = 0. The corresponding isofrequency
curve is shown in Fig. 2(b). Different isofrequency surfaces
for several values of relative dielectric constant of the wires
are shown in Fig. 3. It is easily seen that the optimal regime
corresponds to the blue solid curve representing εr = −19
when there is no spatial-frequency cutoff. When εr = −23,
the closed surface does not exist and the cutoff is present.
Gradually reducing the absolute value of the relative dielectric
constant causes the positive-permittivity regime to appear.
Both parts of the isofrequency surface touch each other at
the point ε‖ = 0 if εr = −19.

So, a topological phase transition in a wire medium whose
fv = 0.05, λ/b = 6.6 (λ is the free-space wavelength), and

βb
-2 -1 0 1 2

ε

-0.4

-0.3

-0.2

-0.1

0

0.1

positive-permittivity regime

negative-
permittivity
regime

negative-
permittivity
regime

(a)

βb
-2 -1 0 1 2

qb

-1

-0.5

0

0.5

1

(b)

FIG. 2. (Color online) (a) Parallel component of effective permit-
tivity with respect to normalized wave vector and (b) corresponding
isofrequency contour (cross section of the dispersion surface) for
the extraordinary (TM) mode. Calculations are related to the
following values: fv = 0.05 and λ/b = 6.6, where λ is the free-space
wavelength.

wires have relative permittivity close to −19 is possible
in the frequency range where the nonlocal homogenization
model [14] is applicable. This model has been recognized for
its high accuracy [12].

As mentioned already in Sec. I, a topological transition
happens not because the effective permittivity changes its sign
over the frequency axis as in Refs. [16,20]. In our case, the
effective permittivity changes the sign over the wave-vector
axis, and both closed-surface and open-surface branches exist
in the reciprocal space together and touch one another. Notice
that such phenomenon is, in principle, known in the theory
of metamaterials with spatial dispersion. In Ref. [19], a
spatially dispersive metamaterial for which both hyperboloid
and ellipsoid surfaces simultaneously exist in the reciprocal
space is suggested and theoretically studied. The suggested
metamaterial in Ref. [19] is an ultimately anisotropic strictly
regular lattice of uniaxial strongly resonant inclusions. In
optics, such an array could be implemented from very thin and
substantially long Ag (silver) or Au (gold) nanorods operating
at their plasmon resonance. Varying the geometric parameters,
one may engineer the regime of unbounded spatial spectrum
when the open and closed branches of the dispersion surface
would be touching or intersecting.

However, the metamaterial [19] is challenging for prac-
tical realization at optical frequencies, and its experimental
verification in the near future is problematic. Meanwhile,
the spatial dispersion which is needed to unify the elliptic
and hyperbolic dispersion branches turns out to be possible
in a wire medium. In the next section, we consider an
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FIG. 3. (Color online) Isofrequency contour (cross section of the
dispersion surface) of the extraordinary (TM) mode for different
values of the relative dielectric constant of the wires. Calculations are
related to the following values: fv = 0.05 and λ/b = 6.6. The curves
based on their colors correspond to εr = −23 (red), εr = −20.75
(black), εr = −19 (blue), εr = −17 (green), and εr = −15.35
(magenta).

implementation of the wire medium at mid-IR range. At these
frequencies, polaritonic materials are suitable for our purpose
and, as an example, we focus on lithium tantalate (LiTaO3).
The idea is transferable into other polaritonic materials, e.g.,
SiC. Aligned nanowires of polaritonic materials grown in a
solid matrix have been reported since 2009, when the first
paper on them was published [27]. Although the instance of
polaritonic wire media with freestanding parts is not known,
there are no basic technological limitations, and we hope that
it will be reported soon.

III. RESULTS AND DISCUSSION

The topological phase transition should result in a high
Purcell factor since there is no cutoff for spatial harmonics.
Therefore, we calculated the Purcell factor in order to confirm
our finding. We performed full-wave, three-dimensional (3D)
simulations employing the CST Microwave Studio simulator.
For reliability, some simulation results were also reproduced
using the HFSS software. The sample of wire medium in our
simulations is of cubic shape, and the volume fraction is equal
to fv = 0.0804. This value may correspond, for example, to
the wire radius a = 32 nm and period b = 200 nm. Based
on Eq. (8), the relative dielectric constant of the wires
should have Re(εr) = −11.4 and |Im(εr)| � |Re(εr)| that
allows ε‖ ≈ 0 at the point β = k0

√
ε⊥ and, subsequently, the

FIG. 4. (Color online) Geometry and orientation of the subwave-
length electric dipole source in the metamaterial sample.

transition from the negative-permittivity regime [Re(ε‖) < 0]
to the positive-permittivity regime [Re(ε‖) > 0]. Because
Re(εr) is negative, the transition is, in principle, possible
for metal nanowires within the visible range. However,
this option requires either very tiny nanowires, which will
be challenging for fabrication, or a more sparse array for
which the transition occurs at the wavelength beyond the
domain of applicability of the homogenization model.
Another option is using polaritonic materials, e.g., lithium
tantalate operating in the near-IR or mid-IR ranges. Notice
that at these frequencies, metals are not suited because the
skin depth is too small and the field interacts insufficiently
with the metallic rod. The dielectric function of polaritonic
materials is provided by the Drude-Lorentz model [28], εr =
ε∞[1 + (ω2

L − ω2
T)/(ω2

T − ω2 + jωγ )], where for LiTaO3

we have ωT/2π = 26.7 THz, ωL/2π = 46.9 THz, γ /2π =
0.94 THz, and ε∞ = 13.4 [29,30]. The value εr = −11.4
corresponds to the permittivity of lithium tantalate at about
f = 39 THz.

