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A B S T R A C T

Accurate assessments of forest resources rely on ground truth data that are collected via in-situ measurements,
which are fundamental for all other statistical- and/or remote-sensing-based deductions on quantified forest
attributes. The major bottleneck of the current in-situ observation system is that the data collection is time
consuming, and, thus, limited in extent, which potentially biases any further inferences made. Consequently,
conventional field-data-collection approaches can hardly keep pace with the coverage, scale and frequency re-
quired for contemporary and future forest inventories. In-situ measurements from mobile platforms seem to be a
promising technique to solve this problem and are estimated at least 10 times faster than static techniques (e.g.,
terrestrial laser scanning, TLS) at the plot level. However, the mobile platforms are still at the very early stages of
development, and it is unclear which three-dimensional (3D) forest measurements the mobile systems can
provide and at what accuracy. This study presents a quantitative evaluation of the performance of mobile
platforms in a variety of forest conditions and through a comparison with state-of-the-art static in-situ ob-
servations. Two mobile platforms were used to collect field data, where the same laser-scanning system was both
mounted on top of a vehicle and wore by an operator. The static in-situ observation from TLS is used as a
baseline for the evaluation. All point clouds involved were processed through the same processing chain and
compared to conventional manual measurement. The evaluation results indicate that the mobile platforms can
assess homogeneous forests as well as static observations, but they cannot yet assess heterogeneous forest as
required by practical applications. The major challenge is twofold: mobile-data coverage and accuracy. Future
research should focus on the robust registration techniques between strips, especially in complex forest condi-
tions, since errors of data registration results in significant impacts on tree attributes estimation accuracy. In
cases that the spatial inconstancy cannot be eliminated, attributes estimation in single strips, i.e., the multi-
single-scan approach, is an alternative. Meanwhile, operator training deserves attention since the data quality
from mobile platforms is partly determined by the operators’ selection of trajectory in the field.

1. Introduction

Forests is an essential provider of ecosystem services, such as carbon
sequestration, which attracts increasing attention from policy makers
and researchers specifically in the context of climate change, bioenergy
and carbon sinks. To assess the amount and distribution of forest re-
sources, forest information is gathered at various scales and at different
user levels, e.g., from worldwide political decision making to opera-
tional forest management and from countrywide inventories to stand-
level measurements. Accurate assessments of forest resources rely on
the sampling of ground truth that is collected with in-situ

measurements, which are fundamental for all statistical- and/or remote
sensing-based deductions on quantified attributes of forests.

In-situ forest measurements are usually conducted in established
sample plots, e.g., typically a small forest area with a radius approxi-
mately 10m. To systematically represent the gradients of forest com-
positions and structures over a large area, the sample plots are usually
widespread spatially throughout forested areas. Measuring trees pre-
cisely in sample plots, as well as re-measuring them with sufficient
temporal resolutions, is crucial for correctly understanding the forest
ecosystem, its dynamics and its functional traits. However, precise
measurement is not straightforward since forests, especially natural
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forests, are characterized by high structural complexity and, conse-
quently, in-situ measurements are difficult to implement. The number
of sample plots that can be measured in practice are limited to a rather
small number, which therefore accounts for less environmental het-
erogeneity and potentially biases any inferences made since errors af-
fect the estimates calculated for a large area.

The lack of efficient inventory tools is an old and well-known
challenge related to forest in-situ measurements. Unfortunately, it re-
mains for its presence. Consequently, the forest structure beyond the
sample plots and the tree structure at the individual-tree level are
practically immeasurable and are therefore conventionally represented
by the means and totals over the area of interest, despite the fact that
forest structures vary in three-dimensional (3D) space and play an es-
sential role in forest biophysical activities. For example, the stem curve
(the function of stem diameters with respect to the height of the stem
representing the stem shape) is the determining factor to estimate tree
growth, stem quality and volume, but is rarely measured in-situ because
it is too costly to acquire using conventional tools. Instead, it is esti-
mated from regional or national allometric models, which are typically
developed elsewhere with different climatic, geographic and silvi-
cultural conditions and, therefore, not necessarily representative of
individual trees. Even in a case when the stem curve is measured, its re-
measurement is not guaranteed or it lacks the temporal resolution re-
quired for many applications. Another example is tree position, which is
directly linked to the 3D forest structure and is the key parameter to
match observations from different sources and from different points in
time. However, measuring the tree position with centimeter-level ac-
curacy is, in practice, extremely time-consuming due to the difficulty of
collecting those measurements and the degradation of the Global
Navigation Satellite System (GNSS) signals.

Lately, technologies such as the point clouds from terrestrial laser
scanning (TLS) and images have presented feasible options for applying
automated measurements to in-situ forest attributes, which have the
capacity to provide 3D forest structure data accurately and auto-
matically, e.g., the stem curves, and to improve the efficiency of field
sampling. A main challenge lies in the speed of data acquisition. For
example, a 1000m2 forest plot requires 20–60min to measure using a
stationary TLS.

The current question is whether in-situ 3D digitizing technologies
can be promoted to the next level, in which tree- and plot-level attri-
butes over large areas can be retrieved rapidly, accurately and cost-
efficiently. Integrating 3D point cloud collection technologies with
mobile platforms can provide a solution to the problem. A mobile
system may consist of platforms with high mobility, e.g., car, all-ter-
rain-vehicle, and human operator; one or several instrument, e.g., laser
scanner(s) and/or camera(s); and positioning and orientation sensors,
e.g., GNSS and/or inertial measurement units (IMU). The main ad-
vantages of such a system are its high mobility in various terrain con-
ditions and its high flexibility for rapid data collection. It was shown in
a previous study that the mobile system was 3 to 10 times faster than
TLS and cameras (Liang et al., 2015). At this moment, mobile ob-
servations in forest environments are still in the very early stages of
development. The limited studies were mainly on system demonstration
in forests with simple structures, e.g., (Liang et al., 2014a, 2014b;
Ryding et al., 2015; Bauwens et al., 2016; Forsman et al., 2016b;
Marselis et al., 2016; Juraj et al., 2017; Oveland et al., 2017; Campos
et al., 2018), but the usability of a mobile platform in varying forest
stand conditions for forest in-situ observations has not been in-
vestigated. The quality of tree attribute data derived from con-
temporary mobile systems remains unclear.

