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WiBot! In-Vehicle Behaviour and Gesture
Recognition Using Wireless Network Edge
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Abstract—Recent advancements in vehicular technology have
meant that integrated wireless devices such as Wi-Fi access points
or bluetooth are deployed in vehicles at an increasingly dense
scale. These vehicular network edge devices, while enabling in
car wireless connectivity and infotainment services, can also be
exploited as sensors to improve environmental and behavioural
awareness that in turn can provide better and more personalised
driver feedback and improve road safety.

We present WiBot! a network-edge based behaviour recog-
nition and gesture based personal assistant system for cars.
WiBot leverages the vehicular network edge to detect distracted
behaviour based on unusual head turns and arm movements dur-
ing driving situations by monitoring radio frequency fluctuation
patterns in real-time. Additionally, WiBot can recognise known
gestures from natural arm movements while driving and use such
gestures for passenger-car interaction. A key element of WiBot
design is its impulsive windowing approach that allows start and
end of gestures to be accurately identified in a continuous stream
of data.

We validate the system in a realistic driving environment by
conducting a non-choreographed continuous recognition study
with 40 participants at BMW Group Research, New Technologies
and Innovation centre. By combining impulsive windowing with
a unique selection of features from peaks and subcarrier analysis
of RF CSI phase information, the system is able to achieve 94.5%
accuracy for head- vs. arm movement separation. We can further
confidently differentiate relevant gestures from random arm and
head movements, head turns and idle movement with 90.5%
accuracy.

I. INTRODUCTION

Driver-car interaction is subject to intensive theoretical re-
search [1], human-studies [2] and long-term investigation [3].
Intelligent personal assistants like Amazon Alexa ! and Siri
enable the natural human like interaction utilising speech
as the medium. Additionally, camera-based, touchless-gesture
control systems are being introduced in new cars, like BMW 7-
series, with confined detection area, allowing users to perform
simple operations, like adjusting volume.

In car, since any interaction could potentially distract the
driver and thus increase the risk of accidents, a distraction-free
interaction that can be conducted without taking the attention
off the road is essential. Common solutions cover the inclusion
of haptic feedback on physical control elements (e.g. designing
their shapes and surface characteristically), or buttons with
characteristic haptic design [1]. For instance, touch screens

Thttps://developer.amazon.com/docs/alexa-voice-service/api-overview.html
Zhttps://www.apple.com/ios/siri/
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Fig. 1: WiBot! network-edge based behaviour and gesture
recognition system.

that replace traditional interfaces might be problematic with
respect to learnability. They can also be distracting, because
the driver has to rely on visual feedback and cannot form a
muscle memory or map of the controls over time [4].

For this reason, speech-based interaction is an active field of
research and integrated in first in-car interaction systems [5].
However, speech interaction requires discipline from the driver
and can be perceived as a disturbance to the social interaction
when driving in company. Especially for simple interaction
and commands, speech is not optimal and can also be dis-
tracting [6]. Moreover, people with speech disabilities can be
deprived of such facilities. We propose to supplement these
existing driver-car interfaces with network-edge based gesture
recognition interface.

The purpose of our research is to enhance the capability of
intelligent personal assistants, by enabling them understand the
behaviour of the driver, which leads to appropriate assistance
and feedback. In this paper, we focus on the distracted
behaviour detection. WiBot recognises the behaviour based on
human body movements, such as frequent head turns, random
arm movements and posture changes. In addition, WiBot also
recognises two simple non-distractive gestures, ‘push’ and
‘swipe’ from all other random actions being performed during



a drive. The purpose of these two gestures is to enable the
driver to interact with the personal assistant to command ‘yes’
and no’ respectively. WiBot is limited to two easy to remember
gestures in order to keep the human computer interface simple,
reduce cognitive overhead and broaden the spatial range of
gesture detection in real time processing. WiBot performs its
data computations locally in-car and is designed as an edge
based system to guarantee fast and timely user feedback (cf.
Figure 1). The integration of edge based RF recognition into
the car is natural as most contemporary cars already feature
RF interfaces such as Wi-Fi or Bluetooth.

We focus on Wi-Fi and, in particular, channel state infor-
mation (CSI)-based solutions, as these will soon replace Blue-
tooth for in-car interaction and entertainment [7]. Exploiting
in-car edge devices enable efficient data processing and real-
time response generation to best facilitate the drivers. WiBot is
unique because it captures behaviour from body movements.
It can otherwise be done using video cameras, which not
only come with heavy image computational challenges, but
also is a great privacy concern for people using cars in their
everyday lives. Inattentiveness detection has been exploited
based on gaze tracking techniques using video cameras [8].
The limitation of this approach is low visibility at night,
inappropriate for people wearing sunglasses in daylight and
limited camera focus which looses information if person
moves out of camera frame.

Our contributions are (1) accurate recognition of unscripted
free/natural movements from continuous CSI phase infor-
mation by impulsive windowing technique, (2) Distinction
between arm-movement and head-movement from a single-
receiver CSI system in a vehicular setting, (3) implementa-
tion of a Wi-Fi-based human behaviour detection system for
vehicular settings that also enables gesture-based interaction
patterns, and (4) a case study with 40 subjects in realistic
driving environments.

