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Antiderivative Antialiasing for Memoryless
Nonlinearities

Stefan Bilbao, Senior Member, IEEE, Fabián Esqueda, Graduate Student Member, IEEE, Julian D. Parker, and
Vesa Välimäki, Fellow, IEEE

Abstract—Aliasing is a commonly-encountered problem in
audio signal processing, particularly when memoryless nonlinear-
ities are simulated in discrete time. A conventional remedy is to
operate at an oversampled rate. A new aliasing reduction method
is proposed here for discrete-time memoryless nonlinearities,
which is suitable for operation at reduced oversampling rates.
The method employs higher order antiderivatives of the nonlinear
function used. The first order form of the new method is
equivalent to a technique proposed recently by Parker et al.
Higher order extensions offer considerable improvement over the
first antiderivative method, in terms of the signal-to-noise ratio.
The proposed methods can be implemented with fewer operations
than oversampling and are applicable to discrete-time modeling
of a wide range of nonlinear analog systems.

Index Terms—Aliasing, harmonic distortion, nonlinear sys-
tems, signal denoising, signal processing algorithms.

I. INTRODUCTION

ALIASING is a fundamental problem in nonlinear signal
processing. When a digital signal undergoes a nonlinear

operation, its bandwidth is expanded, leading to a spurious
mirroring of components back to the baseband. Aliasing
is particularly problematic in audio applications. This letter
proposes an approach to aliasing suppression suitable for the
simulation of memoryless nonlinearities in discrete time.

A commonly used method to reduce aliasing in memoryless
nonlinearities is oversampling [1], [2], [3], [4], [5], [6], [7].
In audio applications, the input signal is typically upsampled
by a factor of 8 or 16 using an appropriate interpolation filter.
When the nonlinear function is applied at the oversampled rate,
distortion components will appear at frequencies well above
the original Nyquist limit. Under a downsampling/lowpassing
operation, such components are suppressed, and aliasing will
be negligible. The main disadvantage of oversampling is
the proportional increase in the operation count. Interpola-
tion/decimation filters add to the workload per sample.

Other approaches to antialiasing have been proposed for
memoryless nonlinearities. Schattschneider and Zölzer [8]
introduced a harmonic mixer model for polynomial nonlin-
earities of finite order. In the harmonic mixer, the nonlinearity
is divided into a parallel structure in which each branch has a
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nonlinear function of a single order only and the branch input
signals are lowpass filtered to assure that no aliasing can occur
[8], [5]. A filterbank form was presented in [9]. Thornburg
suggested that a nonlinear function could be approximated
with a lower-order polynomial to reduce aliasing [1]. However,
many useful nonlinear functions, such as the hard clipper [10],
[2], [11], [12] and saturating functions [13], [14], [15], [16],
[17], [18], cannot be approximated well with a polynomial.
Recent work has applied bandlimited correction functions
commonly used in oscillator synthesis to reduce the aliasing
introduced by hard clipping and rectification [19], [20], [21].

Antialiasing methods of a fundamentally different character
have been recently proposed by Parker et al. [22]. This method
is based on approximating the underlying continuous-time
input signal with a piecewise linear function, applying a
nonlinear function to it, and convolving the resulting signal
with the continuous-time impulse response of a lowpass filter.

In this letter, we present a new discrete-time aliasing reduc-
tion method for memoryless nonlinearities, based on discrete
differentiation of higher order antiderivatives. The first-order
method is equivalent to that in [22]. However, the use of
higher antiderivatives leads to increasing levels of aliasing
suppression; such methods are distinct from e.g. the second-
order method presented in [22]. Such methods are applicable
regardless of the particular form of the nonlinear function;
aliasing suppression may be understood, intuitively, in terms
of operation over increasingly smoothed forms of the nonlin-
earity. The proposed idea of differentiating antiderivatives is
related to previous antialiasing synthesis methods called the
differential polynomial waveform [23], [24], [25], [26], [27],
and integrated wavetable/sampling synthesis [28], [29], [30].

