
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Liu, Jian; Li, Wenting; Karame, G.; Asokan, N.
Scalable Byzantine Consensus via Hardware-assisted Secret Sharing

Published in:
IEEE Transactions on Computers

DOI:
10.1109/TC.2018.2860009

Published: 01/01/2019

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Please cite the original version:
Liu, J., Li, W., Karame, G., & Asokan, N. (2019). Scalable Byzantine Consensus via Hardware-assisted Secret
Sharing. IEEE Transactions on Computers, 68(1), 139-151. https://doi.org/10.1109/TC.2018.2860009

https://doi.org/10.1109/TC.2018.2860009
https://doi.org/10.1109/TC.2018.2860009

1

Scalable Byzantine Consensus via
Hardware-assisted Secret Sharing

Jian Liu, Wenting Li,Ghassan O. Karame, Member, IEEE, and N. Asokan, Fellow, IEEE

Abstract—The surging interest in blockchain technology has revitalized the search for effective Byzantine consensus
schemes. In particular, the blockchain community has been looking for ways to effectively integrate traditional Byzantine
fault-tolerant (BFT) protocols into a blockchain consensus layer allowing various financial institutions to securely agree
on the order of transactions. However, existing BFT protocols can only scale to tens of nodes due to their O(n2)
message complexity.
In this paper, we propose FastBFT, a fast and scalable BFT protocol. At the heart of FastBFT is a novel message
aggregation technique that combines hardware-based trusted execution environments (TEEs) with lightweight secret
sharing. Combining this technique with several other optimizations (i.e., optimistic execution, tree topology and failure
detection), FastBFT achieves low latency and high throughput even for large scale networks. Via systematic analysis
and experiments, we demonstrate that FastBFT has better scalability and performance than previous BFT protocols.

Index Terms—Blockchain, Byzantine fault-tolerance, state machine replication, distributed systems, trusted
component.

F

1 INTRODUCTION

Byzantine fault-tolerant (BFT) protocols have not yet seen
significant real-world deployment. There are several po-
tential reasons for this including the poor efficiency and
scalability of current BFT protocols and, more importantly,
due to the fact that often Byzantine faults are not perceived
to be a major concern in well-maintained data centers.
Consequently, existing commercial systems like those in
Google [7] and Amazon [38] rely on weaker crash fault-
tolerant variants (e.g., Paxos [25] and Raft [32]).

Recent interest in blockchain technology has given fresh
impetus for BFT protocols. A blockchain is a key enabler for
distributed consensus, serving as a public ledger for digital
currencies (e.g., Bitcoin) and other applications. Bitcoin’s
blockchain relies on the well-known proof-of-work (PoW)
mechanism to ensure probabilistic consistency guarantees
on the order and correctness of transactions. PoW currently
accounts for more than 90% of the total market share of
existing digital currencies. (e.g., Bitcoin, Litecoin, Doge-
Coin, Ethereum) However, Bitcoin’s PoW has been severely
criticized for its considerable waste of energy and meagre
transaction throughput (∼7 transactions per second) [14].

To remedy these limitations, researchers and practi-
tioners are investigating integration of BFT protocols with
blockchain consensusto enable financial institutions and
supply chain management partners to agree on the order

• Jian Liu and N. Asokan are with the Department of Computer
Science, Aalto University, Finland. E-mail: jian.liu@aalto.fi,
asokan@acm.org

• Wenting Li and Ghassan O. Karame are with NEC
Laboratories Europe, Germany. E-mail: {wenting.li, ghas-
san.karame}@neclab.eu

and correctness of exchanged information. This represents
the first opportunity for BFT protocols to be integrated into
real-world systems. For example, IBM’s Hyperledger/Fabric
blockchain [17] currently relies on PBFT [5] for consensus.
While PBFT can achieve higher throughput than Bitcoin’s
consensus layer [42], it cannot match, by far, the trans-
actional volumes of existing payment methods (e.g., Visa
handles tens of thousands of transactions per second [41]).
Furthermore, PBFT only scales to few tens of nodes, since it
needs to exchange O(n2) messages to reach consensus on a
single operation among n servers [5]. Thus, enhancing the
scalability and performance of BFT protocols is essential for
ensuring their practical deployment in existing industrial
blockchain solutions.