We propose a Wi-Fi based human behaviour detection
system for a driver in autonomous and non-autonomous ve-
hicles. The behaviour detection is based on unusual head
and arm movements. We conduct a distraction based human
study with 40 participants at BMW Group Research, New
Technologies and Innovations, Germany. Additionally, we
propose a gesture recognition system to communicate with
the car bot/communication system. The gestures are ‘push’
and ‘swipe’ which translate to ‘yes’ and ‘no’. Contrary to
other researches, we do not pre-define a set of activities to
distinguish from our interaction gestures. Rather, we conduct
a totally non-choreographed study, without instructing users
to behave in a particular way. We induce triggers to distract
the study participants, which lead to various body movements.
We propose our impulsive windowing method for identifying
start and end point of movements/activities that a subject does
during his drive. We propose a feature selection method based
on peak analysis and subcarrier analysis to distinguish between
random activities.

Challenges we take: As the focus of our research is to
analyse behaviour from naturally occurring movements, we

encountered several challenges during the course of experi-

ments, and we present solutions to these challenges in the

following sections of this paper.

C1: How accurately can we actually perform gesture recog-
nition when the person is in driving situation, and is not
instructed to behave or move in a certain way? Can we
do this without defining an overhead of preamble which
demands performing additional gestures that are not the
optimum solution in real driving?

C2: Can we distinguish between arm movements and head
movements with a single transmitter and receiver?

C3: Can we identify simultaneously occurring arm move-
ments and head turns?

C4: Can we distinguish between any random arm/ head move-
ments from defined gestures?

The rest of the paper is structured as follows. Firstly,
we acknowledge the research work done in the domain of
RF based activity sensing in Section II. Then we illustrate
the necessary theoretical knowledge about CSI and phase
correction in Section III. Section IV is about the hardware pro-
totype setup and configuration for data collection. Section V
demonstrates the in-depth human study carried out during
the course of this research. Section VI covers the system
architecture, overview, method details and results. Section VII
highlights the challenges that are yet to overcome, Section VIII
tells about the real world applications of WiBot. We conclude
our paper in Section IX.

II. EVOLUTION OF WI-FI AS ACTIVITY SENSORS

Human movements and activities have been widely studied
with computer vision, wearable sensor-based and ambient
device-based sensors [9], [10], [11]. Recent advances in infra-
red LED and depth camera like Microsoft Kinect [12], [13]
have overcome limitations such as dependence on light illumi-
nation and darkness, however, there are still open issues that
need to be addressed in the future such as privacy intrusion,
need for installing dedicate devices, inherent requirement for
line of sight and intensive computation for real-time process-
ing. These limitations in the existing technologies means that
newer and better methods have to be sought for movement
detection. One such potential area that is catching traction
recently is to use WiFi receivers as sensors. One of the
obvious benefits of using WiFi receivers as sensors is their
existing installed base within the edge network infrastructure.
The initial research in this domain was focussed on Received
Signal Strength Indicator (RSSI) fluctuations as the primary
indicator for sensing and localisation [14], [15], [16], [17],
[18], [19]. The focus has now shifted to Channel State In-
formation (CSI) in thirst for fine grained activity detection
and higher accuracy. Furthermore, researchers have taken
the challenge of phase correction problem to even capture
the direction of motions [20]. Another improvement in this
research area is a shift from dedicated or specialised hardware
to commercially available Wi-Fi devices. Most commonly used
hardware in this field is Software Defined Radios (USRP)
which provide high accuracy for fine-grained activities [21],



[22], [18]. Human activity recognition with Radars is also
a very tempting solution due to its high frequency, higher
distance resolution and ability to detect the micro-doppler
variations [23], [24], [25]. But these system require dedicated
hardware which is high in cost as compared to commercially
available Wi-Fi devices, such as WLAN cards.

Most recent research on human activity recognition with
CSI, amplitude and phase information include [26], [27],
[28]. Fall detection [29], indoor localisation [30], crowd
sensing [31], smoke detection [32] and direction based exer-
games [20] are among the prominent ones. The effect of
human movements on channel state information (CSI) lever-
aged by these studies proves that CSI has an advantage
over visible light, infrared, or thermal energy for detecting
human movements. Widance [20] present a novel approach
for finding direction of movement from doppler effect. The
limitation of Widance [20] is that the method of performing
leg movements is highly choreographed and other body move-
ments are controlled. In Smoky [32], the smoking detection
system uses subcarrier level information and image processing
techniques to obtain the fine grain movement patterns. They
distinguish between similar activities and predefine a set of
actions that makes smoking a composite activity, like holding,
putting up, sucking, putting down etc. Although the focus is
more towards fine grained activities, but the trained classes
of activities are limited and do not take into account all
the possible random movements. We take inspiration from
the recent studies and extend our work towards detection of
natural, non-choreographed movements and behaviour.

All the above mentioned RF based gesture or activity
recognition techniques do not exploit body movements to
detect human behaviour. To the best of our knowledge this is
the first work, which develops RF-based behaviour recognition
system for a complex and natural scenario like car driving
where the gestures or movements are not known before hand,
by utilising CSI data collected from commercially off-the shelf
WLAN card. Furthermore, WiBot distinguishes two simple
gestures, push and swipe, from all other movements (upper
body) happening during a drive. The theoretical knowledge
about CSI data applied in our system is explained in the
following section.

III. CHANNEL STATE INFORMATION

Current Wi-Fi standards (IEEE 802.11 a/g/n) widely use
orthogonal frequency division multiplexing (OFDM). With
OFDM, wireless data is transmitted over multiple orthogo-
nal subcarriers. These subcarriers are a result of spectrum
partitioning with OFDM. The frequency selective fading is
mitigated using the same modulation and coding scheme
MCS) [33].