The emitter is chosen to be a subwavelength electric
dipole. We have studied different orientations and locations
of this dipole inside the wire medium sample. Here, we show
the results for both longitudinal (dipole parallel to nanowires
and optical axis) and perpendicular (dipole perpendicular
to optical axis) orientations and compare the results. In
both cases, the dipoles are located symmetrically in the gap
between nanowires at the center of the wire medium sample,
as shown in Fig. 4.

We calculated two types of the Purcell factor. One is called
the full Purcell factor (FPF) which shows the total enhancement
of the radiated power of the dipole. It can be found through
the real part of the input impedance of the lossless Hertzian
dipole which is equal to its radiation resistance. Keeping the
same current in the dipole in the presence of the metamaterial
sample and in its absence the ratio of radiation resistances
delivers the gain in the radiated power FPF. The second type
of the Purcell factor is called the radiative Purcell factor (RPF).
It determines the enhancement of the power radiated by the
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FIG. 5. (Color online) The Purcell factor for different sizes of
the cubic metamaterial blocks comprised of the lithium tantalate wire
medium. These sizes correspond to 10×10, 12×12, 14×14, 16×16,
and 18×18 nanowires, respectively. To maintain a cubic shape for
the material, different sample cylinder lengths are considered in each
case. A full-wave 3D simulation has been employed. (a) Full Purcell
factor. (b) Radiative Purcell factor. Here, a = 32 and b = 200 nm.

same dipole moment into free space. RPF is calculated via
the power flux integrated in the far zone in the presence of
the sample and in its absence. Indeed, initially, the Purcell
effect [31,32] was treated as an increase of the spontaneous
decay rate of an emitter located in a resonant cavity.

An important check of the reliability of our simulations
was done by setting the optical losses in lithium tantalate to
zero. Then the absorption of radiated power in the sample, i.e.,
the nonradiative part of the full Purcell factor, vanishes and
FPF = RPF.

A. Longitudinal dipole emitter

The geometry and orientation of the dipole are shown in
Fig. 4.

Figure 5(a) depicts the full Purcell factor versus frequency.
To be sure that our effect is not distorted by dimensional
resonances, we simulated the cubic-shape sample with five
sizes of the edge, corresponding to 10×10, 12×12, 14×14,

16×16, and 18×18 nanowires, respectively (the internal
structure of the wire medium was kept the same, which means
the length of nanowires varying from 1.8 to 3.4 microns).
As it is seen, the dimensional resonances do not enter the
selected frequency range, i.e., the full Purcell factor in all
cases emulates the infinite wire medium. About the frequency
f = 38 THz, the full Purcell factor has its maximum value,
whereas the homogenization model predicts the maximum
at f = 39 THz. This small error is not surprising. First, the
nonlocal homogenization model, though the most accurate of
the known effective-medium models of wire media, is still
an analytical approximation. Second, the whole theory of
Sec. II neglects optical losses, though they are quite substantial.
Notice that these high losses make the resonance of the Purcell
factor in Fig. 5(a) not very pronounced. Indeed, in a lossy
medium, the topological transition cannot be sharp. It happens
not at a single frequency, but across a certain frequency
interval. Another reason why the resonance in Fig. 5(a) is not
sufficiently pronounced is the logarithmic scale of the plot.

Whereas the full Purcell factor can exceed 600 at the
transition frequency, the radiative Purcell factor shown in
Fig. 5(b) is not very high. However, it is still remarkable at the
resonance. The global maximum was achieved for the sample
of 10×10 nanowires, and the maximum occurs at nearly
f = 37 THz. If the size of the sample is smaller, the sample
becomes mesoscopic (the full Purcell factor starts to feel the
sample size) and, on the other hand, if the size of the sample is
larger, the maximum of the radiative Purcell factor decreases
monotonously versus the size, which means that the internal re-
flections have no visible impact. At the resonant frequency, the
reflection at the interface with free space is not significant be-
cause the wave impedance of the sample is relatively matched
to the free-space wave impedance. This matching allows the
electromagnetic wave to exit from the sample. The smallness
of the radiative Purcell factor compared to the full one can
result from the attenuation of the radiation in the sample.

As to other frequencies, around the topological phase transi-
tion range, the internal reflections become important due to the
wave impedance mismatch. Close to the resonant frequency,
the radiative Purcell factor drops dramatically because the
metamaterial sample experiences the strong wave impedance
mismatching at the interface. This mismatch definitely implies
standing waves; however, the dimensional resonances do not
arise due to the high attenuation. At low frequencies where
the open-surface regime only exists, a local maximum is seen
that is most visible for the sample of 10×10 nanowires. This
local maximum at f = 32 THz is also due to the impedance
matching since it exists for all sizes of the sample.