This study evaluated the performance of mobile systems in various
forest stand conditions, focusing on three critical factors, i.e., the 3D
forest structure, the accuracy of the attribute estimates, including the
stem tapering, volume and above-ground biomass (AGB), and the
measurement efficiency. A comparison is also made between mobile
systems and state-of-the-art of static observations from laser scanning.

The findings in this paper are expected to provide orientations for ex-
ploring the new horizons of in-situ quantificational mapping of forests
utilizing mobile platforms.

2. Materials and methods

The study in this work was based on 24 forest plots representing a
variety of stand conditions with regard to species, growth stages and
management activities. As references, the same plots were also mea-
sured using conventional in-situ measurements and state-of-the-art TLS.
Point clouds were processed through the same processing chain and the
results were evaluated using conventional measured references.

2.1. Test area

In 2014, 24 forest plots were selected by foresters in a southern
boreal forest in Evo, Finland (61.19°N, 25.11°E) to be a test bed for
various in-situ measurement techniques. The selected forest plots re-
present a variety of stand conditions with regard to species, growth
stages and management activities, which were classified into three
complexity categories from a forest inventory point of view, i.e., “easy”,
“medium” and “difficult”. The complexity categories were defined
based on stem visibility (the level of possible occlusion effects) at the
ground level, the spatial stem density and the diameter at breast height
(DBH) distribution of the sample plots. The category “easy” represents
clear visibility with minimal understory vegetation and low stem den-
sity (∼600 trees/ha); “medium” represents sample plots with moderate
stem densities (∼1000 trees/ha) and sparse understory vegetation; and
the “difficult” category represents plots with high stem densities
(∼2000 trees/ha) and dense understory vegetation. Fig. 1 shows the
plot-specific statistics of the mean DBH and the mean tree height to
represent the variation in tree size for the sample plots.

Each plot has a fixed size of 32-by-32m. The main tree species are
Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies (H. Karst.) L.)
and Silver (Betula pendula Roth) and Downy (Betula pubescens Ehrh.)
birches.

In this study, 23 of the 24 plots were measured from mobile plat-
forms; data collection in one plot was unsuccessful because the field
crew located the plot incorrectly during the operation. Therefore, the
test results refer to 23 test plots and are also comparable to results from
other tests based on the same test bed where all 24 plots are included.

2.2. Reference collection using TLS and conventional in-situ measurements

To accurately evaluate the performance of the mobile mapping
systems, the same test plots were recorded with stationary TLS. The
measurements were made in 2014 using Leica HDS6100 (Leica
Geosystems AG, Heerbrugg, Switzerland) and the multi-scan approach.
Five scans were made in each test plot: one scan at the plot center and
four scans at the four quadrant directions, which represents the most
accurate non-contact measurement in the field. Artificial spheres were
set up as reference targets throughout the plot for the data registration.
The registration accuracy is at a 2mm level. The point spacing is
15.7 mm at 25m from the scanning location in both horizontal and
vertical directions. The forest was scanned as is, i.e., without any pre-
scan preparation, such as removing lower tree branches or clearing
undergrowth.

Conventional forest in-situ measurements were carried out in 2014.
For each sample plot, a map of trees was measured by combining
manual measurements from the multi-scan TLS data and the measure-
ments taken in the field. Tree positions were preliminarily mapped from
3D TLS points and verified later in situ. All trees having a DBH larger
than 5 cm were included in the plot tree maps.

Tree attributes, i.e., the tree height and the DBH, were measured for
each tree using conventional field measurement methods, while the
stem curves were manually digitized through multi-scan TLS point
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cloud. The stem curve of an individual tree consists of stem diameters
starting at the height of 0.65m above the ground, followed by dia-
meters at the DBH height and at every meter above the DBH height, i.e.,
0.65 m, 1.3m, 2m, 3m and so on, until reaching the maximum mea-
surable heights from the point cloud data.

2.3. Forest in-situ data acquisition from mobile platforms

The mobile data were collected in 2014. Two different mobile
platforms were used for the kinematic in-situ measurements: one was
an all-terrain-vehicle and the other was a backpack implementation.
The two systems are also known as mobile laser scanning (MLS) and
personal laser scanning (PLS), respectively. The measuring platforms
are illustrated in Fig. 2. In this study, 7 plots were measured by MLS and
16 were measured utilizing PLS.

The core measuring system is the same for two platforms, which is
an FGI in-house developed system, i.e., AkhkaR2 (Masala, Finland). The

system is based on laser ranging and GNSS-IMU positioning, allowing
free movement of the platform within the forests. The laser ranging is
from a TLS (FARO Focus3D S120) that works in a profiling cross-track-
scanning mode. The GNSS receiver was a NovAtel Flexpak6, and the
IMU was a NovAtel UIMU-LCI.

The same scanning parameters were used in both platforms. The
laser reached objects as far as approximately 100m from the scanner,
provided the visibility within the forest permits. The scanning fre-
quency for the tree mapping was 95 Hz, which resulted in approxi-
mately 4 cm point spacing along the profile at a range of 35m and
1.0–1.4 cm profile spacing on the ground at a typical moving pace
(1.0–1.45m/s).

In the field data acquisition, the operator walked or drove through
and around the plots at a walking speed, aiming to minimize omission
errors, i.e., to record trees in plots as completely as possible. The tra-
jectory of the platform in the field depended on the actual accessibility
of the forest stand, e.g., the ruggedness of the terrain, the density of

Fig. 1. Plot-specific statistics of the mean diameter at breast height and the mean tree height to represent the variation in tree size for the sample plots.

