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Abstract—In this paper we elaborate on the challenges that
emerge when designing open IoT models and methods to enable
passive "radio vision" functions within a cloud Platform-as-a-
Service (PaaS) environment. Radio vision allows to passively
detect and track any moving/fixed object or people, by using
radio waves as probe signals that encode a 2D/3D view of the
environment they propagate through. View reconstruction from
the received radio signals is based on data analytic tools, that
combine multiple radio measurements from possibly heteroge-
neous IoT networks. The goal of the study is to define the
baseline specifications that are necessary to integrate this new
technology into a cloud-IoT architecture. Following emerging
semantic interoperability concepts, we propose an expressive
ontology model to represent the radio vision concept and allow for
interoperability with other systems. For accelerated integration of
radio vision functions the open Radio.Sense platform is designed
as compliant with existing models (oneM2M based ontologies).

I. INTRODUCTION ON RADIO.SENSE APPROACH

Todays Internet of Things (IoT) relies on heterogeneous net-
works of sensing devices. Most of the existing IoT platforms,
services and applications have been designed as isolated ver-
tical solutions, in which all components are tightly coupled to
the specific application context. Standardization activities are
now facing the issue of interoperability, focusing in particular
on communication technologies [1]. For example, an horizon-
tal service platform for machine-to-machine (M2M) interop-
erability has been defined by ETSI [2] to provide a RESTful
service capability layer accessible through open interfaces that
are independent of the underlying network. However, a major
challenge is semantic interoperability, as this requires different
IoT platforms to be “understood”, which not only does include
the communication level, but also the automatic interpretation
of information coming from different platforms. Achieving IoT
semantic interoperability is a challenging task [1], due to the
heterogeneity of IoT sensors, the variety of data models, the
implicitness of resource descriptions, as well as the limited
accessibility of IoT platforms.

IoT platforms are now opening to the integration of new
technologies. Among them, the radio vision [3]-[8] is emerg-
ing as a powerful technique to exploit radio-frequency (RF)
signals - monitored within the network by the IoT devices
- for sensor-free human-scale perception. The radio vision
technology allows pervasive IoT networks to be converted
into a dense multitude of radio imaging links that cooperate

Fig. 1. Radio.Sense active/passive configurations and systems

to extract a three-dimensional (3D) view of the surround-
ing environment (cf. Fig. 1). RF signals commonly adopted
for communications are in-fact perturbed by objects, body
movements, and changing surroundings, as a result of the
propagation of the electromagnetic (EM) waves and their
interaction with the environment through reflection, scattering
and diffraction phenomena. Therefore, the propagated RF
signals not only transport the transmitted information but also
encode a 3D view of all the objects that have been traversed
by the EM waves. This implicit and mostly unused perception
capability can be exploited in the IoT context by the analysis
of the RF signals exchanged by heterogeneous IoT devices.
In addition, it enables to attack in an innovative way the
problem of the IoT interoperability, as well as the complicated
interaction between heterogeneous hardware/software sensing
resources.

The technology is based on the real-time processing of the
Channel Quality Information (CQI) that is commonly used
at the receiver-side to quantify the RF signal quality. The
perturbations induced by moving bodies/objects on the EM
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Fig. 2. Radio.Sense active/passive configurations and systems

wavefield can be measured directly from CQI data and pro-
cessed to recover an image of the environment that originated
these perturbations, without the need of any ad-hoc sensing
infrastructure nor the cooperation of the monitored subjects
(i.e., as for passive monitoring [4]). In radio vision, sensing
emerges from dense networking. The technology serves as
enabler for implementing a flexible sensing tool, paving the
way for a new generation of IoT applications [11].

The goal of this paper is to investigate IoT methods and
procedures supporting the integration of radio vision functions
into a cloud-IoT platform, referred to as Radio.Sense and
depicted in Fig. 1. The platform builds on a new class of
methodologies to enable large-scale processing and manage-
ment of CQI data in heterogeneous IoT networks, in con-
junction with data analytics and cloud computing tools. We
also propose an ontology model to represent the radio vision
concept, namely to describe the relationship between “things”
producing CQI data and “vision” information, allowing for
interoperability with other IoT models [5]. The concepts of
device, data abstraction and semantics are adopted to decou-
ple IoT applications from specific low-level CQI processing
implementation. All the Radio.Sense services are represented
as virtual resources with uniform operations e.g., for CQI
resource manipulation and inference.