This letter is organized as follows. Sec. II discusses the con-
text of this work and the first-order antiderivative antialiasing
method [22], which is the starting point for this work. Sec. III
derives the new method using higher order antiderivates of
the nonlinear function. Sec. IV evaluates the proposed method
in terms of signal-to-noise ratio and compares it with the
trivial, oversampled, and first-order methods using a hard-
clipping and a hyperbolic tangent function as examples. Sec. V
concludes this letter and lists ideas for further work.

II. BACKGROUND

This letter deals with memoryless nonlinearities of the form

y(t) = F0 ((x(t)) . (1)

Here, x(t) is an input signal, and y(t) is an output signal; both
are assumed defined for t ∈ R. F0 is a real-valued mapping,
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Fig. 1. Input–output relationships for (a) the hard clipper and (b) the
hyperbolic tangent.

assumed continuous, but not necessarily differentiable, and in
most cases of interest is nonlinear. Two typical examples of
memoryless nonlinear mappings are the saturator, defined by

F0(x) =
1

2
(|x+ 1| − |x− 1|) , (2)

and the soft-clipping nonlinearity, defined by

F0(x) = tanh (x) . (3)

Fig. 1 shows the input–output relationships for these functions.
In the discrete setting, consider a real-valued input sequence

xn, for n ∈ Z. Such a sequence could represent samples of
the continuous function x(t), for t = nT , where T is a sample
period (and fs = 1/T is the sample rate), or could be entirely
synthetic. A direct approach to discrete-time emulation of (1)
is to simply compute an output sequence yn as

yn = F0 (xn) . (4)

As is well-known, such a trivial implementation generates
aliased components, of strength depending on the smoothness
of the mapping F0, and the amplitude of the input signal xn

[1], [19], [20]. The usual approach to reducing aliasing is to
operate at an oversampled rate, as discussed in Sec. I.

A. First-Order Antialiasing
In a recent paper, Parker et al. presented a novel algorithm

for the reduction of aliasing in discrete-time memoryless
nonlinearities, and suitable for operation at a non-oversampled
rate [22]. It takes on a particularly simple form:

yn =
Fn
1 − Fn−1

1

xn − xn−1
. (5)

Here, Fn
1 = F1 (xn) represents the first antiderivative of F0

evaluated at xn. The approximation (5) is arrived at after
a number of steps. In particular, the input sequence xn is
assumed drawn from samples of a piecewise linear underlying
function x(t), which is then convolved with a box function
of one sample duration, and then resampled. The convolution
operation mentioned above requires the evaluation of the
antiderivative of F0, leading directly to the form in (5).

In the case of the saturator (2) and the soft-clip nonlinearity
(3) the antiderivatives can be given, respectively, as

F1(x) =
1

4

[
(x+ 1)2sgn(x+ 1)− (x− 1)2sgn(x− 1)− 2

]
,

(6)
where sgn(·) is the sign function, and

F1(x) = ln (cosh(x)) . (7)

III. HIGHER-ORDER ANTIDERIVATIVE ANTIALIASING

Though it is derived using signal processing considerations
in [22], one observation that can be made about the antialiasing
method (5) is that it represents an approximation to

y(x) =
dF1

dx
or y(t) =

dF1/dt

dx/dt
. (8)

It is natural to examine extensions of the method (5),
based on repeated antidifferentiation. In particular, consider
the extension to pth order of (5):

y(x) =
dpFp

dxp
= DpFp where D =

1

dx/dt

d

dt
, (9)

where Fp is the pth antiderivative of F0 to within a polynomial
of degree p − 1. It is important to point out that except
in special cases, such as the saturator in (2), these are not
available in closed form.

A. A Numerical Method

The key operation in (9) is repeated composition with the
differential operator D. In order to construct a discrete-time
approximation to the higher order forms in (9), it is useful
to take an approach based on operator composition through
discrete time approximations to D. For an arbitrary sequence
gn, n ∈ Z, define unit forward and backward shifts e+ and
e−, and associated first difference operations δ+ and δ− as

e±g
n = gn±1 and δ± = ± (e± − 1) . (10)

Given an input sequence xn and a sequence qn = q(xn), for
some nonlinear mapping q, define the operators D− and D2,
through their action on the time series qn as

D−q
n =

δ−q
n

δ−xn
u Dq(xn) (11)

D2q
n =

2

(e+ − e−)xn
δ+D−q

n u D2q(xn). (12)

D− is a one-sided approximation to D, and D2 is a centered
approximation to D2.