Fig. 2. Two mobile platforms applied for the in-situ measurements: (a) an all-terrain-vehicle, a.k.a. mobile laser scanning (MLS), and (b) a portable system on an
operator’s back, a.k.a. personal laser scanning (PLS).
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trees and the distribution of sub-canopy growth. The trajectory for each
test plot was computed using Waypoint Inertial Explorer software and
GNSS base station data from a Virtual Reference Station Network
(Trimnet, Geotrim Oy, Finland). In post-processing, the trajectory was
solved for instantaneous position (easting, northing, elevation) and al-
titude (roll, pitch, heading) data at a frequency of 200 Hz for geo-re-
ferencing the laser scanner data into registered 3D point clouds. The
under-canopy trajectory data are expected to be solved at an accuracy
at 0.2–0.8m (Kaartinen et al., 2015; Kukko et al., 2017), which is di-
rectly propagated to the point cloud geometry. Fig. 3 demonstrates two
trajectory cases in two test plots, presenting different tree coverage
results in stands with different conditions but with similar efforts from
the motions of the platform. Fig. 4 shows an example of the resulting
point cloud data.

2.4. Retrieval of tree-level attributes from static observations

The TLS point cloud were processed using an improved tree-mod-
elling method proposed in (Liang et al., 2012).

In the pre-processing, the original point cloud was sampled and de-
noised. The original point cloud was first thinned through an equivalent

sampling method, which samples the original point cloud data while
preserves its spatial distribution. The 3D point data was digitized into a
voxel space and the point closest to the center of gravity within each
voxel (i.e., 1 cm cube) was selected as the representative point for the
point distribution within the voxel. Isolated points and point clusters
were then detected and deleted in the de-noising process.

A digital terrain model (DTM) was reconstructed using a morpho-
logical filter and linear interpolation. The 3D points were digitized into
a 2D raster space. The lowest point in each pixel was selected as the
seed point. In addition, the seed points were clustered based on 3D
neighbor connectivity, and the largest connected group was interpreted
to be part of the ground. Detached groups were accepted as ground if
they were smoothly connected with the accepted ground, i.e., the slope
between a detached group and the ground was gentle. The DTM was
then built through the linear interpolation of the identified ground
points

The stem detection and modeling follows the method proposed in
(Liang et al., 2012). Points on vertical planar surfaces were first iden-
tified by analyzing the structure in their immediate neighborhood using
principal components analysis. Tree stem models were built from the
recognized stem points as a series of 3D cylinders representing the

Fig. 3. Trajectory of the mobile platform
(personal laser scanning) through two test
plots: (a) plot category easy, and (b) plot
category difficult. The square represents the
boundary of each test plot. The circles/dots
and their diameters show the tree locations
and corresponding DBHs. The dashed lines
indicate the trajectory of the platform.

Fig. 4. A visualization scene of the 3D point cloud in a test plot collected with the AkhkaR2 PLS system. Points are colored based on point intensity. The data captures
the tree geometry and terrain.
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changes in growth direction of stems. The DBH and location of the stem
were then estimated from the cylinder element at breast height (1.3 m
above the ground), and the stem curve was estimated from the cylinder
element at predefined heights, i.e., 0.65 m, 1.3 m, 2m, 3m and so on,
until the maximum measurable heights was reached.

The tree height was estimated separately for big and small trees,
where the tree groups were separated based on a DBH of 15 cm. Big
trees were assumed mostly to be dominant or co-dominant trees that
have direct access to the sunlight and have no trees above them (Wang
et al., 2016). The elevation difference between the highest point within
20 cm distance from the stem and the DTM beneath was used as the
estimate of tree height. Small trees are mostly intermediate and sup-
pressed trees that are typically shadowed by other trees in the near
vicinity. To find the treetop of a small tree, points around the stem were
projected to the tree axis and the largest point group was assumed to
belong to the tree. The elevation difference between the highest point in
the group and the DTM beneath was used as an estimate of the tree
height.

2.5. Retrieval of tree-level attributes from the mobile point clouds

Point cloud data collected from the mobile platforms were pro-
cessed using a multi-single-scan type of method as in (Liang et al.,
2014b). With mobile platforms, a tree may be observed several times
from different locations on the trajectory. Spatial inconsistency in the
point clouds from different observations prevails in mobile data be-
cause of the positioning errors. While automated registration is cur-
rently being developed and may in future largely improve the data
accuracy, wind effects pose similar spatial-inconsistency problem that is
difficult to completely remove, see examples from TLS point clouds in
(Vaaja et al., 2016; Pyorala et al., 2018); therefore, it is worthy of
noting that the spatial-inconsistency still exist after data-level regis-
tration.

Fig. 5 illustrates an example of the spatial inconsistency, i.e., the
mobile point cloud of a 2-meter-long tree stem in 2D (a) and 3D (b). The
same tree was observed from multiple positions and spatial incon-
sistency propagated from the positioning errors are clearly visible from
the points on and surrounding the tree stem.

The multi-pass-corridor-mapping approach first models trees
alongside the trajectory using the same method as that used for the
stationary TLS. Since a tree may be observed several times on the

trajectory, a single tree might be modeled multiple times. The tree
models at the same location were identified as a single tree, and the
stem model with the longest extracted stem was selected as the final
tree stem model from which tree attributes were measured.

The method for tree modeling and attribute estimation were almost
identical for both the stationary and mobile point clouds. The only
difference was how the tree height was extracted. Since the stationary
TLS is less likely to capture the treetops due to its limited perspectives
and the occlusion effects of trees and branches, treetops were estimated
from the original point cloud data to retrieve the treetops to ensure they
were as high as possible. In contrast, the mobile platform observes the
treetops from various perspectives and thus, has a greater probability of
capturing the treetops multiple times with varied visibility. To reduce
the risk of getting erroneous treetops, tree heights were estimated from
the point cloud after the de-noising process.

2.6. Evaluating individual tree attributes from the point clouds

The performance of the mobile platforms in in-situ measurements
was evaluated by comparing the estimated tree-level attributes with the
conventional manual in-situ measurements, as well as with the results
from the stationary TLS, which represent the most accurate automated
measurement technique currently available.

The detected and reference trees were first matched based on the
horizontal locations and DBHs of the trees. For each detected tree, all of
the reference trees within its neighborhood (150 cm radius, accounting
for the positioning drift in the mobile data), were evaluated and the one
with the most similar DBH was matched to the detection. The detection
accuracy was evaluated using two measures, i.e., completeness and
correctness, where the completeness shows the number of reference
trees that are automatically detected and the correctness shows the
number of the detected trees that corresponds to the reference trees.

The accuracy of the extracted tree location, tree height and DBH
were all evaluated using the relative Root Mean Squared Error (RMSE)
and bias, with the exception of the tree location, where only the ab-
solute RMSE was calculated.