In this paper, we propose FastBFT, a fast and scalable
BFT protocol. At the heart of FastBFT is a novel message
aggregation technique that combines hardware-based trusted
execution environments (e.g., Intel SGX) with lightweight
secret sharing. Aggregation reduces message complexity
from O(n2) to O(n) [37]. Unlike previous schemes, message
aggregation in FastBFT does not require any public-key
operations (e.g., multisignatures), thus incurring consider-
ably lower computation/communication overhead. FastBFT
further balances computation and communication load by
arranging nodes in a tree topology, so that inter-server com-
munication and message aggregation take place along edges
of the tree. FastBFT adopts the optimistic BFT paradigm [9]
that only requires a subset of nodes to actively run the
protocol. Finally, we use a simple failure detection mechanism
that makes it possible for FastBFT to deal with non-primary
faults efficiently.

Our experiments show that, the throughput of FastBFT
is significantly larger compared to other BFT protocols we
evaluated [22], [24], [40]. As the number of nodes increases,

FastBFT exhibits considerably slower decline in through-
put compared to other BFT protocols. This makes FastBFT
an ideal consensus layer candidate for next-generation
blockchain systems — e.g., assuming 1 MB blocks and 250
byte transaction records (as in Bitcoin), FastBFT can process
over 100,000 transactions per second.

In FastBFT, we made specific design choices as to how
the building blocks (e.g., message aggregation technique, or
communication topology) are selected and used. Alternative
design choices would yield different BFT variants featuring
various tradeoffs between efficiency and resilience. We cap-
ture this tradeoff through a framework that compares such
variants.

In summary, we make the following contributions:
• We propose FastBFT, a fast and scalable BFT protocol

(Sections 3 and 4).
• We describe a framework that captures a set of impor-

tant design choices and allows us to situate FastBFT in
the context of a number of possible BFT variants (both
previously proposed and novel variants) (Section 6).

• We present a full implementation of FastBFT and a sys-
tematic performance analysis comparing FastBFT with
several BFT variants. Our results show that FastBFT out-
performs other variants in terms of efficiency (latency
and throughput) and scalability (Section 7).

2 PRELIMINARIES

In this section, we describe the problem we tackle, outline
known BFT protocols and existing optimizations.

2.1 State Machine Replication (SMR)
SMR [36] is a distributed computing primitive for imple-
menting fault-tolerant services where the state of the system
is replicated across different nodes, called “replicas” (Ss).
Clients (Cs) send requests to Ss, which are expected to exe-
cute the same order of requested operations (i.e., maintain a
common state). However, some Ss may be faulty and their
failure mode can be either crash or Byzantine (i.e., deviating
arbitrarily from the protocol [26]). Fault-tolerant SMR must
ensure two correctness guarantees:
• Safety: all non-faulty replicas execute the requests in the

same order (i.e., consensus), and
• Liveness: clients eventually receive replies to their re-

quests.
Fischer-Lynch-Paterson (FLP) impossibility [13] proved that
fault-tolerance cannot be deterministically achieved in an
asynchronous communication model where no bounds on
transmission delays can be assumed.

2.2 Practical Byzantine Fault Tolerance (PBFT)
For decades, researchers have been struggling to circumvent
the FLP impossibility. One approach, PBFT [5], leverage
the weak synchrony assumption under which messages are
guaranteed to be delivered after a certain time bound.