Supposing that p = 2m + r, where m = bp/2c and r =
mod (p, 2), then a discrete-time approximation to (9) may be
written, in operator form, as

yn = em−D
r
−D

m
2 F

n
p , (13)

where Fn
p = Fp (xn) and where the m sample unit delay

em− is used to render the approximation causal. When written
explicitly to orders p = 1, 2, and 3, the approximation yields

yn =
Fn
1 − Fn−1

1

xn − xn−1
, (14)

yn =
2

xn − xn−2

(
Fn
2 − Fn−1

2

xn − xn−1
− Fn−1

2 − Fn−2
2

xn−1 − xn−2

)
, (15)
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and

yn =
1

xn−1 − xn−2
×[

2

xn − xn−2

(
Fn
3 − Fn−1

3

xn − xn−1
− Fn−1

3 − Fn−2
3

xn−1 − xn−2

)

− 2

xn−1 − xn−3

(
Fn−1
3 − Fn−2

3

xn−1 − xn−2
− Fn−2

3 − Fn−3
3

xn−2 − xn−3

)]
.

(16)
It can be seen that (14) is equivalent to (5), the method pre-
sented in [22]. However, (15) and (16) are its novel extensions.
In practice, though aliasing is indeed suppressed, such methods
do introduce a degree of linear filtering to the original signal,
and thus all evaluation in Sec. IV will be carried out at a 2×
oversampled rate.

B. Precision and Ill-Conditioning

The operations D− and D2 both include divisions by
differences of signal values; there is thus the risk of loss of
precision or division by zero when the denominator is small.
Special approximations are necessary under such conditions.

The discrete-time approximation (13) consists of a sequence
of operations of the form D− or D2. Consider a given function
G0(x) and its first and second antiderivatives G1(x) and
G2(x), as well as the sequences Gn

0 = G0(xn), Gn
1 = G1(xn),

and Gn
2 = G2(xn).

At time steps n for which |xn − xn−1| ≤ ε, for some
threshold value ε, the following approximation to D−, ob-
tained through Taylor expansion, may be used:

D−G
n
1 = G0(x̄n−

1
2 ), x̄n−

1
2 =

1

2

(
xn + xn−1

)
. (17)

This corresponds to the rule used in [22].
At time steps n for which |xn+1 − xn−1| ≤ ε, for some

threshold value ε, the following approximation to D2 may be
used:

D2G
n
2 =

2

∆

(
G1 (x̄n) +

Gn
2 −G2 (x̄n)

∆

)
, (18)

where

x̄n =
1

2

(
xn+1 + xn−1

)
, ∆n = x̄n − xn. (19)

When |∆n| ≤ ε, the further approximation

D2G
n
2 = G0

(
1

2
(x̄n + xn)

)
(20)

may be employed.

IV. EVALUATION

The antialiasing characteristics of the proposed methods are
easily observed in the case of a sinusoidal input. Fig. 2(a)
shows the magnitude spectrum of a 1661-Hz sinewave (note
G#6) with peak amplitude 10 under trivial hard clipping.
A sample rate fs = 44.1 kHz was used for this example.
As a reference, Fig. 2(b) shows the spectrum of this signal
upsampled by a factor of 6 prior to clipping. To bypass the
effects of interpolation/decimation filters, the input signal was
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Fig. 2. Comparison of magnitude spectra for a 1661-Hz sinusoidal signal
of amplitude 10 under hard clipping: (a) at a sample rate of 44.1 kHz,
(b) when oversampled by a factor of 6, and when oversampled by a factor
2, and employing (c) the first-order antiderivative method and, (d)–(e) the
proposed second-order and third-order antiderivative forms, respectively. The
harmonic components are indicated with circles; all other spectral components
are caused by aliasing.

synthesized at the target rate fs = 264.6 kHz. The nonlinearity
clearly introduces high levels of aliasing distortion throughout
the spectrum which can be reduced using oversampling.