The stem curves consisted of the extracted stem diameters from
specific heights. The accuracy of the extracted stem curve was eval-
uated by comparing the extracted diameters to the reference values of
the stem curve at the same heights. For each matched tree, the accuracy
of the stem curve was evaluated, and plot- and category-specific

Fig. 5. An example mobile point cloud of a 2-meter-long stem section, in 2D (a) and 3D (b) scenes.
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relative RMSE and bias were averaged.
The accuracy of the stem volume and total tree biomass were also

evaluated using the relative RMSE and bias over the trees in each plot,
providing an overall evaluation of the mobile platform performance
since volume and biomass are dependent on multiple tree attributes.
The volume is a function of the tree height and stem curve, and the
biomass is from Finnish national allometric models as in (Repola, 2008,
2009). Volume ratio is the ratio of the sum of the stem volumes of the
matched extracted trees to the sum of the stem volumes of the reference
trees in one plot, which evaluates how much of the reference stem
volume in one plot is extracted automatically from the point cloud.

3. Results

The performance of the mobile point cloud was evaluated through
tree-attribute estimations in various forest conditions. The extracted
tree attributes included those widely used in various forest applications,
i.e., the DBH, the tree location, the tree height, the stem curve, the stem
volume and total biomass. They were automatically derived from the
mobile platforms and were evaluated against the commonly accepted
conventional method and the best automated estimations achievable
from state-of-the-art technology.

3.1. Stem detection and position

The results of stem mapping are reported in Fig. 6. A steady decline
in the completeness of stem detection was observed as stand complexity
increased, decreasing from approximately 90% in easy plots to 60% in
difficult plots, similar to the stationary TLS. The correctness of stem
detection from the mobile point cloud ranged between 50% and 80%,
which is lower than the results from the TLS point cloud (i.e., ap-
proximately 90%). Such results indicate that the omission error of stem
detection is at similar levels in the mobile and stationary data but the
commission errors in mobile data were much higher than those in static
data. The main source of commission errors in mobile data were the
redundant/fake stem counts associated with positioning errors in the
mobile point cloud. More discussion on this issue is in Section 4.

The stem-position accuracy, i.e., the distance between the estimated
and the reference stem positions, is illustrated in Fig. 7. In general, the
stem-position error from mobile platforms, which can be also propa-
gated from the positioning errors under the forest canopy, is clearly
bigger than the error from the static one. The easy plots have the

smallest stem-position errors among the three stand difficulty cate-
gories because there is typically more open space and thus better GNSS-
satellite visibility than in the medium and difficult plots. The result
reveals that the positioning accuracy in current mobile systems, which
relies on only GNSS-IMU positioning, is largely influenced by the forest
stand conditions. In addition, Terrain conditions, e.g., roughness, in-
fluence on the smoothness of platform movement, and indirectly on
positioning accuracy.

3.2. Diameter at breast height

The relative RMSE (RMSE %) and the relative bias (bias %) of the
DBH estimates are reported in Fig. 8. In easy plots, the difference be-
tween the RMSE % of DBH estimates from the mobile and stationary
platforms is insignificant (11.2% vs. 6.3%, respectively). In the medium
and difficult forest stands, the RMSE % of the DBH estimate from the
mobile data are much higher than that from the stationary data (23.4%
vs. 8.4%, respectively, in medium plots, and 34.6% vs. 13.2%, respec-
tively, in difficult plots). According to the bias % of the DBH estimates,
it is much easier to derive exaggerated DBH from the mobile data,
especially in the medium and difficult plots, which again resulted from
positioning errors that were propagated to the point cloud data. More
discussion on positioning errors and the accuracy of attribute estima-
tions is provided in Section 4.

3.3. The stem curve

As shown in Fig. 9, the accuracy of the stem-curve estimation from
the mobile point cloud is not yet comparable to what can be achieved
from the stationary point cloud in all three difficulty categories of forest
stands. The influence of the stand condition on the stem curve accuracy
is much stronger with the mobile data than with the stationary data,
emphasizing the influences of factors, such the positioning accuracy,
the level of noise of the mobile point cloud and the stand complexity, on
the overall data quality. As forest complexity increased, the quality of
the mobile point cloud data decreased due to the reduced positioning
accuracy, the decreased accessibility of the plot and the coverage of
data, and the increased occlusion effects. The stem curve estimates from
the mobile platforms are in general shorter than in the statistic mea-
surement because of the spatial inconsistency.

Fig. 6. Correctness and completeness of individual tree mapping from the mobile and static platforms. The left axis represents the completeness (%), and the right
axis represents the correctness (%).
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Fig. 7. RMSE of the stem location estimation from the mobile and static platforms. The left axis represents the distance values, and the right axis represents the
completeness (%).

Fig. 8. Relative RMSE and bias of the DBH estimation from the mobile and static platforms. The left axis represents the RMSE % and Bias % values, and the right axis
represents the completeness (%) value.

Fig. 9. Relative RMSE and bias of the stem curve estimation from the mobile and static platforms. The left axis represents the RMSE % and Bias % values, and the
right axis represents the completeness (%) value.
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3.4. The tree height

The RMSE % and bias % of the tree height estimates are reported in
Fig. 10. In Fig. 10(a) and (b), the results from the mobile data were
compared with multi- and single-scan TLS data, respectively. In prin-
ciple, data collected through the multi-scan TLS represent the highest
quality of available terrestrial point clouds, and mobile data are ex-
pected to be comparable to multi-scan TLS data. However, due to the
positioning errors in forest environments, mobile data were processed
in a multi-single-scan mode where the features were extracted from the
path with the best visibility. This method processes mobile data in a
similar way as the single-scan TLS. As shown in Fig. 10(b), mobile
platforms and single-scan TLS provide tree height estimation with a
similar accuracy; however, both are less accurate than the multi-scan
data. These results indicate that the advantages of mobile platforms
have not been fully exploited yet, because of the positioning challenges.

3.5. Stem volume

The relative RMSE and bias of the stem-volume estimates are re-
ported in Fig. 11. The stem-volume estimation from mobile platforms is

comparable to what is achieved from static TLS in easy forests. In the
medium and difficult complexity categories, however, static observa-
tions provided smaller RMSE %, i.e., they were more accurate.