CSI in comparison to RSSI, provides subcarrier-level am-
plitude as well as phase information of the OFDM chan-
nel. Therefore, it tends to be more informative and stable
representation of channel characteristics than RSSI. Wireless
Network interface cards (WLAN NICs) capture the channel
state information for every frame for decoding the payload.

Equation 1 is the fundamental equation depicting the tradi-
tional transmitted-received signal in a multi-path environment.
z(t) is the input radio signal, H(f,t) is the complex valued
channel response/channel transfer function at a frequency f
and time ¢ which models the channel and y(t) is the output
signal. H(f,t) is called as channel frequency response (CFR)
which is defined on the basis of channel noise.

Wi-Fi NICs report CFR values in the form of CSI ma-
trices [28]. If Nz, is number of transmitter antennas and
Npg, is number of receiver antennas and S is number of
OFDM subcarriers, then for one Wi-Fi frame, every single
CSI measurement contains S matrices of dimension Np, x
Ng,. In our case, the Ny, = 2 and Np, = 3, S = 30 (from
Linux CSI tool [34]).

y(t) = z(t).H(f.1) (1)
A. Relative Phase Utilization

The output signal in Equation 2 depends on N multi-paths
due to line-of-sight (LOS) path and non-line-of-sight (NLOS)
paths from surrounding objects reflection. H(f,t) [35] can be
written as follow:

K
H(f,t) =) agge 770

k=1 2
ﬁ(f7 t) = H(f7 t)'e_jQW(Atf-i-Aft)

where K is total number of paths, ay(t) and 74 (¢) are the
complex attenuation factor and time of flight for k-th path
respectively. In theory [28], when the clocks between trans-
mitter and receiver are perfectly synchronised, the accurate
phase information can be retrieved, say in RFID systems.
However, the commercial Wi-Fi devices, specifically WLAN
cards can have unknown frequency shifts and timing offsets
between transmitter and receiver, leading to erroneous phase
measurements. In Equation 2, 27 (Atf + Aft) is phase shift
caused by carrier frequency and timing offset. IEEE 802.11
standards accept the carrier frequency drift of 100KHz. This
leads to random phase shifts in channel state information.
Inspired from [28], [20] we utilise the relative phase ideology
derived from static and dynamic components for our analysis.
In short, we take relative angle between two antennas. We take
two signals y;(t), and y2(t) and we model them as complex
numbers (vectors) containing real and imaginary parts. We
want to find the angel between them. The usual mathematical
way to find phase between two vectors (represented as com-
plex numbers), is to find the dot product of the vectors and
then divide by the multiplication of the vector magnitudes.

— Re(y1-y2)
0 = arccos (i) @

This is computationally expensive to perform for every
received packet. We can use another interesting mathematical
properly of complex numbers. Multiplying two complex num-
bers causes there magnitudes to be multiplied while their angle
add. Taking the conjugate of one of the complex numbers
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Fig. 2: Study statistics; age distribution, emotional states before and during the drive, driving experience and study design.

Fig. 3: Images captured during the human study; subjects are performing head and arm activities in response to triggers.

before multiplication would then mean that the angles of the
two vectors would subtract, giving us the angle between the
vectors shown in Equation 4.

y1-y2 = ([y1lly2))[cos(61 + 62) + isin(61 + 62)]
“)
Using Equation 4, if y3(t) = y1(¢t)Xy2(¢)’, and y,(¢) and
y2(t) both are rotating at the same speed (two signals at same
frequency), y3(t) will ideally not be rotating at all since phase
of ys(t) is the difference between phases of yo(t) and y;(¢),
and that should (under static conditions) not change much,
although there may be a constant phase difference between
y1(t) and y2(t) due to spacial diversity.

IV. HARDWARE PROTOTYPE

In order to collect the CSI data with the modified Linux
driver [34], we use a Dell and an HP laptop with IWL 5300
card (having transmit power= 32mW and bandwidth up to
450Mbps), installed as a transmitter and receiver. We installed
the CSI capturing tool on both transmitter and receiver. At
the receiver end, where majority of the signal processing and
machine learning is applied to the signal, the laptop used is
HP 6930p with Intel Core 2 Duo T9400 Processor (2.53GHz),
2GB 800MHz DDR2 RAM and 7200 RPM HDD. The injec-
tion mode was setup for transmission with carrier frequency
5.32GHz, sampling frequency 1KHz and channel bandwidth
of 20MHz. The 5GHz frequency ensures less wireless interfer-
ences and better distance resolution in comparison to 2.4GHz.
We recorded the ground truth data using GoPro Hero Session
Camera. Time information is critical in our experiment for data
labelling, therefore we record the timestamps in milliseconds
with each packet. All the devices are remotely controlled and
the collected data is cross labelled using ELAN 3 open source
labelling tool and further processed in MATLAB.

3http://tla.mpi.nl/tools/tla-tools/elan/

V. NON-CHOREOGRAPHED HUMAN STUDY

With the exceptional advancement in vehicular technol-
ogy in the past decade, from non-autonomous to highly
autonomous, brings a lot of potential research possibilities.
The ideology behind these innovations are to provide unprece-
dented services to humans and improve their quality of life.
The effective time utilisation by performing additional tasks
while taking a ride is the highlight of this technology. This
means that driver can perform other activities by transferring
driving control to the car. Also, the feature such as speech
recognition bots in cars lets the driver give commands or
interact with the car in more human way. In order to interact
with the driver, bot system in car needs to understand and learn
human behaviour in order to respond in a required way. As we
consider that person can be in driving and non-driving mode,
the gesture recognition should be applicable for both scenarios.
Currently, speech recognition is used as the modality for
communicating with the driver. Taking into account that about
9% people on average have speech problems *, this modality
does not cover the whole range of people using cars. Our
idea is to define gestures for ‘Yes’ and ‘No’, which can be
an alternate for such people. Moreover, people without any
speech problems can have different emotional state and they
might not always want to talk to bot by speaking. Also speech
recognition isn’t readily available in all languages. this also
makes a good case for gestures.

