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Functional optical metamaterials employing spatial dispersion
and absorption

A. Shevchenko, P. Grahn, M. Kaivola

Department of Applied Physics, Aalto University, P.O. Box 13500, FI-00076 Aalto, Finland

ABSTRACT

Functional optical metamaterials usually consist of absorbing, anisotropic and often non-centrosymmetric struc-
tures of a size that is only a few times smaller than the wavelength of visible light. If the structures would be
substantially smaller, excitation of higher-order electromagnetic multipoles in them, including magnetic dipoles,
would be inefficient. As a result, the material would act as an ordinary electric-dipole material. The required
non-negligible size of metamolecules, however, makes the material spatially dispersive, so that its optical char-
acteristics depend on light propagation direction. This phenomenon significantly complicates the description of
metamaterials in terms of conventional electric permittivity and magnetic permeability tensors. In this work,
we present a simple semianalytical method to describe such spatially dispersive metamaterials, which are also
allowed to be optically anisotropic and non-centrosymmetric. Applying the method, we show that a strong spa-
tial dispersion, combined with absorption and optical anisotropy, can be used to efficiently control propagational
characteristics of optical beams.

Keywords: metamaterials, spatial dispersion, optical absorption, refractive index and impedance, self-collimation

1. INTRODUCTION

Optical metamaterials are nanostructured artificial materials with extraordinary optical properties that are
obtained by designing the material’s structural units. It is usually required that these units, called metamolecules,
support the excitation of both electric and magnetic dipole moments, since then the refractive index (n) and the
wave impedance (Z) of the material can independently be tuned over a wide range of values. Some of the key
examples of existing and future applications of such materials are near-field focusing and imaging elements,1–5

such as a ”perfect lens”6 (here one could choose, e.g., n = −1), elements enhancing optical density of states
and energy transfer7,8 as well as coherence9–11 (e.g., if n = 0), and aberration-free non-refractive elements12

(with n = 1). For applications like these, the material should be optically homogeneous, isotropic and spatially
non-dispersive. In addition, the wave impedance and the imaginary part of the refractive index of the material
should be close to those in vacuum (Z0 ≈ 377 Ω and 0, respectively). Otherwise, the reflection and absorption
of light would significantly hamper the desired application. For other applications, such as optical cloaking,13,14

one can in contrast need optical inhomogeneity and anisotropy, but optical absorption and spatial dispersion
should still be absent. Practical realization of all these applications faces some fundamental problems. In
order to be able to significantly adjust the optical response of a metamaterial, even to obtain n = 1, the
metamolecules must have pronounced multipole resonances close to the wavelength of interest. This is usually
achieved with plasmon resonant excitations in metal metamolecules, in which case the material is absorptive, or
with Mie resonances in high-refractive-index dielectric structures.15 In both cases, for the higher-order multipole
resonances to be strong, the metamolecules must be relatively large, say, not more than an order of magnitude
smaller than the wavelength. Otherwise the magnetic dipole and all other higher-order resonances will vanish.16

This requirement, in turn, leads to an inevitable spatial dispersion17,18 that is commonly considered as an
unwanted effect, because it complicates and often makes impractical the description of metamaterials in terms
of traditional electric permittivity and magnetic permeability tensors. Furthermore, the optical parameters can
turn out to significantly depend on the number of layers in a metamaterial slab.19,20 Then, however, the structure
is difficult to treat as a material.21 Sometimes such metamaterials are said to be not homogenizable.
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In this work, we describe a method for accurate and simple theoretical description of a general metama-
terial that can be spatially dispersive, anisotropic, non-centrosymmetric and, in addition, internally twisted,
i.e. allowing its metamolecules to be tilted with respect to the crystal lattice.23 Then, instead of avoiding or
reducing the effect of spatial dispersion, we search for useful applications of metamaterials, in which this effect
is significant. Examples of such applications are position-independent diffraction-free guidance of optical beams
and apertureless spatial filtering of beams reflected from the metamaterial’s surface. For the second application,
it is even preferable that the material is optically absorptive.