3.6. Total tree biomass

The results of the total tree biomass estimation are reported in
Fig. 12. The mobile and static platforms provided similar RMSE % va-
lues in easy plots. The bias % value are similar to each other.

4. Discussion

The technological advantages and disadvantages of mobile systems
both come from its mobility, which lends itself well to fast data ac-
quisition but also triggers the possible degradation of data quality. The
results in a variety of forest conditions in this study suggested that the
mobile systems does not yet meet the practical requirements. The main
challenges of applying them in forests are twofold: the accuracy of the
point cloud registration, and the selection of the trajectories in the field.
Currently, solutions for these two challenges are unavailable yet and
should be investigated more closely before the mobile platforms can be

Fig. 10. Relative RMSE and bias of the tree height estimation from the mobile and multi-scan terrestrial laser scanning (a), and from mobile and single-scan
terrestrial laser scanning (b). The left axis represents the RMSE % and bias % values, and the right axes represent the completeness (%) value.
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used in practice.

4.1. Tree-attribute estimation from mobile platforms at a plot level

This study presents a quantitative evaluation of the performance of
mobile platforms in a variety of forest conditions and through a com-
parison with state-of-the-art static in-situ observations. The results in-
dicated that the tree detection of mobile and stationary laser scanning is
approximately at the same level of accuracy. The results of the plot-
level tree-attribute estimates diverse in different forest conditions. In
homogeneous forests with simple structures, the current estimates from
mobile platforms are less accurate but comparable with that from static
platforms, such the DBH, volume and biomass, which demonstrates the
potential of mobile mapping. In heterogeneous forest, tree attribute
estimates of mobile systems are less accurate than multi-scan TLS, and
not yet meet the requirement by practical applications.

It is worth to note that stationary multi-scan TLS represents the best
quality terrestrial point cloud. The TLS results serve as a reference for
further mobile systems development. In addition, the results of mobile
laser scanning in this paper correspond to data without strip adjust-
ment. When strip registration works automatically and reliably, the
outcomes of this comparison may change.

4.2. Positioning accuracy of mobile point clouds

In dense forests, visibility is typically poor from fixed positions
which imposes less probability of observing all trees in a plot. Mobile
observation introduces a multi-view geometry, i.e., the viewing position
and geometry are constantly changing and an object is observed from
multiple positions, and significantly increases the probability of fully
recording targets in the captured data by observing an object from
various positions. Meanwhile, increased mobility under forest canopies
introduces positioning errors. The positioning accuracy provided by the
GNSS and/or IMU is typically inadequate to locate the platform posi-
tions with high accuracy. Consequently, the positioning errors propa-
gate throughout the dataset, and mobile data are in general less accu-
rate than static observations.

The positioning errors can be seen from the relative RMSE of the
tree locations, which is clearly larger than that from the static TLS. The
magnitude of the stem-position errors, i.e., 0.5–0.9 m, gives an indica-
tion of the GNSS-IMU errors under boreal forest canopies. This result is
in line with what reported in the previous work (Kaartinen et al., 2015),
where the positioning accuracy was 0.6–0.8 m from the combination of
differential GNSS and IMU.

Some systematic shifts between the tree locations from the mobile

Fig. 11. Relative RMSE and bias of the stem-volume estimation from the mobile and static platforms. The left axis represents the RMSE % and bias % values, and the
right axis represent the completeness (%) value.

Fig. 12. Relative RMSE and bias of the tree biomass estimation from the mobile and static platforms. The left axis represents the RMSE % and bias % values, and the
right axis represents the completeness (%) value.
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platform and the reference were observed in this study, and the shift
was more significant in the north-south direction than in the other di-
rections. These shifts are likely related to the test-bed location, i.e., 60
degrees north of Earth's equator, where the visibility of the navigation
constellations may not be ideal. Therefore, the matching distance be-
tween the detection and reference was set to 1.5m in the evaluation to
compensate for this shift, which is a relatively large value for matching.
The number of matched trees was, however, decreased significantly if
this criteria was reduced to 0.5 m, which also reflecting the positioning
errors in the mobile platform trajectories.

4.3. Selection and realization of trajectory

Mobile systems give the operator flexibility in choosing the best
route to move through forests to map the entire forest area, a task that
may be too difficult to achieve from only a couple of static observation
positions. In an ideal case, the operator went around the entire plot and
all trees were close to at least one pass as shown in Fig. 3(a). However,
this is not always possible in practical operations. The trajectory in a
difficult forest plot was shown in Fig. 3(b), where many small trees are
presented in the plot. The walked pass was quite nicely distributed in
the plot. However, in the west part, some small trees were far away
from any walked pass, and consequently, the data coverage was less
favorable for successful tree mapping.

It is not always easy to find the ideal path to traverse a forest plot. In
Fig. 3(b), the operator tried to go north at the south-west corner but
gave up and instead moved towards the south, likely because of the
difficulty imposed by small trees. Terrain may be another challenge. For
example, ditches and steep slope may stop vehicle platforms. Operator’s
training and experience affect route selection and have direct effects on
the data coverage and quality.

4.4. Selection of platforms and sensor systems

Two mobile platforms, i.e., human and all-terrain-vehicle, were
employed in the study to collect terrestrial point cloud and both use the
same sensor system. In general, two platforms are very similar. Both
MLS and PLS have greater mobility in comparison with static TLS. Some
differences may be noticed, since terrain, e.g., roughness, rocks and
falling trees, and forest, e.g., structure, age and species, conditions in-
fluence the smoothness of platform movement and the measurement
speed.

In MLS, a higher platform speed can be achieved if forest conditions
allow and higher scanning frequencies are available. The first experi-
ence from this study showed that vehicle platforms are more suitable
for flat terrain and forests with less complicated structures. In such
contexts, the MLS can measure forests in a large area using a relatively
short period of time. Meanwhile, given the same scanning frequency,
higher moving speed leads to larger point spacing which negatively
effects target-detection capabilities especially for objects far away from
the trajectory.