The paper is organized as follows. Sect. II provides an
overview of the radio vision technology. Sect. III illustrates the
proposed Radio.Sense platform, while concepts of abstraction
layers for IoT devices and CQI data-sets, and semantic interop-
erability through CQI object modeling are illustrated in Sect.
IV and V. Some preliminary testing activities are presented in
Sect. VI to reveal the potential of the Radio.Sense approach
inside a smart space laboratory environment.

II. RADIO VISION TECHNOLOGY: OVERVIEW

In radio vision systems, wireless receivers that are exposed
to modulated EM fields, carrying digital/analog information,
are configured to extract, process and share RF data in the
form of noisy estimates of the time-varying channel response,
or CQI. As illustrated in Fig. 2, in the proposed Radio.Sense
platform, human-scale sensing emerges from the real-time CQI
data analytics that run in the cloud, while pre-processing of
data, as well as radio device abstractions (see Sect. III), can

Fig. 3. Radio.Sense architecture summary: cloud services and object models.

be pushed to the network edge, represented by Gateway (GW)
devices. The technology supports both active and passive
configurations as illustrated in Fig. 2. The distinction between
active and passive systems differentiates systems in which the
active part (the RF transmitter) is under the control of the
system from those where it is not.

Passive systems capitalize on pre-existing network infras-
tructures where densely air-interacting IoT devices are exposed
to some EM wave-fields that are continuously maintained
for wireless communication tasks, and capture those ambient
RF signals [10]. CQI processing might be carried out dis-
tributedly or centrally while body recognition is obtained by
real-time monitoring of the body-induced radio propagation
alterations/perturbations [8].

Active systems exploit dense communications with mobile
transmitters acting as interconnected mobile probes. Mobile
probes might be physically co-located with the subject (wear-
able or wrist-worn devices, or personal devices such as smart-
phones/tablets) or being part of a mobile network infrastruc-
ture [14]. These systems might also rely on a decentralized
architecture where user data can be propagated in direct mode
(e.g., BLE or ZigBee radio technologies) instead of through a
remote service provider (e.g., cellular base stations [15], WiFi
access points [9]).

III. THE RADIO.SENSE PLATFORM AND METHODS

The approach followed in this section is to lay the ground-
work for the integration of radio vision technologies into
existing IoT frameworks as well as to deliver the common
specifications for new data models that can be harmonized
with existing IoT models. The new sensing paradigm is
integrated within a platform-as-a-service cloud model (PaaS)
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to enable a wide range of applications. The platform consists
of the following components (cf. Fig. 1).

Field radio devices. The individual mote devices for the
creation of multi-standard wireless sensor networks. Devices
can integrate different radio technologies to collect radio
signals of different types.

Mobile radio devices. Personal mobile devices, wearable
or wrist-worn devices acting as mobile probe RF signal
generators and connected to a network infrastructure.

Gateway devices (GW). Provide access point and sink
node functions for radio device boards supporting different RF
interfaces. They also act as CQI data collector and interact with
the data center unit through the abstraction layers (Sect. IV). In
active systems, each deployed GW device serves as fixed probe
RF signal generator so to maintain the RF field continuously,
and tracks any alteration of the radio propagation environment.
The GW device also acts as over-the-air (OTA) updater for
controlling the CQI data collection process and might also
integrate edge computing functions (e.g., for managing radio
device data).

Data center unit. Consists of a PaaS runtime environment
to deploy and efficiently execute cloud components of large
scale applications. The PaaS runtime environment should be
designed to enable near real-time processing of heterogeneous
CQI data streams. The PaaS allows treatment of semantic
information built upon the Radio.Sense CQI models (Sect. V).

The Radio.Sense architecture in Fig. 3 can be viewed as a
three-tier system consisting of: 1. the device abstraction layer
providing a southbound interface to individual IoT devices
producing CQI data and controlled by the OTA control plane;
2. the CQI data layer, providing a common API for data pro-
cessing; 3. the ontology layer, where CQI data object models
can be defined and instantiated by end-user applications, acting
as an intermediate layer between user-defined, or third party,
applications and the underlying abstraction layers.

In what follows we describe the software layers of the
proposed platform. Device and data abstractions (Sect. IV)
let the cloud to interact with the radio devices and CQI
data processing at a higher abstraction level. The ontology
model (Sect. V) aims to propose reusable object models for
interaction with low-level device and abstraction layers, as
well as for northbound communication with the application
software.

IV. RADIO DEVICE AND CQI DATA LAYERS

We present an abstraction layer that allows to manage low-
level CQI information as well as real-time inference, handling
different IoT radio devices (e.g., over different RF bands) and
based on data collection rules instructed by the OTA control
plane (Sect. V-C).