We carried out an extensive human study of 40 participants
at BMW Group Research, New Technologies and Innova-
tions, Germany. As a prerequisite, the data privacy consent
was signed by each participant. Before the experiment, the
general information about each participant (name, age, sex,
driving experience, current emotional state and any external
variables present at the time of experiment) were recorded.

“https://www.nidcd.nih.gov/health/statistics/statistics-voice-speech-and-
language



The participants ranged from 18 to 60 years, 27 males and
overall driving experience of over 6 years (cf. Figure 2).

A. Study Design

The thought behind the study is to distract the subject during
his otherwise smooth drive and capture body movements
which happen in response to distraction triggers. Additional
thing that we capture is two gestures; push and swipe. The car
used for experiment is BMW Mini Cooper with Augmented
Reality video used in place of simulator. The drive time is
around 10 to 15 minutes. There are 3 separate phases in
which driver has to drive the car. In this paper, we discuss the
phase where we induce numerous triggers to distract, annoy
and alarm the driver. The audio triggers used are different
noises emerging from different directions, for example, crying
baby from back seat, approaching ambulance siren from left
side and repetitive horn sounds from right side. In response
to the direction of these triggers, the driver moves his head
and arms in different directions. Due to repetition of sounds,
his attention is diverted and his way of driving changes. Same
driving simulation is used for all the drivers, the sequence
of triggers is randomly permuted for each experiment and no
instructions are provided to the subject during the course of
the experiment. The push and swipe gestures are recorded by
using them as indicators of ‘yes’ or no’ respectively. The data
recording is done by asking questions over audio before and
after the drive to mitigate the in-car bot conversation. In a
feedback of this experiment, more than 80% of the people
reported that they felt distracted and annoyed during the drive
Figure 2.

The data captured gives natural movements, for example,
small head movements during driving, random arm movements
like scratching head, adjusting mirror and significant head
movements like turning head backwards, left or right due to
induced triggers. Hence the movements are not defined in
advance, there is no fixed count of movements performed and
there is no specific way advised to do anything. The push
and swipe gestures, however are explained in advance and the
general suggestion to behave naturally is given prior to the
experiment. Despite defining push and swipe gesture, the way
of doing the gesture, speed and duration is still different for
each participant. Figure 3 shows the images captured during
the study.

VI. SYSTEM ARCHITECTURE

Detection of human movements in real time vehicular
scenarios requires fast processing of data and feedback to
user, which if delayed, can be meaningless. Communicating
directly with cloud is not an efficient solution as it increases
the end to end latency of the system due to longer network
path. Computing and storing the data locally at the edge device
is the most suitable choice for vehicular scenario. Reason
being, there is only one user per edge device and is located
very close to it. Most time consuming step is learning and
classification, which in this case is simplified as the patterns
stored locally are for a single user, and only the most recent
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Fig. 4: Depiction of end to end WiBot computation and latency
at edge and extension to cloud.
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and repeated ones need to be used for detecting behaviour.
This also ensures privacy and anonymity of the user, as the
data is not continuously shared on the network. Depending
on the length of activity being performed, the edge devices in
car process window times ranging from msec to few seconds
for computation. The real time data collection, processing and
classification can be performed in this time. As the feedback
is required only when certain threshold is met, based on the
repetition or duration of movements, this reduces the load of
generating continuous feedback. This means, we don’t need
to run classification once every second, but rather once per
window, and window may span over multiple seconds based on
the activity frequency, so we save ourselves from continuously
running classification. The computation and storage can be
extended to cloud to record global trends for features, patterns
and feedbacks and handling computations that can not be
solved by the local edge device. For example, when the
data is collected for which pattern does not exist locally,
the request can be forwarded to cloud to get an appropriate
feedback, albeit this comes at the expense of added delay
due to potentially longer round trip time to the cloud nodes.
Figure 4 shows the high level architecture for WiBot.

The low level system system architecture for WiBot be-
haviour detection, based on human movements is shown in
Figure 5. The raw CSI data in complex form is first interpo-
lated to remove any missing information. Then we separate
the amplitude and phase. We utilise both amplitude and phase
in our system to capture the fine grained information in data.
The phase has to be first corrected in order to be used for
analysis. The de-noising is performed to preserve the critical
information and remove the noise. We perform impulsive win-
dowing for accurate detection of activity boundaries in online
and offline processing. Subcarrier sanitization is performed to
remove the outliers. The peak analysis and subcarrier analysis
are the two major stages for feature computation. We then
classify the data based on the trained model and predict the
labels. Figure 5 illustrates the proposed system architecture
and WiBot pseudocode with major steps listed is shown in
Algorithm 1. These steps will be explained in detailed in the
following sections.