Figs. 2(c)–(e) show the magnitude spectrum of the 1661-Hz
sinewave processed using the first-order antiderivative method
presented in [22] and the proposed extension (13) to second
and third order. The methods were implemented using two-
times oversampling, i.e. fs = 88.2 kHz. In particular, aliasing
is suppressed more at low frequencies, which is advantageous
in audio, because at frequencies below the first harmonic,
the audibility of disturbances is limited only by the hearing
threshold whereas auditory masking makes high-frequency
disturbances between harmonics inaudible [31].

The performance of the proposed methods was evaluated
by measuring the signal-to-noise ratio (SNR) for a set of
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TABLE I
AVERAGED PROCESSING TIMES (PER SECOND) FOR OVERSAMPLING BY 6

AND THE ANTIDERIVATIVE FORMS

Nonlinearity OS = 6 p = 1 p = 2 p = 3

Hard Clipping 0.23 s 0.10 s 0.15 s 0.17 s

Hyperbolic Tangent 0.46 s 0.19 s 0.21 s 0.23 s

sinusoidal inputs. The SNR was defined as the power ratio
between the desired part of the signal, and the components
generated by aliasing, or residual. Following [23], an ideal
alias-free version of each test signal was synthesized using
Fourier analysis and additive synthesis. This bandlimited sig-
nal was subtracted from the aliased signal to yield the residual.
Since in audio applications the SNR is only meaningful
at audible frequencies, all signals were lowpass filtered to
16 kHz prior to the SNR evaluation. As before, algorithms
(14)–(16) were implemented using an oversampling factor
of 2 (i.e. fs = 88.2 kHz). Given the high computational
costs of evaluating the hyperbolic tangent function and its
antiderivatives at every time step, a lookup table (LUT) was
employed using cubic Lagrange interpolation. Each LUT was
generated by evaluating each nonlinearity at a thousand points
between 0 and 10, and employing odd symmetry. Interpolation
error relative to analytical values was in the range of 10−15.

Figs. 3(a) and (b) show the SNRs for sinusoidal signals
with fundamental frequencies between 1 and 10 kHz under
hard clipping (2) and soft saturation (3), respectively. As a
reference, trivial audio rate processing and oversampling by
factor 6 are also shown. For hard clipping, the second- and
third-order forms increase SNR by approx. 15 and 30 dB
w.r.t. oversampling by factor 6 [cf. Fig. 3(a)]. In the case of the
soft-clipper [cf. Fig. 3(b)], the third-order method outperforms
oversampling by 6 for high fundamental frequencies. At lower
fundamentals the SNRs lie above 96 dB, which can already be
considered sufficient for 16-bit audio (CD quality) [32].

The third-order form requires one nonlinear function eval-
uation, one multiplication, one addition and two divisions
per output sample. The remaining calculations correspond to
previous evaluations and can be stored in memory. For compar-
ison, the four methods discussed here were run in Python on
an Apple iMac with an Intel Core i5 (2.7 GHz) processor with
16 GB of 1600 MHz DDR3 RAM. A 10-second linear sine
sweep from 1–10 kHz with input gain 10 was used as an input
signal. As before, the hyperbolic tangent and its antiderivatives
were implemented using LUTs. Table I compares the average
computation times per second for oversampling by factor 6
and the antiderivative forms. These results demonstrate that
the proposed methods are more efficient than oversampling. In
practice the additional cost of interpolation/decimation filters
required for oversampling must also be taken into account,
constituting a further advantage of the antiderivative methods.