2. RETRIEVAL OF REFRACTIVE INDEX AND WAVE IMPEDANCE

If the metamaterial is spatially dispersive, the parameters n and Z can still be introduced for optical plane
waves propagating in the material and having different values for different propagation directions of the waves.
Therefore, they are called the effective wave parameters. If, in addition, the material is optically anisotropic, it
is easier to use scalar n and Z for each of the two inherent polarization modes of the material (e.g., TE- and TM-
polarized) than to treat the material in terms of tensorial quantities. Furthermore, if the metamolecular layers in
the material are separated such that the gap between them is much smaller than the period Λz (z is perpendicular
to the layers), the interlayer evanescent-wave coupling can take place, as a result of which the effective wave
parameters will depend on the number of layers in the slab. The retrieval of the effective wave parameters, using
the Fresnel transmission and reflection coefficients τF and ρF at each boundary, is still possible for such slabs. In
some cases, the parameter values can converge when the number of molecular layers is increased.19,20 However,
we have previously shown that if the metamolecules are not centrosymmetric, two counterpropagating waves can
exhibit different impedances.18,22 Also, if the metamaterial is internally twisted, then, at an oblique angle of
incidence, the incident and reflected waves inside the material can experience different refractive indices. In these
cases, the Fresnel coefficients must be modified. For a boundary separating two non-centrosymmetric internally
twisted metamaterials, at z = 0, the coefficients can be written as23

τF =
γz,i/(γiZ

σ
i ) + γz,r/(γrZ

σ
r )

γz,r/(γrZσ
r ) + γz,t/(γtZσ

t )
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, (1)
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(
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Here, the incident plane wave has a wave vector (γx, γy, γz,i), wave number γi = nik0 and wave impedance Zi

(k0 is the wave number in vacuum). The corresponding characteristics of the wave reflected by the interface are
(γx, γy,−γz,r) and Zr. For ordinary materials, one would obtain γz,r = γz,i, γr = γi and Zr = Zi. The wave
transmitted by the interface is characterized by (γx, γy, γz,t), γt = ntk0 and Zt. The parameter σ is equal to
±1 for the TE and TM polarization, respectively. When dealing with asymmetric metamaterials, such as those
composed of classical split-ring resonators, one must use Eqs. (1) and (2) for evaluation of n and Z instead of
applying traditional Fresnel coefficients.

If the interlayer separation is such that the evanescent-wave coupling between the layers is negligible, the
wave parameters are independent of the number of layers and, therefore, one can obtain n and Z from a single
metamolecular layer.18,23 This substantially simplifies the computational problem to be solved. The retrieval
procedure in this case is as follows. Since usually the metamolecules are imbedded in a certain dielectric host
medium, we denote the wave vector in this medium by k and the wave number by k. Then, a single layer of
metamolecules in an infinite host medium is considered. At a given incidence angle θ, the layer transmission and
reflection coefficients τ1, τ2, ρ1 and ρ2 are calculated numerically with respect to the central plane of the layer.
Here, τ1 and ρ1 are obtained when the wave is incident from one side of the layer (at angle θ) and τ2 and ρ2
are calculated for illumination from the opposite direction (at angle 180◦ − θ). Note that, if the metamolecules
are centrosymmetric and possess reflection symmetry with respect to the layer, calculation of τ2 and ρ2 is not
needed, since τ1 = τ2 and ρ1 = ρ2.

In the next step, the phase-shifted coefficients f1 = τ1 exp(ikzΛz), f2 = τ2 exp(ikzΛz), g1 = ρ1 exp(ikzΛz)
and g2 = ρ2 exp(ikzΛz) are obtained and substituted into the expressions

α = f2 + f−1
1 (1− g1g2), (3)

β = f2/f1. (4)
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The effective refractive index is then calculated from

n2k20 = k2x + k2y + γ2
z , (5)

where

γz = − i

Λz
ln
[ α

2β
± (

α2

4β2
− 1

β
)1/2

]
+

2πm

Λz
. (6)

In Eq. (6), m is an integer number that must satisfy the requirement that γz and n have positive imaginary
parts and continuous spectra with physically justified (e.g., Maxwell-Garnett) values at long wavelengths. The
effective wave impedance is calculated from

Z = Zh

(kγz
kzγ

)p g2 + [1− f1 exp(−iγzΛz)]

g2 − [1− f1 exp(−iγzΛz)]
, (7)

where Zh is the impedance of the host medium and p is equal to +1 and −1 for TE- and TM-polarized waves,
respectively. The retrieved scalar effective wave parameters n and Z along with their dependence on the wave
frequency, propagation direction and polarization form a complete macroscopic description of a metamaterial
that is allowed to be spatially dispersive, anisotropic, non-centrosymmetric and internally twisted. The approach
has been proven to yield very good agreement with direct numerical calculations.23