One replica, the primary Sp, decides the order for
clients’ requests, and forwards them to other replicas
Sis. Then, all replicas together run a three-phase (pre-
prepare/prepare/commit) agreement protocol to agree on
the order of requests. Each replica then processes each

request pre-prepare prepare commit reply

C

Sp

S1

S2

S3 7

Agreement

Fig. 1: Message pattern in PBFT.

request and sends a response to the corresponding client.
The client accepts the result only if it has received at least
f + 1 consistent replies. We refer to BFT protocols incor-
porating such message patterns (Fig. 1) as classical BFT. Sp
may become faulty: either stop processing requests (crash)
or send contradictory messages to different Sis (Byzan-
tine). The latter is referred to as equivocation. On detecting
that Sp is faulty, Sis trigger a view-change to select a new
primary. The weak synchrony assumption guarantees that
view-change will eventually succeed.

2.3 Optimizing for the Common Case
Since agreement in classical BFT is expensive, prior works
have attempted to improve performance based on the fact
that replicas rarely fail. We group these efforts into two
categories:
Speculative. Kotla et al. present Zyzzyva [24] that uses
speculation to improve performance. Unlike classical BFT,
Sis in Zyzzyva execute Cs’ requests following the order
proposed by Sp, without running any explicit agreement
protocol. After execution is completed, all replicas reply
to C. If Sp equivocates, C will receive inconsistent replies.
In this case, C helps correct replicas to recover from their
inconsistent states to a common state. Zyzzyva can reduce
the overhead of state machine replication to near optimal.
We refer to BFT protocols following this message pattern as
speculative BFT.
Optimistic. Distler et al. proposed a resource-efficient BFT
(ReBFT) replication architecture [9]. In the common case,
only a subset of replicas are required to run the agreement
protocol. Other replicas passively update their states and be-
come actively involved only in case the agreement protocol
fails. We call BFT protocols following this message pattern as
optimistic BFT. Notice that such protocols are different from
speculative BFT in which explicit agreement is not required
in the common case.

2.4 Using Hardware Security Mechanisms
Hardware security mechanisms have become widely avail-
able on commodity computing platforms. Trusted execution
environments (TEEs) are already pervasive on mobile plat-
forms [12]. Newer TEEs such as Intel’s SGX [19], [30] are
being deployed on PCs and servers. TEEs provide protected
memory and isolated execution so that the regular operating
system or applications can neither control nor observe the
data being stored or processed inside them. TEEs also allow

2

remote verifiers to ascertain the current configuration and
behavior of a device via remote attestation. In other words,
TEE can only crash but not be Byzantine.

Previous work showed how to use hardware security
to reduce the number of replicas and/or communication
phases for BFT protocols [6], [8], [22], [27], [39], [40]. For
example, MinBFT [40] improves PBFT using a trusted counter
service to prevent equivocation [6] by faulty replicas. Specifi-
cally, each replica’s local TEE maintains a unique, monotonic
and sequential counter; each message is required to be
bound to a unique counter value. Since monotonicity of
the counter is ensured by TEEs, replicas cannot assign the
same counter value to different messages. As a result, the
number of required replicas is reduced from 3 f + 1 to 2 f + 1
(where f is the maximum number of tolerable faults) and
the number of communication phases is reduced from 3
to 2 (prepare/commit). Similarly, MinZyzzyva uses TEEs to
reduce the number of replicas in Zyzzyva but requires the
same number of communication phases [40]. CheapBFT [22]
uses TEEs in an optimistic BFT protocol. In the absence of
faults, CheapBFT requires only f + 1 active replicas to agree
on and execute client requests. The other f passive replicas
just modify their states by processing state updates provided
by the active replicas. In case of suspected faulty behavior,
CheapBFT triggers a transition protocol to activate passive
replicas, and then switches to MinBFT.