A. Interpolation

Natural movements are instantaneous, the labelling data
instances is a very challenging task here, as a single head
movement could happen in less than one second or could
take up to 3 or more seconds. This requires a very precise
synchronisation between time in recorded video and the times-
tamps captured with each packet. Despite configuring our Wi-
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Algorithm 1: WiBot Algorithm

1 function WiBotFunction (y1,y3);

Input : Complex Signals ;1 (t) , y3(t)

Output: Window Label Set

initialization;

rel¢(t)13=phase (y1(t),ys(t)’);

denoisedPhase = lowpassFilter(rel¢(t)3);

windows = computeWindowBoundaries(denoisedPhase);
for win = windows 1...n do

unwrappedWindow = unwrap(win);

win = removeDcComponent(unwrappedWindow);
sanitizedWin= removeOutlyingSubc(win);
reducedWin= dimensionReduction(santizedWin);

o e N S B R WN

"
= =

subcarrierFeatures=
performSubcarrierAnalysis(SanitizedWin) (cf.
Algorithm 2);

13 labelSet = classificationModel(peakFeatures,
subcarrierFeatures);

14 Labels[winIndex] = labelSet;

15 end

6 return Labels;

p—
(5]

-

Fi device driver to transmit at a fixed transmission rate, we
observe some non-uniformity in the recorded samples, due to
packet loss and transmission delays. To overcome this, we
perform interpolation for accurate time domain analysis and
labelling. Linear interpolation fills the missing data points by
previous data point value.

B. Phase Correction

The methodology for correcting phase information in col-
lected CSI streams is explained in Section III. Figure 6 are
the angle histogram/polar plots illustrating the distribution of
phase values, grouped in accordance to their numerical range.
It shows the absolute phase changes (left Figure) measured
from CSI stream of a single antenna and the phase measure-
ment after applying the relative phase correction technique
(right Figure) on the same CSI stream. We can clearly see

peakFeatures=performWindowPeak Analysis(reducedWin);

Fig. 6: Random/absolute phase shifts and corrected/relative
phase shift for CSI stream.

the distribution of phase changes in both figures. The absolute
phase is unusable as its uniformly distributed in the range of
0° to 360°. On the contrary, the relative phase for the CSI
stream tend to concentrate within the sector of 210° to 240°.
This practical observation can also be confirmed mathemat-
ically. In our experimental setup, we are using Wi-Fi signals
with a wavelength of S5cm. Our antennas are arranged as an
antenna array and the distance between two antennas is 3cm.
As shown in Figure 5, the reflected radio waves arrive at the
receiver almost at an angle of incidence of 90 degrees. Using

equation 5,
A¢p = (2mdsind)/\ )

where d = distance between antennas, 6 = angle of incidence
of wave and A\ = wavelength. Substituting 7/2 in 6, Scm in A,
and 3cm in d, we can compute the expected phase difference
between the receivers and that comes out to be 1.2 7 radians,
which closely matches our observed relative phase difference
shown in Figure 6.

C. Denoising

Upper body movements are of highest interest in this re-
search. Normal speed of upper body movements is observed to
be around 0.75m/s. For Wi-Fi devices with carrier frequency
of 5.32GHz, the frequency f = 2V,,,/A. This makes it 30Hz,
which WiDance also confirms to be the frequency of body
movements [20]. The choice of cutoff frequency is critical in
our case. The reason being no defined movements, the lack
of periodicity and varying speed, varying intensity of both
head and arm movements. In order to ensure that both arm
and head movements of varying patterns are preserved in our
filtered data, we use the low pass butter-worth filter with cutoff
frequency of 30Hz. We filter all the subcarriers and utilise in
further analysis. The raw (left) and filtered (right) phase CSI
stream is shown in Figure 7. We can clearly see in this Figure
that the raw phase is useless as all the activity information
gets corrupted, while the denoised phase reveals very clear
picture of 3 push gestures performed in between the no activity
regions.

D. Pattern Dictionary Composition

Based on our data set, we observed that subjects repeatedly
perform activities that can be seen as independent and disjoint
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TABLE I: Possible labels observed during a drive.

Labels
Ly turning head towards right
Lo turning head towards left
L3 turning head partially backwards, such as looking at the rear
seat
Ly random head movement
Ls random arm activity
Lg performing "push" gesture with the hand
Ly performing "swipe" gesture with the hand

from each other. We categorise such activities into the set of
distinct labels as shown in Table 1.

However, we also noticed that sometimes multiple activities
are performed together within the same time window. This
leads us to model our classification problem as multi-label
classification, where each window, or data point, can have one
or more labels assigned to it. Multi-label classification problem
in context of high level activity recognition is explored by [36].
We use the Label Powerset (LP) method to transform our
multi-label problem to single label problem, and then apply
the k-nearest neighbour classifier to categorise our windows
as belonging to one of the classes, where one class could be
the combination of two or more base classes.

Label powerset method can be modelled as follows:

Instance = = [x1, ..., 4] € R?

Class labels: L = {1,2,...,L}

Label space: Y = {0, 1}

Labelset: y = [y1, ..., yr]€Y;

y; = 1 if jth label relevant to x; else 0
Training set: {(z;,v:)li =1,..., N} C (XzY)
Classification: h: X € Y

LP transformation usually suffers from complexity issues
due to dimensionality of the label space. Considering we have
7 distinct labels, the total possible label subsets will be 27.
However we solve this dimensionality issue by taking into
account the label correlations in our training data. We observe
that only few of the labels occur together in the same instance
or window. We observe that other combinations of labels are
not possible or highly unlikely and thus ignore them from our
output label subsets. For instance, head turned to right and left
cant occur simultaneously, nor can push and swipe overlap.
This reduces the number of label subsets and allows better
performance. The label subsets with highest occurrences are
shown in Table II.