3. DESCRIPTION OF OPTICAL BEAMS

In order to be able to describe propagation of optical beams through spatially dispersive metamaterials, we use
the fact that any beam can be treated as a linear superposition of monochromatic plane waves. This plane-wave
decomposition is called angular-spectrum representation.24 For a single-frequency continuous-wave beam that
propagates in positive z-direction, the electric field distribution at a fixed z can be written as

E(x, y; z) =

∫ ∞

−∞

∫ ∞

−∞
Ê(kx, ky; z)e

i[kxx+kyy]dkxdky, (8)

where each plane-wave complex amplitude Ê(kx, ky; z) is connected to its value at z = 0 by Ê(kx, ky; z) =

Ê(kx, ky; 0)e
ikzz. Equation (8) represents an inverse Fourier transform. The amplitudes Ê(kx, ky; z) are given

by the direct Fourier transform

Ê(kx, ky; z) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
E(x, y; z)e−i[kxx+kyy]dkxdky. (9)

When treating the interaction of optical beams with metamaterial slabs, the following procedure can be used.
The incident beam, for which the electric-field distribution E(x, y; z) is known, is decomposed into plane waves

with complex amplitudes Ê(kx, ky; z), which are found from Eq. (9). At the boundary (assumed to be located
at z = 0), each of these plane waves is split into the reflected and transmitted waves, the amplitudes of which

at z = 0 are found from Êr(kx, ky; 0) = ρFÊ(kx, ky; 0) and Êt(kx, ky; 0) = τFÊ(kx, ky; 0), respectively. Note that
ρF and τF are also functions of kx and ky. Then, using Eq. (8), we obtain the distributions

Er(x, y; z) =

∫ ∞

−∞

∫ ∞

−∞
Êr(kx, ky; 0)e

i[kxx+kyy−kzz]dkxdky (10)

for the reflected beam (propagating in the negative z-direction) and

Et(x, y; z) =

∫ ∞

−∞

∫ ∞

−∞
Êt(kx, ky; 0)e

i[kxx+kyy+γzz]dkxdky (11)

for the beam transmitted by the boundary into the metamaterial [γz is given by Eq. (6)]. It should be noted that
even if the beam is linearly polarized (e.g., in the plane of incidence), both TE and TM-polarized plane-wave
components will in general be present in the expansion. On the other hand, if the beam is not focused tightly,
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this feature can be ignored. Without going into detail of this decomposition, we see immediately that, if within
the limits of the angular spread of the beam, γz is by design independent of kx and ky, then the factor eiγzz can
be removed from the integral in Eq. (11). In this spacial case, the distribution Et(x, y; z) will obey the relation

Et(x, y; z) = Et(x, y; 0)e
iγzz. (12)

This result shows that except for a possible attenuation of the beam in the z-direction (since γz is complex), its
transverse intensity profile stays the same across the metamaterial slab. The beam is therefore guided to the
other side of the slab without divergence, and the angle of refraction for the beam is equal to 0. This effect is
similar to the self-collimation effect observed in photonic crystals.25–27 If the metamaterial is internally twisted,
the beam can be refracted in an arbitrary direction (not only along the normal), because some other component
of the wave vector can be designed to be constant within the range of the beam’s angular spectrum. Furthermore,
analyzing Eq. (10), one can see that if ρF depends on kx and ky, the angular spectrum of the reflected field will
differ from that of the incident field. This suggests applications in apertureless spatial filtering.

4. EXAMPLES

As an example, we consider a metamaterial that is optically anisotropic, non-centrosymmetric and internally
twisted. It consists of metamolecules in the form of asymmetric paired silver discs and has a lattice constant
of 120 nm. The metamolecules are tilted with respect to the lattice by an angle of α = 45◦; α is shown in
Fig. 1(a). We have chosen these dimer metamolecules, since they exhibit significant magnetic dipole and electric
quadrupole polarizabilities28 and strong spatial dispersion29 in the visible spectral range. We have previously
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Figure 1. A dimer metamaterial (a) and the effective refractive index (b) and wave impedance (c) evaluated for a TE-
polarized plane wave with θ = α = 45◦. The real and imaginary parts are shown by solid and dashed lines, respectively.
Z0 is the impedance of vacuum.