2.5 Aggregating Messages
Agreement in BFT requires each Si to multicast a commit
message to all (active) replicas to signal that it agrees with
the order proposed by Sp. This leads to O(n2) message
complexity (Fig. 1). A natural solution is to use message
aggregation techniques to combine messages from multiple
replicas. By doing so, each Si only needs to send and
receive a single message. For example, collective signing
(CoSi) [37] relies on multisignatures to aggregate messages.
It was used by ByzCoin [23] to improve scalability of PBFT.
Multisignatures allow multiple signers to produce a com-
pact, joint signature on common input. Any verifier that
holds the aggregate public key can verify the signature in
constant time. However, multisignatures generally require
larger message sizes and longer processing times.

3 FASTBFT OVERVIEW

In this section, we give an overview of FastBFT before
providing a detailed specification in Section 4.
System model. FastBFT operates in the same setting as
in Section 2.2: it guarantees safety in asynchronous net-
works but requires weak synchrony for liveness. We fur-
ther assume that each replica holds a hardware-based TEE
that maintains a monotonic counter and a rollback-resistant
memory1. TEEs can verify one another using remote attes-
tation and establish secure communication channels among
them [1]. We assume that faulty replicas may be Byzantine
but TEEs may only crash.
Strawman design. We choose the optimistic paradigm (like
CheapBFT [22]) where f + 1 active replicas agree and exe-
cute the requests and the other f passive replicas just up-
date their states. The optimistic paradigm achieves a strong

1. Rollback-resistant memory can be built via monotonic counters [35].

pre-processing
(batched) request prepare commit(1)commit(2) reply(1) reply(2)

C
Sp

S1

S2

S3(passive)

Fig. 2: Message pattern in FastBFT.

tradeoff between efficiency and resilience (see Section 6). We
use message aggregation (with one more communication
step) to reduce message complexity to O(n): during commit,
each active replica Si sends its commit message directly to
the primary Sp instead of multicasting to all replicas. To
avoid the overhead associated with message aggregation
using primitives like multisignatures, we use secret sharing
for aggregation. An essential assumption of our protocol is
that secrets are one-time. To facilitate this, we introduce an
additional pre-processing phase in the design of FastBFT.
Fig. 2 depicts the overall message pattern of FastBFT.

First, consider the following strawman design. During
pre-processing, Sp generates a set of random secrets and
publishes the cryptographic hash of each secret. Then, Sp
splits each secret into shares and sends one share to each
active Si. Later, during prepare, Sp binds each client request
to a previously shared secret. During commit, each active Si
signals its commitment by revealing its share of the secret.
Sp gathers all such shares to reconstruct the secret, which
represents the aggregated commitment of all replicas. Sp
multicasts the reconstructed secret to all active Sis which
can verify it with respect to the corresponding hash. Dur-
ing reply, the same approach is used to aggregate reply
messages from all active Si: after verifying the secret, Si
reveals its share of the next secret to Sp which reconstructs
the reply secret and returns it to the client as well as to all
passive replicas. Thus, the client and passive replicas only
need to receive one reply instead of f + 1. Sp includes the
two opened secrets and their hashes (which are published
in the pre-processing phases) in the reply messages.
Hardware assistance. The strawman design is obviously
insecure because Sp, knowing the secret, can impersonate
any Si. We fix this by making use of the TEE in each replica.
The TEE in Sp generates secrets, splits them, and securely
delivers shares to TEEs in each Si. During commit, the TEE
of each Si will release its share to Si only if the prepare
message is correct. Notice that now Sp cannot reconstruct
the secret without gathering enough shares from Sis.

Nevertheless, since secrets are generated during pre-
processing, a faulty Sp can equivocate by using the same
secret for different requests. To remedy this, we have Sp’s
TEE securely bind a secret to a counter value during pre-
processing, and during prepare, bind the request to the
freshly incremented value of a TEE-resident monotonic
counter. This ensures that each specific secret is bound to
a single request. TEEs of replicas keep track of Sp’s latest
counter value, updating their records after every success-
fully handled request. The key requirement here is that the
TEE will neither use the same secret for different counter
values nor use the same counter value for different secrets.