TABLE II: Label subsets observed during experiments.

Label Subsets

L1, Ls| turning head towards right, random arm movement
Lo, Ls | turning head towards left, random arm movement
L3, Ls| turning head partially backwards, random arm movement

L4, Ls| random head movement, random arm activity

Start

Activity Sensing
1 Push Swipe Other

Predict
Activity

Head Turns  Other

rue Predict
Activity

isHead
Movement

isRandom

Fig. 8: Activity breakdown flowchart.

E. Impulsive Windowing

Before we can detect and identify individual activities being
performed, we need to separate them from each other over
time. This requires that we somehow divide the incoming RF
signal into time windows. A naive windowing approach could
be to choose a fixed window size, and then perform pattern
recognition on each window individually. However such a
fixed size temporal windowing methodology suffers from a
number of drawbacks. Firstly, the activities we want to identify
could vary in duration and we can not foresee how short or
long an activity is going to be. Secondly, even if we have prior
knowledge about the length of activity, we would need to know
exactly when the activity will start in time. Since our subjects
are not choreographed, we also do not have the possibility to
look for some well known "preamble" that would signal to
our windowing algorithm that an activity is about to follow.

Abrupt and instantaneous changes happening in time series
data from natural physical environments demands for efficient
detection of changes and with optimal cost. We adopt the
concept of finding locations where data values are changing
abruptly and utilise them for marking the boundaries of a
window. We tend to identify the points in input data where
statistical attributes fluctuate. This is a change points problem
and we utilise the concept introduced by Killick [37] in the
area of statistics.

In mathematical terms, the input data in ordered sequence
can be represented as yl : n = (y1,...,yn). The output
model should have m number of change points, along with
the locations, 71 : m = (74, ..., T, ). The change point position
must be an integer. Each change point position lies in the range
of 1 and n — 1. We define 7o = 0 and 7,,, + 1 = n and assume
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Fig. 9: Impulsive Windowing (a) and Subcarrier Sanitization (b) and (c).

that the change points are ordered such that 7; < 7; if, and
only if, ¢+ < j. Consequently, the m change points will split
the data into m + 1 segments, with the ith segment containing
Y(Tiy+1) © Tie

To solve the above mentioned issues, we make use of a
maximum likelihood estimation algorithm that dynamically
identifies indexes in our data, where a significant statistical
change has occurred. In particular we aim to find all points
in our data where the standard deviation has large and abrupt
changes.

To perform this, we construct two hypothesis. The null
hypothesis, H0, says that no change has occurred in our data
and the standard deviation remains constant within the entire
data set. The alternate hypothesis, H1, states that there is at
least one point in our data set where the standard deviation
has changed.

The log-likelihood ratio, given our two hypothesis, thus
becomes:-

In(A?) =17 =Y In(P(yi | Hi:)) = > In(P(yi | Hos))
1

1
(6)

[38]

where y; is the dataset indexed from 1 to n. Now assuming
that there is one point in our dataset where its standard
deviation changes, and our aim to find this point in time, t0.

In case of our null hypothesis, the standard deviation
remains constant throughout the entire data set, we call this
0. In case of our alternate hypothesis, the standard deviation
is oo before t0, and after ¢0, it become o7;.

Mathematically the log likelihood ratio then becomes:

to—1 n

By setting a reasonable threshold on the log likelihood ratio,
we can tune the sensitivity of our algorithm to find only the
most interesting points where the standard deviation changes
most significantly. We call these as the window boundaries and
between every two boundaries, we assume one independent
activity is being performed.

1) Real-time windowing vs. offline windowing: For the
purposes of this research, we first collect data from a subject
and then post process the data at a later point in time. This
allows us to perform windowing in an "off-line" mode where
all the data is already available to us. However in a production
deployment, data would be coming in as a real time stream
and would need to be analysed "on-line". Our windowing
algorithm explained above can be applied for on-line change
detection as explained in [38]. The windowing algorithm
would then behave like a Shewhart control chart where new
arriving samples would be compared with previously received
samples to see if the signal’s log-likelihood ratio increases
beyond the threshold value, then we mark a window boundary.
The output of marked boundaries after applying impulsive
windowing is shown in Figure 9a.

In order to detect multiple window boundaries in our
sampled series, we adopt the well known binary segmentation
approach [37] to apply the log-likelihood method we outlined
above, recursively, to find not just one point where the standard
deviation changes the most, but multiple points in the data
series where standard deviation changes significantly. In the
binary segmentation method, we first apply the log-likelihood
method to find the first boundary. If such a boundary is not
found, we deem that the whole data series is a single window
and stop windowing here. If a boundary is identified, it divides
the data series into two windows containing the series before

1= Z In(P(y; | 00))+ Zl”(P(yi | crﬂ)—Zln(P(yi | 7))and after the boundary. We then apply the boundary detection
1 to

1
(N

Our aim then, is to maximize this log likelihood and that
would give us the time instance where the standard deviation
changes the most in our data set.

Of course, in reality, we would not have a single change
in our entire dataset, but there would be multiple activities
being performed, spread of time, so we need to recursively
keep looking for significant changes in standard deviation on
both the left and the right of the index where we found the
initial change.

method on both these windows. This method continues divid-
ing windows into smaller windows until no further boundaries
can be found.