A. Radio device abstraction

The radio abstraction layer (R-AL) is designed to allow
the Radio.Sense cloud platform to interact with the radio
hardware at an abstract level, with the purpose of programming
specific radio functions (if applicable) or managing CQI data

of different types. Data collection is based on the follow-
ing categorization of the CQI measurements (referred to as
CQI_TYPE):

i) physical layer (PHY) channel quality information at
baseband symbol level, including channel state information
(CSI), and received symbol quality [6];

ii) upper layer (UL) network/link-layer received signal
strength (RSS) [4], [3] or other aggregated channel quality
information including packet error rates or related metrics, and
link quality information (LQI);

iii) raw signals (IQ) that include raw features such as micro-
Doppler measurements, dynamic phase shifts and IQ channel
envelope [12].

R-AL also implements OTA programmable radio functions
(OTA_FUNCTION) whose reconfiguration can be triggered by
the control plane and used to modify the CQI data collection
process, with the purpose of reconfiguring the sensing task
itself. Specific low-level radio functions that can be subject to
reconfiguration are defined in Table I.

B. CQI data abstraction

The CQI data abstraction (CQI-AL) decouples the
application-dependent sensing tasks from the pre-processing of
raw CQI data that is needed to isolate relevant patterns inside
heterogeneous CQI structures. Compared with conventional
IoT applications, the adoption of radio vision functions allows
to define a unified approach to human-scale sensing problems
that are based on real time processing of CQI features.
These features are “low-dimensional” representations of CQI
data, as they describe the statistical interrelations among the
different CQI time series, obtained from different physical
links `j ∈ L (devices or antennas) and frequencies fi ∈ F
(or sub-carriers, if applied to multi-carrier radio interfaces).
Features (CQI_FEATURE) can be generally classified as: i)
EM attributes, including CSI and IQ-type features; ii) sta-
tistical attributes, including average RSS and LQI, standard
deviation, statistical correlation, probability mass function;
iii) anomalous patterns, recurrent CQI data variations, spikes,
peaks or series.

Graphical models offer a powerful framework for relating
these features to the process to be sensed. Each feature is here
abstracted as a random signal defined over a graph, where the
graph represents the topology of the underlying interactions
between features and sensed process, and inference is solved
by sophisticated Bayesian algorithms based on the knowledge
on such topology. For example, graph theory allows to model
the structural relationships existing between CQI samples over
time, space (links) and frequency. In addition, the combination
of graphical models with mixture models provides useful
properties that make them attractive as a general tool [17].
Considering the CQI feature vector s = {sv}v=[fi,`j ,t]

as
the input data-set structure for recognition, each individual
observed feature sv = sfi,`j ,t is extracted using the R-AL
interface and is a function of the time instant t (which selects
the data within the time window [t, T − t]), the frequency fi
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OTA_FUNCTION Reconfiguration description
One-hop neighborhood number of active links to cover a detection area, or device-to-device neighbourhood
Frequency and bandwidth operating carrier frequency/channel (subcarriers for OFDM radio interfaces)
Transmission duty cycle time interval between two consecutive radio transmissions that rules the RF signal emission rate
CQI type reconfiguration (where applicable) of the CQI type - PHY, UP, IQ
CQI sampling reconfiguration of the CQI sampling (during debugging)

TABLE I
SELECTED RADIO FUNCTIONS FOR OTA PROGRAMMING PROFILES.

and the link `j . For a selected sensing task τi (see Sect. VI),
the objective is to infer a latent process z (e.g., people location,
movement, behavior or spatial occupancy), that is hidden in the
observed data and is relevant to the sensing task. The process
is inferred by defining a stochastic model M(s|τi) for the joint
distribution of the CQI features s, as a mixture of graphical
structures:

M(s|τi) =
m∑

k=1

αk,iG
k,i(s|τi), (1)

with αk,i = Pr(z = k|τi) ≥ 0, namely the mixture
coefficients, representing the prior knowledge on process z,
which takes value k ∈ {1, ...,m} with probability αk,i and∑m

k=1 αk,i = 1. Joint probability distributions Gk,i(s) are
the mixture components. The mixture model (1) selects, for
a particular sensing task τi, the most appropriate graphical
model to describe the input feature set s. Each k-th mixture
component Gk,i(s) can have a potentially different graph
structure Gk,i = {V, E}, with nodes v ∈ V and edges E , and
it could be assumed as following the local Markov property
Pr(sv|sN (v); τi) = Pr(sv|sV/v ; τi), where N (v) is the open
neighborhood of node v.