V. CONCLUSION AND FURTHER WORK

A new approach to antialiasing for discrete-time nonlinear-
ities has been presented here. It is of a general character,

(a)

Fundamental Frequency (kHz)
(b)

Fig. 3. SNR of sinewaves under (a) hard and (b) soft clipping implemented
trivially (fs = 44.1 kHz), oversampled by 6 (OS = 6), employing over-
sampling by factor 2 and, the first-order method (p = 1) and the proposed
antiderivative forms (p = 2, 3).

more efficient than oversampling, and does not depend on
the particular type of nonlinearity, or on a simplification
of its functional form. It is presented here as a family of
methods of increasing order p of antidifferentiation in the
nonlinearity, leading, ultimately, to an increasing degree of
aliasing suppression. As is natural, computational cost also
scales with the order p. There remain many open questions
and avenues of future research.

A series of discrete approximations to (9) is given in (13)
which a) maintain the nested structure of the underlying
equation, and b) for a given order p, are minimal in terms of
the number of signal values used to compute an approximation,
which is p + 1. An inherent characteristic of this family of
methods is that of spectral shaping of the output; though
aliasing is suppressed, there can be some attenuation of the
signal in the high frequency range. Additional linear filtering
is one option in this case, as suggested in [33], [34] for
antialiased oscillators. Given that neither property a) nor b) is
necessary in the approximation of (9), generalisations beyond
the nested structures presented here could aid in finding
antialiasing methods for which such attenuation is reduced.

Only the single memoryless nonlinearity has been discussed
here. A logical extension will be to multiple such nonlinearities
in a feedback setting, as it is currently one of the main applica-
tions of virtual analog modeling in audio [35], [36], [37], [38],
[12]. A major new consideration will be the determination of
numerical stability conditions for such antialiasing methods,
and will form the basis for future investigations.
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the University of Edinburgh.



IEEE SIGNAL PROCESSING LETTERS, VOL. X, NO. X, NOV. 2016 5

REFERENCES

[1] H. Thornburg, “Antialiasing for nonlinearities: Acoustic modeling and
synthesis applications,” in Proc. Int. Comput. Music Conf., Beijing,
China, Oct. 1999, pp. 66–69.

[2] P. Kraght, “Aliasing in digital clippers and compressors,” J. Audio Eng.
Soc., vol. 48, no. 11, pp. 1060–1064, Nov. 2000.

[3] J. Pakarinen and M. Karjalainen, “Enhanced wave digital triode model
for real-time tube amplifier emulation,” IEEE Trans. Audio Speech Lang.
Process., vol. 18, no. 4, pp. 738–746, May 2010.

[4] F. Fontana and M. Civolani, “Modeling of the EMS VCS3 voltage-
controlled filter as a nonlinear filter network,” IEEE Trans. Audio Speech
Lang. Process., vol. 18, no. 4, pp. 760–772, May 2010.

[5] P. Dutilleux, K. Dempwolf, M. Holters, and U. Zölzer, “Nonlinear
processing,” in DAFX: Digital Audio Effects, U. Zölzer, Ed. Chichester,
UK: Wiley, 2011, pp. 101–138.
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imizing the look-up table size in quasi-bandlimited classical waveform
oscillators,” in Proc. Int. Conf. Digital Audio Effects (DAFx-10), Graz,
Austria, Sept. 2010, pp. 419–422.
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[35] S. D’Angelo and V. Välimäki, “Generalized Moog ladder filter: Part II—
Explicit nonlinear model through a novel delay-free loop implementation
method,” IEEE/ACM Trans. Audio Speech Lang. Process., vol. 22,
no. 12, pp. 1873–1883, Dec. 2014.

[36] K. J. Werner, V. Nangia, J. O. Smith, and J. S. Abel, “A general
and explicit formulation for wave digital filters with multiple/multiport
nonlinearities and complicated topologies,” in Proc. IEEE Workshop
Appl. Signal Process. Audio Acoust. (WASPAA-15), Oct. 2015, pp. 1–5.

[37] D. Medine, “Dynamical systems for audio synthesis: Embracing non-
linearities and delay-free loops,” Appl. Sci., vol. 6, no. 5, p. 134, May
2016.

[38] A. Bernardini, K. J. Werner, A. Sarti, and J. O. Smith III, “Modeling
nonlinear wave digital elements using the Lambert function,” IEEE
Trans. Circ. Syst. I: Regular Papers, vol. 63, no. 8, pp. 1231–1242,
Aug. 2016.