F. Subcarrier Sanitization

We observe in our data that all subcarriers have a fixed
phase offset with each other under static conditions. However,
sometimes one or a couple of subcarriers’ phase offset from
other subcarriers changes randomly. We call such subcarriers
as outliers. In order to avoid distortion of results due to



Head Movements (Peak Analysis)

0.2
@
E 0
o -0.2 ==signal

v peak_
-0.4 m:mlr(‘:a:‘lzf:-eprominence)
1000 2000 3000 4000 5000
Samples

Phase
o

Arm Movements (Peak Analysis)

= signal
V peak
~——prominence
width (half-prominence)

500 1000 3000

1500
Samples

2000 2500
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such outliers, we filter them out during the Subcarrier San-
itization phase. This is achieved by keeping the subcarriers
with maximum correlation, and discarding the ones that have
less correlation with other subcarriers. Figure 9b shows the 2
outlier subcarriers with significantly higher phase difference
than rest of the subcarriers, we must eliminate this in order to
keep consistency in our results. After our sanitizing step, we
obtain most correlated subcarriers, as shown in Figure 9c.

G. Dimensionality Reduction

In order to perform the peak analysis in our feature compu-
tation phase, we need to compress the information contained
in all the subcarriers. The compressed version must be the best
representation of activity information preserved in the signal.
The body movements create a correlation effect among the
CSI subcarriers [28]. Principal Component Analysis (PCA) is
a natural choice to achieve this. We select the second principle
component that contains consistent phase variations caused by
human movements. The choice of second component is based
on observation that 1st component preserves more noise than
the other components. This is also conformed by [28].

H. Feature Computation

We identify unique features based on analysing the peak
properties and subcarrier behaviour. Both of these steps are
described below.

1) Peak Analysis: Peak analysis is a widely used technique
in signal processing domain to identify patterns in signals.
We identify peaks in our time domain signal by taking its first
derivative and finding time instants where it becomes zero.
These time instants are either the local maxima or minima
of the signal. By taking the second derivative and observing
whether it yields a positive or negative value at the points
we identified earlier, we can identify maxima and minima
accurately. We refer to these maxima and minima as positive
and negative peaks in our signal. Setting first derivative of
signal with respect to time equal to zero: d(z(t))/d(t) = 0
gives us values of t at which x(¢) has a positive or negative
peak. Figure 10 shows the peak analysis of head movement
(on left) and arm movement (on right). Using features such as
number of peaks, peak width, number of inverted peaks and
peak height, we can clearly distinguish between head and arm.
Number of peaks is much greater for single arm movement
than for a head movement. Similarly peak width is greater
in head movement and height is smaller in comparison to

arm movement. One reason is the range and impact of arm
movement is greater in comparison to head movement.

2) Subcarrier Analysis: While peak analysis contributes
towards distinguishing between head and arm movements, we
observe another striking property among the subcarriers that
help identify head and arm movements. The variance of phase
difference between the subcarriers is widespread when head
movement occurs, while it significantly drops down when an
arm movement happens. In simple words, this can be described
a separation between the subcarriers, how close the subcarriers
squeeze down at closest point in a window and how many
times they come very close to each other.

Algorithm 2: Subcarrier Analysis

1 function performSubcarrierAnalysis(sanitizedWindow);
Input : window with n samples W (w1, wa, ..., wy,)
Output: mean of variances at each point pi,2
Each sample in wi has m subcarriers S : (s1, .., $m);
initialize variance list, V = [|;
for W : wy,wo,...,w, do
compute variance of all subcarriers in sample, o2
append o2 to V;
end
compute mean of all variances in V, u,2 = > (V) /n;
return fi,2;
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This may be attributed to the observation that quick arm
movements affect some subcarriers’ phase more than others.
This causes the relative phase offset between the subcarriers
to diminish and they appear more close to each other on the
phase axis. This is shown in Figures 11a and 11b. Push gesture
can be visualised as hand approaching towards receiver to the
point where phase difference disappears and all subcarriers
merge to 1, and then hand goes away from the receiver. In
swipe, hand slides from left to right in front of receiver, so the
phase difference is generally similar to push, but the number
of points where it disappears is either less or not present
at all. This helps distinguish between push and swipe. On
the other hand, slow head movements do not have the same
varying affect on subcarriers and thus, during head movements,
all subcarriers’ phases are affected equally and they maintain
their relative phase offset with each other. This can be seen in
Figure 1lc.



Phase variance bw subcarriers 3

500 1000 1500 2000 0 500
Packets

(a) Swipe Gesture.

A Phase variance bw subcarriers diminishes

(b) Push Gesture.

Uniform phase variance bw subcarriers,

Phase

1000 1500 2000 0 1000 2000 3000 4000 5000 6000

Packets Packets

(c) Head turn, pause, turn back.
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L. Classification Model

The impulsive windowing and critical choice of features
makes the classification model learning a simple process. After
feature vector composition and data separation into test and
train, we use K-Nearest neighbour, with K=6 neighbours for
learning. The train and test sample data is randomly distributed
from different subjects to include all possible movements for
training. Performing 10-fold cross-validation and separated
test samples gives us overall accuracy of 94.5% (cf. Fig-
ure 12a) for separating arm movements from head movements
and no activity. Model with same characteristics gives overall
accuracy of 90.5% for separating push, swipe, random simulta-
neous (head turns and arm movements), significant head turns
and no activity. (cf. Figure 12b). The training speed of the
system is approx. 1200 obs/sec while the training time is
1.5799 sec. Overall, the drop in accuracy occurs due to the
head and arm activity happening simultaneously, reason being
similar to both head and arm movements and dependency on
the type of movement with bigger impact.