shown that the dominant higher-order multipole excitation in such particles is composed of linear currents in
the two discs, which oscillate out-of-phase with respect to each other.30 The radii of the larger and smaller discs
are chosen to be 40 nm and 25 nm, respectively. The discs have a thickness of 10 nm and they are separated
by a surface-to-surface distance of 20 nm. The coordinate system used in the calculations is chosen to have the
z-axis directed along the normal to the metamaterial surface, and the metamolecules are tilted in the yz-plane
with respect to this axis [see Fig. 1(a)]. The angle of incidence of a plane wave is denoted by θ, and the plane of
incidence coincides with the yz-plane. Also, when θ is equal to α, the wave is incident from the smaller-disc side.

Proc. of SPIE Vol. 9160  91600S-4
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 8/16/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



  0.5

  1.5

  1 30

210

60

240

90

270

120

300

150

330

180
n

 

  2

  6

  10

30

210

60

240

90

270

120

300

150

330

180

 

(b)(a)

λ 
0
 = 525 nm, Λ  = 180 nmz

B
IF

A
C

IA
L
 R

E
F

L
E

C
T

O
R

R
E

F
L

E
C

T
IV

E
 S

P
A

T
IA

L
 F

IL
T

E
R

Z
 

Z
0

 

  0.4

  0.8

  1

  5

30

210

60

240

90

270

120

300

150

330

180 θ = 0

θ = 0 θ = 0

θ = 0

30

210

60

240

90

270

120

300

150

330

180

  3

n

Z
 

Z
0

λ 
0
 = 730 nm, Λ  = 120 nmz

Figure 2. The dependence of the wave parameters on the incidence angle θ for a dimer metamaterial acting as (a) a bifacial
reflector and (b) a reflective spatial filter. The materials differ by the parameters λ0 and Λz, which are λ0 = 730 nm and
Λz = 120 nm in (a) and λ0 = 525 nm and Λz = 180 nm in (b). The waves are assumed to be TE-polarized. The real and
imaginary parts of the quantities are shown by solid and dashed lines, respectively. The gray sectors mark the range of
angles excluded from the calculations.

The dielectric host medium is assumed to have a refractive index of 1.5. The effective wave parameters n and
Z of the metamaterial are calculated by applying the retrieval procedure presented in section 2. The numerical
calculations were performed using the computer software COMSOL Multiphysics and the values for the refractive
index of silver were taken from Ref. 31. Figures 1(b) and (c) show the spectra of the wave parameters retrieved
for a TE-polarized wave incident at an angle θ = α = 45◦. In the refractive index spectrum, one can distinguish
the electric-dipole resonances of the two discs composing the dimer. It can be seen that at certain wavelengths,
the real part of the refractive index takes values close to zero and even becomes negative.

Figure 2(a) shows the refractive index and impedance evaluated for this material considering TE-polarized
waves at a fixed wavelength of 730 nm with incidence angles from 0 to 360◦. The material is considered to
be surrounded by glass. The incidence angles close to ±90◦ are excluded from the calculations (see the grey
sectors). The refractive index has rather low values of the real part and relatively high values of the imaginary
part [see the solid and dashed curves, respectively, in the top polar plot of Fig. 2(a)]. The imaginary part,
however, substantially decreases when the incidence angle exceeds 45◦. The values of the refractive index are
seen to be equal for two opposite illumination directions [n(θ) = n(θ + 180◦)], which fulfils optical reciprocity.
The impedance, however, is far from being centrosymmetric. For example, at θ ≈ 220◦ the medium is nearly
impedance-matched to vacuum, while at θ ≈ 40◦ the impedance is four times larger than that in vacuum. This
means that a layer of the material will efficiently reflect light by its front surface, e.g., at θ = 40◦, but show a
low reflection, when the wave is incident from the opposite direction, at θ = 220◦. The layer will therefore act
as a bifacial reflector.