3

Notation Description
C Client
S Replica
n Number of replicas
f Number of faulty replicas
p Primary number
v View number
c Virtual counter value
C Hardware counter value

H() Cryptographic hash function
h Cryptographic hash

E()/D() Authenticated encryption/decryption
k Key of authenticated encryption
$ Ciphertext of authenticated encryption

Enc()/Dec() Public-key encryption/decryption
ω Ciphertext of public-key encryption

Sign()/Vrfy() Signature generation / verification
〈x〉σi A Signature on x by Si

TABLE 1: Summary of notations
To retrieve its share of a secret, Si must present a prepare
message with the right counter value to its local TEE.

In addition to maintaining and verifying monotonic
counters like existing hardware-assisted BFT protocols
(thus, it requires n = 2 f + 1 replicas to tolerate f (Byzantine)
faults), FastBFT also uses TEEs for generating and sharing
secrets.
Communication topology. Even though this approach con-
siderably reduces message complexity, Sp still needs to
receive and aggregate O(n) shares, which can be a bot-
tleneck. To address this, we have Sp organize active Sis
into a balanced tree rooted at itself to distribute both
communication and computation costs. Shares are propa-
gated along the tree in a bottom-up fashion: each interme-
diate node aggregates its children’s shares together with
its own; finally, Sp only needs to receive and aggregate
a small constant number of shares.
Failure detection. Finally, FastBFT adapts a failure detection
mechanism from [11] to tolerate non-primary faults. Notice
that a faulty node may simply crash or send a wrong share.
A parent node is allowed to flag its direct children (and only
them) as potentially faulty, and sends a suspect message
up the tree. Upon receiving this message, Sp replaces the
accused replica with a passive replica and puts the accuser
in a leaf so that it cannot continue to accuse others.

4 FASTBFT: DETAILED DESIGN

In this section, we provide a full description of FastBFT. We
introduce notations as needed (summarized in Table 1).

4.1 TEE-hosted Functionality

Fig. 3 shows the TEE-hosted functionality required by
FastBFT. Each TEE is equipped with certified keypairs to
encrypt data for that TEE (using Enc()) and to generate
signatures (using Sign()). The primary Sp’s TEE maintains a
monotonic counter with value clatest; TEEs of other replicas
Sis keep track of clatest and the current view number v
(line 3). Sp’s TEE also keeps track of each currently active
Si, key ki shared with Si (line 5) and the tree topology T for
Sis (line 6). Active Sis also keep track of their kis (line 8).
Next, we describe each TEE function.

1: persistent variables:
2: maintained by all replicas:
3: (clatest, v) . latest counter value and current view

number
4: maintained by primary only:
5: {Si, ki} . current active replicas and their view keys
6: T . current tree structure
7: maintained by active replica Si only:
8: ki . current view key agreed with the primary
9: function be primary({S ′i }, T′) . set Si as the primary

10: {Si} := {S ′i } T := T′ v := v + 1 c := 0
11: for each Si in {Si}
12: ki

$← {0, 1}l . generate a random view key for Si
13: ωi ← Enc(ki) . encrypt ki using Si’s public key
14: return {ωi}
15: end function
16:
17: function update view(〈x, (c, v)〉σp′ , ωi) . used by Si
18: if Vrfy(〈x, (c, v)〉σp′) = 0 return “invalid signature”
19: else if c 6= clatest + 1 return “invalid counter”
20: else clatest := 0 v := v + 1
21: if Si is active, ki ← Dec(ωi)
22: end function
23:
24: function preprocessing(m) . used by Sp
25: for 1 ≤ a ≤ m
26: c := clatest + a sc