The speed of PLS is limited and can be slightly raised by using
smaller device. Human operators tend to have more abrupt heading
changes to avoid obstacles or going to places where is hard to reach and
vehicles mostly avoid to visit. Consequently, PLS tends to have less
smooth trajectory, which indirectly influence positioning accuracies
and may propagate to the point clouds and impact on tree detection and
estimates. On the other hand, human operator has even greater mobi-
lity than the vehicles, since measurement can be made in areas for-
bidden for vehicles.

In addition to platforms, similar point clouds as in this study can
also be obtained from image matching (Liang et al., 2015; Forsman
et al., 2016a; Berveglieri et al., 2017; Mokroš et al., 2018) and struc-
tured light (Hyyppä et al., 2017; Tomaštík et al., 2017). The advantage
of the image-based point cloud is that the data can be collected using
low-cost, low-weight and small sized hardware that is affordable and

easy to use for both professional and non-professional users. Laser
sensors typically measures longer distances than image sensors and they
can be in principle used in darkness. The fundamental challenge of
mobile mapping systems is the data registration, whatever the source of
the data. For example, spatial inconsistencies shown in mobile point
clouds can also be found in both image- and structure-light-based point
clouds, e.g., in (Liang et al., 2015; Hyyppä et al., 2017). The solutions to
spatial inconsistencies are either point-level registration or feature/
decision-level fusion.

4.5. Outlook

In future mobile platforms have the potential to reshape the land-
scape of the forest field inventories.

A straightforward benefit derived from mobile mapping is that the
efficiency of field measurements can be significantly improved. The
challenge is how to solve the spatial inconsistency problem. To improve
the registration accuracy, there are two categories of solutions.

The first is object-level registration where the best observations
(defined by applications) of the same object are recognized and used in
estimating attributes, as shown in this study. The matching is per-
formed at the feature level, whereas the tree attributes are estimated by
decision-level fusion (Liang et al., 2014b). This solution requires the
trajectory to be known, e.g., through GNSS. The challenge here is that
the visibility of GNSS satellites could be poor in dense forests.

The second solution is data-level registration. A popular solution is
to integrate observations with Simultaneous Localization and Mapping
(SLAM). Currently, there are many efforts focusing on this, but there
have not yet been reliable solutions applicable to forests. Improve the
robustness of the solutions in different forest conditions requires time
and more efforts. In (Bauwens et al., 2016), a mobile system based on
IMU and SLAM successfully produced automatic co-registration in 8 out
of 10 test plots. The system did not work in the remaining 2 plots. As
noted in the paper, possible reasons for failed co-registration included a
lack of objects for matching (in a sparse forest with a density 113 stems/
ha) and a dense understory (a forest of 439 stems/ha). There might be
more difficulties for automatic co-registration without GNSS in difficult
plots, e.g., dense vegetation near the ground level. For mobile systems,
forest is anyway a challenging environment to collect spatial consistent
point cloud data, which differentiates forest applications from civil
ones, e.g., (Guan et al., 2016).

To achieve the data-level registration, combining GNSS, IMU and
SLAM is another solution, e.g., as seen in (Qian et al., 2016), where
GNSS seems to provide a general position to solve the problems where
SLAM failed. The GNSS receiver increases the system costs and com-
plexity but also increases system stability in the circumstance that the
navigation satellites are visible, and directly links the observations to
the global coordinate system. A recent effort in solving for trajectory
errors involves graph optimization of the GNSS-IMU solution of an MLS
using only the scanning data and tree detections (Kukko et al., 2017).
Another potential benefit of integration these observations is that GNSS
signal may also provide another data source for estimating forest at-
tributes, e.g., biomass, at a plot level (Liu et al., 2017).

In addition, mobile mapping introduces a new protocol to establish
and measure forest sample plots, i.e., the visible area beside a single
strip may serve as a forest plot rather than a conventional sample plot,
as shown in (Liang et al., 2014b; Saarela et al., 2017). Such a field
reference plot potentially accounts for more environmental hetero-
geneity and improves the inferences made based on the field reference.
It further improves the measurement efficiency by transferring the
unproductive time spent on transporting the equipment from site to site
in stationary observations into productive inventories by continuous
mensuration.

Until recently, these topics have been discussed insufficiently,
which deserve further research.
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5. Conclusion

In-situ observations are fundamental to forest resource manage-
ment, which collects first-hand field data or data as field references to
calibrate remote-sensing data. The major bottleneck of the current in-
situ observation system is that the data collection is too slow.
Consequently, conventional field-data collection approaches can hardly
keep pace with the extent and frequency required for forest inventories.
In-situ measurements from mobile platforms seem to be a promising
technique to solve these problems.

Mobile systems have the potential to achieve a very fast measure-
ment speed in various forest conditions, i.e., a couple of minutes and at
least 10 times faster at the plot level or hundreds of times faster in a
large area than that through static techniques (e.g., multi-scan terres-
trial laser scanning). Over the long term, mobile systems are anticipated
to become the standard platform for automatically measuring forests on
the ground, if terrain and stand conditions enable its use. However, the
mobile observations are still at the early stage of research, and adoption
to practice will still take some time. Mobile systems are still very lim-
ited for end users and its technical readiness needs improvements. In
addition, questions about what forest 3D measurements the mobile
systems can record and at what accuracy have not been clarified. This
study presented a quantitative evaluation of the performance of mobile
platforms in a variety of forest conditions and in comparison with state-
of-the-art static in-situ observations.

According to the results of this study, although tree-attribute esti-
mates are slightly less accurate, the current forest 3D measurements
from mobile platforms can measure forests of simple structure with an
accuracy comparable with static observations. In heterogeneous forests,
e.g., plots categorized as medium or difficult in this study, the results
have not reached the same level of accuracy as the static observations,
i.e., the multi-scan TLS, and as such, the mobile mapping does not fulfill
practical requirements.

In general, the mobile and static data are equivalent, though the
mobile data are distributed more homogeneously. Therefore, the tech-
nique that works fine for the static platforms is, in principle, also ap-
plicable to the data from mobile platforms. At this time, because of the
shortcoming of the mobile system in terms of positional accuracy,
where the registration in heterogeneous forest conditions is not yet
adequately robust, mobile data are less accurate than data from the
static platforms. Future research should focus on improving the in-situ
registration technique, e.g., such as those based on SLAM. Meanwhile,
operator training also deserves attention since the data quality derived
from mobile platforms is partly determined by the operators’ selection
of trajectory in the field and can result in omission error.