Next, in order to enhance the sensitivity of the wave reflection coefficient to the incidence angle, we increase
the crystal’s period in the z-direction only, to 180 nm, and set the wavelength to 525 nm. This brings the
material close to the Bragg reflection regime for incidence angles around θ = 0. Figure 2(b) shows the refractive
index and impedance evaluated as functions of the incidence angle for plane waves incident on the material from
glass. The polar plot of the real part of n is flat near θ = 0, revealing a photonic-crystal-type self-collimation
effect. At these incidence angles, however, the imaginary part of the wave impedance is high, implying that the
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Figure 3. The dependence of the wave parameters on the wave propagation angle θm in the considered dimer metamaterial
with Λz = 120 nm. The waves are TM-polarized. The metamaterial can be used as a low-loss self-collimating waveguide
(a) in vacuum at λ0 = 525 nm and (b) in glass at λ0 = 790 nm. In (a), the beam propagation angle in the material is
about 45◦ (or 225◦), and in (b), this angle is equal to −45◦ (or 135◦). The real and imaginary parts of the quantities are
shown by solid and dashed lines, respectively. The gray sectors show the range of angles that were not considered in the
calculations.

waves will be reflected from the surface of the material rather than transmitted into the material. On the other
hand, at θ > 30◦, the impedance approaches the value Z0 in vacuum, which means that the reflection coefficient
approaches 0. Thus, an optical beam with a divergence angle of, say, β = 60◦ will upon the reflection at normal
incidence be converted into a beam with β ≈ 10◦. The material will therefore act as a reflective spatial filter
that is independent of the location of the focal spot. Since the strong angular dependence of n and Z is in this
example determined by Λz rather than the shape and orientation of the dimers, similar filtering will take place
also in the orthogonal direction (for plane waves with k in the xz-plane).

For a slab of a metamaterial to be used as a self-collimating waveguide, the material should have (i) a flat
contour of the real part of n as a function of the propagation angle θm in the medium, (ii) a small imaginary part
of n and (iii) an impedance close to that of the surrounding medium. Here we consider 2D self-collimation (in the
yz-plane) similar to that in 2D photonic crystals.25–27 For the considered metamaterial with Λz = 120 nm, these
conditions are well satisfied at the wavelengths of 525 nm [see Fig. 3(a)] and 790 nm [Fig. 3(b)] for TM-polarized
waves. In Fig. 3, the gray sectors show the range of angles that we do not consider in the calculations. At
525 nm, the real part of n has quite a flat contour and the impedance is close to Z0 in the range of θm from 0
to about 60◦. A slab of this material can therefore be used as a beam self-collimator for light coupled into the
slab from vacuum at an incidence angle of θ ≈ 30◦. Inside the material, the beam will propagate at an angle of
about 45◦ with substantially reduced divergence. In the second case (at λ0 = 790 nm), the real part of n is also
nearly flat for θm between −65◦ and about −25◦. Within this range, the values of n and Z are close to those
in glass and the imaginary part of n is even smaller than in the previous case. Therefore, the material can be
used as a self-collimator for a beam incident from glass at an angle close to −45◦. The beam will propagate in
the material with reduced divergence exactly at an angle of −45◦. We note that metamaterials, with a lattice
constant Λ smaller than half a wavelength λh/2 in the host medium, have not been previously demonstrated
to exhibit the self-collimation effect. Compared with self-collimating photonic crystals that operate close to
the Bragg reflection regime with Λ > λh/2, metamaterials can be designed to be impedance-matched to the
surrounding medium, which will improve coupling of light into the artificial waveguide.
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5. CONCLUSIONS

We have presented a recipe for evaluating the optical wave parameters n and Z for a general spatially disper-
sive, anisotropic, non-centrosymmetric and internally twisted metamaterial. If the material exhibits significant
interlayer evanescent-wave coupling, the retrieval procedure can be quite time consuming for thick metamaterial
layers and the retrieved wave parameters can depend on the number of layers in the slab. If, on the other
hand, this coupling is weak or absent, the parameters can be obtained very fast for an arbitrarily thick slab by
considering numerically only a single layer of metamolecules.

The fact that, the complex plane-wave parameters n and Z depend on the wave propagation direction in
spatially dispersive metamaterials can be used to modify the angular spectrum and to control propagational
characteristics of optical beams. Applying the model to a particular metamaterial, composed of tilted metal
dimers, we have calculated n and Z in a broad spectral range for various propagation directions and different
polarizations of the waves and shown that spatially dispersive and absorptive metamaterial slabs can be used
as bifacial reflectors, position-independent apertureless spatial filters and low-loss self-collimating waveguides.
These examples demonstrate high potential of such metamaterials for creation of flat optical elements with
demanding functional abilities.
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