$← {0, 1}l hc ← H(〈sc, (c, v)〉)
27: s1

c ⊕ ...⊕ s f+1
c ← sc . randomly splits sc into shares

28: for each active replica Si
29: for each of Si’s direct children: Sj

30: ĥj
c := H(sj

c ⊕k∈φj
sk

c) . φj are Sj’s descendants
31: $i

c ← E(ki, 〈si
c, (c, v), {ĥj

c}, hc〉)
32: 〈hc, (c, v)〉σp ← Sign(〈hc, (c, v)〉)
33: return {〈hc, (c, v)〉σp , {$i

c}i}c
34: end function
35:
36: function request counter(x) . used by Sp
37: clatest := clatest + 1
38: 〈x, (clatest, v)〉σ ← Sign(〈x, (clatest, v)〉)
39: return 〈x, (clatest, v)〉σ
40: end function
41:
42: function verify counter(〈x, (c′, v′)〉σp , $i

c). used by active Si
43: if Vrfy(〈x, (c′, v′)〉σp) = 0 return “invalid signature”
44: else if 〈si

c, (c′′, v′′), {ĥj
c}, hc〉 ← D($i

c) fail return “invalid
encription”

45: else if (c′, v′) 6= (c′′, v′′) return “invalid counter value”
46: else if c′ 6= clatest + 1 return “invalid counter value”
47: else clatest := clatest + 1 and return 〈si

c, {ĥj
c}, hc〉

48: end function
49:
50: function update counter(sc, 〈hc, (c, v)〉σp) . by passive Si
51: if Vrfy(〈hc, (c, v)〉σp) = 0 return “invalid signature”
52: else if c 6= clatest + 1 return “invalid counter”
53: else if H(〈sc, (c, v)〉) 6= hc return “invalid secret”
54: else clatest := clatest + 1
55: end function
56:
57: function reset counter({Li, 〈H(Li), (c′, v′)〉σi}) . by Si
58: if at least f + 1 consistent Li, (c′, v′)
59: clatest := c′ and v := v′
60: end function

Fig. 3: TEE-hosted functionality required by FastBFT.

4

be primary: asserts a replica as primary by setting T, in-
crementing v, re-initializing c (line 10), and generating ki for
each active Si’s TEE (line 13).
update view: enables all replicas to update (clatest, v)
(line 20) and new active replicas to receive and set ki from
Sp (line 21).
preprocessing: for each preprocessed counter value c, gener-
ates a secret sc together with its hash hc (line 26), f + 1 shares
of sc (line 27), and {ĥj

c} (line 30) that allows each Si to verify
its children’s shares. Encrypts these using authenticated
encryption with each ki (line 31). Generates a signature σp′

(line 32) to bind sc with the counter value (c, v).
request counter: increments clatest and binds it (and v) to
the input x by signing them (line 37).
verify counter: receives 〈h, (c′, v′)〉σp , $i

c; verifies: (1) valid-
ity of σp (line 43), (2) integrity of $i

c (line 44), (3) whether
the counter value and view number inside $i

c match (c′, v′)
(line 45), and (4) whether c′ is equal to clatest + 1 (line 46).
Increments clatest and returns 〈si

c, {ĥj
c}, hc〉 (line 47).

update counter: receives sc, 〈hc, (c, v)〉σp ; verifies σp, c and
sc (line 51-53). Increments clatest (line 54).
reset counter: receives at least (f+1) (Li, (c′, v′))s; sets clatest
as c′ and v as v′ (line 59).

4.2 Normal-case Operation

Now we describe the normal-case operation of a replica as
a reactive system (Fig. 4). For the sake of brevity, we do not
explicitly show signature verifications and we assume that
each replica verifies any signature received as input.
Preprocessing. Sp decides the number of preprocessed
counter values (say m), and invokes preprocessing on its TEE
(line 2). Sp then sends the resulting package {$i