Acknowledgements

The authors would like to thank financial aid from the Finnish
Academy projects “Centre of Excellence in Laser Scanning Research
(CoE-LaSR) (272195)”, “Multi-spectral Personal Laser Scanning for
Automated Environment Characterization (300066)”, and Strategic
Research Council at the Academy of Finland project “Competence-
Based Growth through Integrated Disruptive Technologies of 3D
Digitalization, Robotics, Geospatial Information and Image Processing/
Computing – Point Cloud Ecosystem (COMBAT) (293389)”.

References

Bauwens, S., Bartholomeus, H., Calders, K., Lejeune, P., 2016. Forest inventory with
terrestrial LiDAR: a comparison of static and hand-held mobile laser scanning. Forests
7, 127. http://dx.doi.org/10.3390/f7060127.

Berveglieri, A., Tommaselli, A., Liang, X., Honkavaara, E., 2017. Photogrammetric
measurement of tree stems from vertical fisheye images. Scand. J. For. Res. 32,
737–747. http://dx.doi.org/10.1080/02827581.2016.1273381.

Campos, M., Tommaselli, A., Honkavaara, E., Prol, F., Kaartinen, H., El Issaoui, A.,

Hakala, T., 2018. A backpack-mounted omnidirectional camera with off-the-shelf
navigation sensors for mobile terrestrial mapping: development and forest applica-
tion. Sensors 18, 827. http://dx.doi.org/10.3390/s18030827.

Forsman, M., Börlin, N., Holmgren, J., 2016a. Estimation of tree stem attributes using
terrestrial photogrammetry with a camera rig. Forests 7, 61. http://dx.doi.org/10.
3390/f7030061.

Forsman, M., Holmgren, J., Olofsson, K., 2016b. Tree stem diameter estimation from
mobile laser scanning using line-wise intensity-based clustering. Forests 7, 206.
http://dx.doi.org/10.3390/f7090206.

Guan, H., Li, J., Cao, S., Yu, Y., 2016. Use of mobile LiDAR in road information inventory:
a review. Int. J. Image Data Fusion 7, 219–242. http://dx.doi.org/10.1080/
19479832.2016.1188860.

Hyyppä, J., Virtanen, J.-P., Jaakkola, A., Yu, X., Hyyppä, H., Liang, X., 2017. Feasibility of
Google Tango and Kinect for crowdsourcing forestry information. Forests 9, 6. http://
dx.doi.org/10.3390/f9010006.

Juraj, Č., Ján, T., Milan, K., Martin, M., 2017. Estimation of diameter at breast height
from mobile laser scanning data collected under a heavy forest canopy. J. For. Sci. 63,
433–441. https://doi.org/10.17221/28/2017-JFS.

Kaartinen, H., Hyyppä, J., Vastaranta, M., Kukko, A., Jaakkola, A., Yu, X., Pyörälä, J.,
Liang, X., Liu, J., Wang, Y., Kaijaluoto, R., Melkas, T., Holopainen, M., Hyyppä, H.,
2015. Accuracy of kinematic positioning using global satellite navigation systems
under forest canopies. Forests 6, 3218–3236. http://dx.doi.org/10.3390/f6093218.

Kukko, A., Kaijaluoto, R., Kaartinen, H., Lehtola, V.V., Jaakkola, A., Hyyppä, J., 2017.
Graph SLAM correction for single scanner MLS forest data under boreal forest ca-
nopy. ISPRS J. Photogramm. Remote Sens. 132, 199–209. http://dx.doi.org/10.
1016/j.isprsjprs.2017.09.006.

Liang, X., Hyyppa, J., Kukko, A., Kaartinen, H., Jaakkola, A., Yu, X., 2014a. The use of a
mobile laser scanning system for mapping large forest plots. IEEE Geosci. Remote
Sens. Lett. 11, 1504–1508. http://dx.doi.org/10.1109/LGRS.2013.2297418.

Liang, X., Kukko, A., Kaartinen, H., Hyyppä, J., Yu, X., Jaakkola, A., Wang, Y., 2014b.
Possibilities of a personal laser scanning system for forest mapping and ecosystem
services. Sensors 14, 1228–1248. http://dx.doi.org/10.3390/s140101228.

Liang, X., Litkey, P., Hyyppa, J., Kaartinen, H., Vastaranta, M., Holopainen, M., 2012.
Automatic stem mapping using single-scan terrestrial laser scanning. IEEE Trans.
Geosci. Remote Sens. 50, 661–670.

Liang, X., Wang, Y., Jaakkola, A., Kukko, A., Kaartinen, H., Hyyppa, J., Honkavaara, E.,
Liu, J., 2015. Forest data collection using terrestrial image-based point clouds from a
handheld camera compared to terrestrial and personal laser scanning. IEEE Trans.
Geosci. Remote Sens. 53, 5117–5132. http://dx.doi.org/10.1109/TGRS.2015.
2417316.

Liu, J., Hyyppa, J., Yu, X., Jaakkola, A., Kukko, A., Kaartinen, H., Zhu, L., Liang, X., Wang,
Y., Hyyppa, H., 2017. A novel GNSS technique for predicting boreal forest attributes
at low cost. IEEE Trans. Geosci. Remote Sens. 55, 4855–4867. http://dx.doi.org/10.
1109/TGRS.2017.2650944.

Marselis, S.M., Yebra, M., Jovanovic, T., van Dijk, A.I.J.M., 2016. Deriving comprehen-
sive forest structure information from mobile laser scanning observations using au-
tomated point cloud classification. Environ. Modell. Software 82, 142–151. http://
dx.doi.org/10.1016/j.envsoft.2016.04.025.

Mokroš, M., Liang, X., Surový, P., Valent, P., Čerňava, J., Chudý, F., Tunák, D., Saloň, Š.,
Merganič, J., 2018. Evaluation of close-range photogrammetry image collection
methods for estimating tree diameters. ISPRS Int. J. Geo-Inf. 7, 93. http://dx.doi.org/
10.3390/ijgi7030093.