The CQI-AL provides the upper ontology layer (Sect.
V) with the parameters characterizing the graph structures
{αk,i,Gk,i} for each defined sensing task τi. Learning of
mixture structure (1) can be obtained from training data
and can be generally solved based on expected-maximization
(EM) algorithms: simple solutions exist for tree distributions
as mixture components Gk,i(s) [19], while application to
more complex dynamic Bayesian networks [20], Markov and
conditional random fields [21] is still considered as an open
problem. Real-time detection, and inference services can be
implemented based on a database of learned structures. Basic
inference problems (including detection and classification) on
graph structures (1) correspond in general to infer the value
of the hidden variable z as

Pr(z = k|s; τi) =
αk,iG

k,i(s|τi)∑m
h=1 αh,iGh,i(s|τi)

, (2)

now for new input features s.

V. ONTOLOGY MODEL FOR CQI DATA

In this section we define a common set of object models
(OMs) to enable applications to interact with the low-layer
CQI data and analytic tools, as well as to communicate
with devices over diverse transport and application protocols,
subject to the provided authorization and permission controls.

Fig. 4. Radio.Sense ontology model for CQI processing and management.

OMs use oneM2M design patterns [5], and thus provide full
interoperability with standard IoT data objects running inside
the cloud. As described in the following, and depicted in Fig.
4, OMs provide an abstract representation of: i) a device or
a group of devices with common functions (e.g., using the
same radio front-end or technology, producing CQI samples
of the same type, etc.); ii) the CQI data set that contains
measurements from multiple devices; iii) the service model
that defines the cloud services as combinations of elementary
sensing tasks and iv) the OTA control plane for CQI data
collection and sensing task reconfiguration.

A. Device and data models

The component CQI Data Object (CQI-DO) acts as the
digital counterpart of networks of physical devices producing
CQI data for sensing purposes: it can run in the cloud or
inside the Gateway components. The CQI-DO manages an
abstraction of the physical devices by means of a description
of its RF interface (RFInterface_obj in Fig. 4) that, in turn,
contains context information, such as location, link, time,
and frequency information, supported configurable networking
functions (Table I) and CQI_TYPE. Such information is
obtained by interacting with the R-AL. In addition, CQI-DO
directly interfaces with the CQI-AL: it thus implements an
assigned sensing task τi and processes the real-time inference
results (2) for the input CQI features.
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Fig. 5. Layout for preliminary tests: RSSI and CSI extraction, example of sensing task reconfiguration (presence detection and localization).

B. Service model and sensing tasks

OneM2M provides a base ontology [5] with the aim to
help non-oneM2M compliant data models to derive oneM2M
concepts to describe their data model and enable seam-
less interactions between end-user applications and services.
Therefore, it is important to represent how services can be
requested, without any ambiguity in order to reduce the
amount of manual effort required for discovering and using
them. Here, we select the minimal service model (msm)
ontology [23] to describe services since it provides a common
vocabulary based on existing web standards able to capture
the core semantics of both Web services and Web APIs in a
common model. Each service is described using a number
of operations that have address, method, input and output
Message Content descriptions. In particular, the msm:Service
(Figure 4) provides an abstract representation of the cloud
services by means of a description of their functionalities. Any
cloud service is defined as the composition of multiple sensing
tasks τi and thus requires the cooperation of multiple CQI-DO
objects. The msm:Service is also in charge of maintaining
and possibly terminating the relationships between various
CQI_DO objects, in order to improve any service operations.
In accordance with previously proposed ontologies for M2M
applications, the service model provides methods for the
distributed allocation of tasks for the execution of applications
in the Radio.Sense scenarios between objects that can perform
the same sensing operation in a given geographical area.
Notice that reconfiguration of sensing tasks, might cause
conflicting requests from different Radio.Sense applications
and users that should not impact/interfere with each other.
The developed middleware should thus pay attention to the
relations among Radio.Sense applications, conflicting users
(and situations as well) and available CQI objects/resources
around.

Sensitivity Specificity Accuracy False positive rate
0.83 1 0.88 0

TABLE II
OCCUPANCY DETECTION PERFORMANCE (RSSI BASED).

Localization RSSI CSI
RMSE (m) 0.69 0.93

TABLE III
LOCALIZATION RMSE FOR SINGLE TARGET TRACKING: RSSI AND CSI.