Overall, the end-to-end latency in the Wibot edge based
detection includes data collection, processing, feature com-
putation, classification and feedback. We analyzed the data
in Matlab installed on MacBook Pro with 2,7 GHz Intel
Core i5 Processor and 8 GB 1867 MHz DDR3 RAM. For
1000 samples, the phase correction consumes 0.65 secs, signal
preprocessing takes 0.05 sec, feature computation 0.525 sec
and classification takes 0.16 secs (cf. Figure 13). The most
time consuming steps include phase correction and feature
computation (which involves PCA). The overall latency is
till acceptable since the feedback is not required for every
second in case of behaviour detection. In near future, we
tend to reduce the overall latency by optimising the feature
computation complexity, by using an alternate method for
PCA.

VII. CHALLENGES
While the focus of this research is to explore behaviour from
natural body movements, there are several aspects which are
yet to be covered. The critical ones are briefly described as
follows:

A. Multiple-Passengers in Car
This research at the moment is tested and applied for a

single passenger/driver in car. The behaviour of driver is
most critical in both autonomous and non-autonomous driving.

However, based on the needs, it can be extended to behaviour
detection of all passengers in cars. This will help, specially in
car sharing environments where behaviour of one passenger
can affect others. Also, it can provide feedback for improving
services needed by passengers. This potentially can be done
with dedicated receiver antennas for each passenger. However,
the challenges of interferences due to movements of different
passenger, positioning of transmitter and receiver is yet to be
explored.

B. Autonomous vs. Non-Autonomous Challenges

Behaviour detection of a driver is important for car manu-
factures in both autonomous and non-autonomous driving. In
former, it gives attention information about the driver. And
in later, it gives valuable feedback of general behaviour of
a driver to improve the comfort services in car. The major
challenge that we face in non-autonomous driving is the
steering movements. They have extremely similar features
as head movements, and they are the reason of accuracy
drop. We envision that steering movements can be detected
using a steering integration accelerometer. This information
abut steering movements could be feedback to our behaviour
detection system. The steering movements could then be
eliminated which would help improve the accuracy of the
system.

C. Hardware Dependency

Currently our hardware prototype is based on dedicated
WLAN cards with modified Linux drivers available to capture
the CSI data. However, the LAN cards and Laptops compatible
with these LAN cards are about a decade old and not anymore
available in the market. Naturally, for implementation of
this technology in cars, the Wi-Fi router installed need to
provide the CSI data and configuration controls. However, the
increasing popularity of Wi-Fi as sensing technology will soon
create a much needed demand to W-Fi device manufacturers
to reveal CSI information.

VIII. APPLICATIONS

As the domain of this research is car specific, its appli-
cations for learning behaviour extend from non-autonmous
to autonomous and car sharing modes. Synchronising the
information regarding the road conditions and corresponding
head movements can determine the state of the driver. Unusual,
frequent movements can tell that driver is either lost, confused
or distracted. On the other hand, significant head turning and
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focussing on some interest point in that location (say restau-
rants, scenery) can provide information about the interests of
the driver. This kind of information can be helpful in providing
valuable information and services to the user. Gestures on
the other hand are additional feature for communicating with
car. It gives flexibility to people who do not prefer talking to
car assistant systems which are based on speech recognition.
Furthermore, people with speech disabilities can also avail the
facility of car assistant system.

IX. CONCLUSION

In this paper, we make the following contributions in the do-
main of Wi-Fi activity sensing. We propose WiBot, a Wireless
network-edge based personal communication and behaviour
learning system for cars. This research is done in cooperation
with and in BMW Group Research, New Technologies and
Innovations, Germany. WiBot enables communication with the
driver by using two gestures ‘push’ and ‘swipe’ which translate

to ‘yes’ and ‘no’ respectively. Secondly, it characterises human
behaviour by detecting and analysing head turns and arm
movements. This gesture and behaviour recognition is done
by taking into account all possible natural movements (upper
body) that a driver does during the drive. The data is collected
in a distraction induced human study of 40 participants. The
study is non-choreographed, which means that the subjects are
not instructed to perform any particular activities or behave in
certain way. We focus on developing a system which accounts
for natural behaviour of drivers. Therefore, unlike other studies
we do not pre-define a set of classes to distinguish from each
other in our classification learning. In order to identify the
start and end points of activities in natural environment, we
introduce an impulsive windowing algorithm and also account
for multiple activities happening at the same time, using label
powerset method. We recognise the distracted behaviour by
identifying slight head movements to significant head turns,
slight arm movements to particular arm activity. In order to
classify extremely similar movements performed at similar
frequencies, we find a unique feature set based on peak
analysis and subcarrier analysis. Our features are based on
phase information collected from CSI data captured using the
WLAN card with modified driver. Our K-Nearest neighbour
based classification model can separate the head movements
from arm movements with accuracy of 94.5%. The accuracy
for elaborate label subset; push, wipe, no activity, simultaneous
head a and arm movements and significant head turns can be
separated with accuracy of 90.5%.

X. FUTURE WORK

The human study carried out at BMW Group Research,
New Technologies and Innovations centre is composed of
3 stages. It starts from normal driving to distracted driving
to happy/relaxed driving. In this paper we cover only the
distracted driving behaviour. We are further extending WiBot
to recognise other stages of emotions and intend to distinguish
between different behaviours. We will also combine body
movement information with heart and breathing rate to get
fine grained details. The CSI dataset will be available for the
research community to further benefit from it.
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