Oveland, I., Hauglin, M., Gobakken, T., Næsset, E., Maalen-Johansen, I., 2017. Automatic
estimation of tree position and stem diameter using a moving terrestrial laser
scanner. Remote Sens. 9, 350. http://dx.doi.org/10.3390/rs9040350.

Pyorala, J., Liang, X., Vastaranta, M., Saarinen, N., Kankare, V., Wang, Y., Holopainen,
M., Hyyppa, J., 2018. Quantitative assessment of scots pine (Pinus Sylvestris L.) whorl
structure in a forest environment using terrestrial laser scanning. IEEE J. Sel. Top.
Appl. Earth Obs. Remote Sens. 1–10. http://dx.doi.org/10.1109/JSTARS.2018.
2819598.

Qian, C., Liu, H., Tang, J., Chen, Y., Kaartinen, H., Kukko, A., Zhu, L., Liang, X., Chen, L.,
Hyyppä, J., 2016. An Integrated GNSS/INS/LiDAR-SLAM positioning method for
highly accurate forest stem mapping. Remote Sens. 9, 3. http://dx.doi.org/10.3390/
rs9010003.

Repola, J., 2009. Biomass equations for Scots pine and Norway spruce in Finland. Silva
Fennica 43, 625–647.

Repola, J., 2008. Biomass equations for birch in Finland. Silva Fennica 42, 605–624.
Ryding, J., Williams, E., Smith, M., Eichhorn, M., 2015. Assessing handheld mobile laser

scanners for forest surveys. Remote Sens. 7, 1095–1111. http://dx.doi.org/10.3390/
rs70101095.

Saarela, S., Breidenbach, J., Raumonen, P., Grafström, A., Ståhl, G., Ducey, M.J., Astrup,
R., 2017. Kriging prediction of stand-level forest information using mobile laser
scanning data adjusted for nondetection. Can. J. For. Res. 47, 1257–1265. http://dx.
doi.org/10.1139/cjfr-2017-0019.

Tomaštík, J., Saloň, Š., Tunák, D., Chudý, F., Kardoš, M., 2017. Tango in forests – an
initial experience of the use of the new Google technology in connection with forest
inventory tasks. Comput. Electron. Agric. 141, 109–117. http://dx.doi.org/10.1016/
j.compag.2017.07.015.

Vaaja, M.T., Virtanen, J.-P., Kurkela, M., Lehtola, V., Hyyppä, J., Hyyppä, H., 2016. The
effect of wind on tree stem parameter estimation using terrestrial laser scanning.
ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. III-8, 117–122. http://dx.doi.
org/10.5194/isprsannals-III-8-117-2016.

Wang, Y., Hyyppa, J., Liang, X., Kaartinen, H., Yu, X., Lindberg, E., Holmgren, J., Qin, Y.,
Mallet, C., Ferraz, A., Torabzadeh, H., Morsdorf, F., Zhu, L., Liu, J., Alho, P., 2016.
International benchmarking of the individual tree detection methods for modeling 3-
D Canopy structure for silviculture and forest ecology using airborne laser scanning.
IEEE Trans. Geosci. Remote Sens. 54, 5011–5027. http://dx.doi.org/10.1109/TGRS.
2016.2543225.

X. Liang et al. ISPRS Journal of Photogrammetry and Remote Sensing xxx (xxxx) xxx–xxx

11

http://dx.doi.org/10.3390/f7060127
http://dx.doi.org/10.1080/02827581.2016.1273381
http://dx.doi.org/10.3390/s18030827
http://dx.doi.org/10.3390/f7030061
http://dx.doi.org/10.3390/f7030061
http://dx.doi.org/10.3390/f7090206
http://dx.doi.org/10.1080/19479832.2016.1188860
http://dx.doi.org/10.1080/19479832.2016.1188860
http://dx.doi.org/10.3390/f9010006
http://dx.doi.org/10.3390/f9010006
https://doi.org/10.17221/28/2017-JFS
http://dx.doi.org/10.3390/f6093218
http://dx.doi.org/10.1016/j.isprsjprs.2017.09.006
http://dx.doi.org/10.1016/j.isprsjprs.2017.09.006
http://dx.doi.org/10.1109/LGRS.2013.2297418
http://dx.doi.org/10.3390/s140101228
http://refhub.elsevier.com/S0924-2716(18)30127-8/h0065
http://refhub.elsevier.com/S0924-2716(18)30127-8/h0065
http://refhub.elsevier.com/S0924-2716(18)30127-8/h0065
http://dx.doi.org/10.1109/TGRS.2015.2417316
http://dx.doi.org/10.1109/TGRS.2015.2417316
http://dx.doi.org/10.1109/TGRS.2017.2650944
http://dx.doi.org/10.1109/TGRS.2017.2650944
http://dx.doi.org/10.1016/j.envsoft.2016.04.025
http://dx.doi.org/10.1016/j.envsoft.2016.04.025
http://dx.doi.org/10.3390/ijgi7030093
http://dx.doi.org/10.3390/ijgi7030093
http://dx.doi.org/10.3390/rs9040350
http://dx.doi.org/10.1109/JSTARS.2018.2819598
http://dx.doi.org/10.1109/JSTARS.2018.2819598
http://dx.doi.org/10.3390/rs9010003
http://dx.doi.org/10.3390/rs9010003
http://refhub.elsevier.com/S0924-2716(18)30127-8/h0105
http://refhub.elsevier.com/S0924-2716(18)30127-8/h0105
http://refhub.elsevier.com/S0924-2716(18)30127-8/h0110
http://dx.doi.org/10.3390/rs70101095
http://dx.doi.org/10.3390/rs70101095
http://dx.doi.org/10.1139/cjfr-2017-0019
http://dx.doi.org/10.1139/cjfr-2017-0019
http://dx.doi.org/10.1016/j.compag.2017.07.015
http://dx.doi.org/10.1016/j.compag.2017.07.015
http://dx.doi.org/10.5194/isprsannals-III-8-117-2016
http://dx.doi.org/10.5194/isprsannals-III-8-117-2016
http://dx.doi.org/10.1109/TGRS.2016.2543225
http://dx.doi.org/10.1109/TGRS.2016.2543225