C. OTA control plane

The Radio.Sense platform implements the OTA reconfigu-
ration of the application code through the ControlPlane_obj
and Device_obj resources. The corresponding model is sum-
marized in Fig. 4. Programming and updates are based on
the delivery of single/multiple code modules (e.g., low-level
firmware or upgrades) to single/multiple destination receivers.
Each code module implements a specific OTA profile (Table I)
that maps onto a target OTA_FUNCTION and sensing task.
OTA profiles address various networking protocol features,
such as routing, connectivity, frequency/bandwidth, power and
device duty cycling. The application of any OTA profile results
in an ad-hoc modification of the CQI data collection process
which, in turn, triggers the reconfiguration of the sensing task
itself or a modification of its accuracy.

In the proposed platform, the Gateway (GW) devices act
as OTA updater, while radio device boards (field devices)
act as OTA update receivers. The transport protocol for OTA
programming can be chosen based on [13]. In the following
example, the control plane is employed to modify the CQI
type, based on the implementation of a WiFi network.
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Fig. 6. Top. Passive subject tracking and imaging app (snapshot from video
records). Bottom. Remote localization service: layout for Gateway and field
devices (IEEE 802.15.4).

VI. PRELIMINARY VALIDATION

The core services defined by the Radio.Sense platform are
divided into personal and crowd sensing. Personal sensing is
the focus of the below case study and covers various tasks
that monitor different aspects of a person’s “social settings”
such as proximity/presence detection, passive or device-free
localization [3], behavior recognition, and health related condi-
tions [6]. Crowd sensing focuses on multiple people, including
counting and density monitoring [22].

In the example summarized in Figure 5, we employed a
network of WiFi devices working in the 5.32GHz band (i.e.,
WiFi band 2, channel 64 and nominal bandwidth 20 MHz). A
single GW device is programmed to inject (or transmit) custom
IEEE 802.11n PHY protocol data units (PPDU) structured
as standard high-throughput (HT) greenfield WiFi format,
including preamble, MAC addresses, header, and payload.
Injected frames are sent at every 10 ms and received by two
field devices (i.e., RX1 and RX2). The chip-set firmware and
kernel [24] were used to obtain CQI samples of received IEEE
802.11n data frames. Monitored CQI types can be in the form
of RSSI (UL) and CSI reports (PHY). The considered WiFi
chip-set reports the RSSI values from 3 antennas and the CSI
for a subset of 30 OFDM sub-carrier groups, over the active
MIMO links (considering the GW equipped with 3 antennas).
Both CQI types are represented by a CQI_DO object and
therefore can be selected by end-user applications based on
the specific usage scenario.

The considered scenario focuses on a personal sensing
service. RSSI features are continuously monitored to detect the
presence of the subject (human body) in the area: when human
presence is detected, the CSI reports from field devices are
requested by the GW node to extract the finer-grained position

of the newcomer subject. Compared to RSSI, CSI reports have
larger size, therefore they should be triggered only on-demand.
In Tables II and III we summarize the results obtained for
occupancy detection and localization separately, using RSSI
and CSI. Table II shows occupancy detection performance
in terms of sensitivity, specificity, accuracy and false positive
rate, considering single and double targets located at different
positions. Occupancy detection is based on the real-time
evaluation of the RSSI correlation among co-located antennas
of the same device. The use of RSSI is accurate enough to
discriminate an occupied environment from an empty one
(observed sensitivity is 0.83). Instead, as depicted in Table
III, target localization accuracy obtained from CSI reports
is remarkably larger compared to RSSI. Finally, it is worth
noticing that the highlighted performance have been observed
by using only two MIMO devices.

In Fig. 6 we show that better performance can be ob-
tained at the expense of a larger number of devices, and
CQI reports to be processed. In the example, a real-time
passive localization service is implemented based on a network
of 14 IEEE 802.15.4 field devices (operating over 2.4GHz)
that are pre-installed inside the monitored area (as shown in
the bottom figure). The passive subject tracking service is
made accessible remotely by an end-user application (top-
right corner subfigure) running on a portable device. We use
a JSON REST (Jax-RS web services) framework to encode
the CQI features before sending to the cloud. Probabilities in
(2), where latent variables z are here interpreted as monitored
positions, are pushed to the application and are mapped on
2D coordinates in the space, to reconstruct the image onf the
environment. Tracking accuracy and latency (not shown) can
be scale down to 0.3m and 100ms, respectively.

VII. CONCLUSIONS AND FUTURE WORK

The paper described the architecture of the Radio.Sense
software, that allows building a cloud platform, the baseline
IoT methods and procedures to support the integration of radio
sensing and vision functions. At present, we are designing the
network layer protocols for the control plane and the service
layer, by taking into account the findings of the experiments
described in Section VI. Future work will address methods for
efficient triggering of tasks as well as conflict resolution.
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