Figures 6(a) and 6(b) compare the full Purcell factor
and radiative Purcell factor, respectively, for several radii of
nanowires while the lattice constant is fixed. According to
Eq. (8), by changing the radius, i.e., the volume fraction,
we change εr and, consequently, shift the frequency of the
topological transition. This frequency shift is clearly seen in
the figures for both full and radiative Purcell factors.

B. Perpendicular dipole emitter

In this section, we report the results of similar calculations
for the perpendicular dipole (with the same absolute value of
the dipole moment as above) and compare to the previous ones
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FIG. 6. (Color online) The Purcell factor for different radii of
wires in a lithium tantalate cubic-shape wire medium including
10×10 nanowires. (a) Full Purcell factor. (b) Radiative Purcell factor.
Here, a = 32 and b = 200 nm.

obtained for a parallel one. For better clarity of our plots, we
show the results only for two cubic-shape samples: 10×10 and
12×12 nanowires.

Figure 7(a) shows that the perpendicular dipole does
not feel the topological transition. Definitely, the radiation
decreases above f = 40 THz, where the dispersion surface is
closed. However, at the frequency range where the topological
transition happens for the parallel dipole, the Purcell factor for
the perpendicular one is the same as below—in the “standard”
open-surface regime. This fully agrees with our theoretical
expectations. The Purcell factor of the perpendicular dipole
turns out to be smaller than that of the parallel dipole (this result
keeps the same for other sizes of the sample) at the transition.
In particular, the insensitivity of the perpendicular dipole to
the topological transition is seen in the plot for the radiative
Purcell factor, depicted in Fig. 7(b). The longitudinal (parallel)
dipole is much more efficient for radiation to free space than
the perpendicular one. For it, the radiative Purcell factor does
not exceed 2 and equals unity in the range of the topological
transition and around. This is definitely the result of the strong
wave impedance mismatch. Since the medium is anisotropic,

Frequency [THz]
28 30 32 34 36 38 40 42

FPF

101

102

103

10×10 - longitudinal
12×12 - longitudinal
10×10 - transversal
12×12 - transversal

(a)

Frequency [THz]
28 30 32 34 36 38 40 42

RPF

2

4

6

8

10

12
10×10 - longitudinal
12×12 - longitudinal
10×10 - transversal
12×12 - transversal

(b)

FIG. 7. (Color online) The Purcell factor for two different orien-
tations of the dipole. Two samples of a lithium tantalate cubic-shape
wire medium including 10×10 and 12×12 nanowires are considered.
(a) Full Purcell factor. (b) Radiative Purcell factor. Here, a = 32 and
b = 200 nm.

the regime ε‖ ≈ 0 mimics the ε-near-zero regime only for
the radiation of the parallel dipole (with dominating parallel
polarization), whereas the radiation of the perpendicular dipole
almost does not feel the zero of ε‖ and turns out to be
confined inside the sample. Therefore, the contrast between
RPF of the parallel and perpendicular dipoles at about the
transition frequency is tenfold for the sample including 10×10
nanowires.

IV. CONCLUSIONS

In this work, we have theoretically revealed and studied a
topological phase transition in a wire medium which may occur
in the frequency range where the homogenization model is
still valid. We utilized the spatial dispersion inherent to a wire
medium in order to engineer the unbounded spatial spectrum
of propagating eigenmodes at the transition frequency. The
open and closed parts of the dispersion surface in this regime
touch each other at a special point in the reciprocal space of the
lattice. At this point, the real part of the parallel component
of the effective permittivity is zero. We found the practical

075139-6



UNBOUNDED SPATIAL SPECTRUM OF PROPAGATING . . . PHYSICAL REVIEW B 92, 075139 (2015)

design parameters for lithium tantalate nanowires which allow
one to implement this regime. Due to this effect (topological
phase transition over the wave-vector axis at one certain
frequency), we obtained by exact numerical simulations a
dramatic increase of the radiated power of a subwavelength
electric dipole located at the center of the finite-size sample
of our wire medium. The highest Purcell factor corresponds
to the parallel oriented dipole, which represents the contrast
to previously known results where the high Purcell factors of
wire media were reported only for the perpendicular dipoles.
Whereas the radiation of the parallel dipole is resonant with
the maximum at the transition frequency, the radiation of the

perpendicular dipole is rather stable in the frequency range
of open-surface dispersion and smoothly decreases at higher
frequencies where the dispersion surface becomes closed.
We also investigated the radiative Purcell factor. It attains
one order of magnitude for a parallel dipole. Finally, since
lithium tantalate is a lossy material, and the radiative Purcell
factor we have reported is modest, we plan to reveal the
same regime for a wire medium of SiC or GaN, where
RPF may approach more closely to the resonant value of
the full Purcell factor, e.g., attain two orders of magnitude.
Then we will organize an experimental verification of our
effect.
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