c}c to each
Si (line 3).
Request. A client C requests execution of op by sending a
signed request M = 〈REQUEST, op〉σC to Sp. If C receives
no reply before a timeout, it broadcasts2 M.
Prepare. Upon receiving M, Sp invokes request counter with
H(M) to get a signature binding M to (c, v) (line 6). Sp
multicasts 〈PREPARE, M, 〈H(M), (c, v)〉σp 〉 to all active Sis
(line 7). This can be achieved either by sending the message
along the tree or by using direct multicast, depending on the
underlying topology. At this point, the request M is prepared.
Commit. Upon receiving the PREPARE message, each Si
invokes verify counter with 〈H(M), (c, v)〉σp and the corre-
sponding $i

c, and receives 〈si
c, {ĥj

c}, hc〉 as output (line 10).
If Si is a leaf node, it sends si

c to its parent (line 12).
Otherwise, Si waits to receive a partial aggregate share
ŝj

c from each of its immediate children Sj and verifies if
H(ŝj

c) = ĥj
c (line 19). If this verification succeeds, Si com-

putes ŝi
c = si

c ⊕j∈φi ŝj
c where φi is the set of Si’s children

(line 22).
Upon reconstructing the secret sc, Sp executes op

to obtain res (line 25), and multicasts 〈COMMIT, sc, res,
〈H(M||res), (c + 1, v)〉σp 〉 to all active Sis (line 27)3. At this
point, M is committed.

2. We use the term “broadcast” when a message is sent to all replicas, and
“multicast” when it is sent to a subset of replicas.

3. In case the execution of op takes long, Sp can multicast sc first and multicast
the COMMIT message when execution completes.

1: upon invocation of PREPROCESSING at Sp do
2: {〈hc, (c, v)〉σp , {$i

c}i}c ← TEE.preprocessing(m)
3: for each active Si, send {$i

c}c to Si
4:
5: upon reception of M = 〈REQUEST, op〉σC at Sp do
6: 〈H(M), (c, v)〉σp ← TEE.request counter(H(M))
7: multicast 〈PREPARE, M, 〈H(M), (c, v)〉σp 〉 to active Sis
8:
9: upon reception of 〈PREPARE, M, 〈H(M), (c, v)〉σp 〉 at Si do

10: 〈si
c, {ĥj

c}, hc〉 ← TEE.verify counter(〈H(M), (c, v)〉σp , $i
c)

11: ŝi
c := si

c
12: if Si is a leaf node, send si

c to its parent
13: else set timers for its direct children
14:
15: upon timeout of Sj’s share at Si do
16: send 〈SUSPECT,Sj〉 to both Sp and Sj’s parent
17:
18: upon reception of ŝj

c at Si/Sp do
19: if H(ŝj

c) = ĥj
c, ŝi

c := ŝi
c ⊕ ŝj

c
20: else send 〈SUSPECT,Sj〉 Sp
21: if i 6= p, send to its parent
22: if Si has received all valid {ŝj

c}j, send ŝi
c to its parent

23: if Sp has received all valid {ŝj
c}j

24: if sc is used for the commit phase
25: res← execute op x ← H(M||res)
26: 〈x, (c + 1, v)〉σp ← TEE.request counter(x)
27: send active Sis 〈COMMIT, sc, res, 〈x, (c + 1, v)〉σp 〉
28: else if sc is used for the reply phase
29: send 〈REPLY, M, res, sc−1, sc, 〈hc−1, (c − 1, v)〉σp ,
〈hc, (c, v)〉σp ,. 〈H(M), (c− 1, v)〉σp , 〈H(M||res), (c, v)〉σp 〉 to
C and passive replicas.

30:
31: upon reception of 〈SUSPECT,Sk〉 from Sj at Si do
32: if i = p
33: generate new tree T′ replacing Sk with a passive

replica and placing Sj at a leaf.
34: 〈H(T||T′), (c, v)〉σp 〉 ← TEE.request counter(H(T||T′))
35: broadcast 〈NEW-TREE, T, T′, 〈H(T||T′), (c, v)〉σp 〉
36: else cancel Sj’s timer and forward the SUSPECT mes-

sage up
37:
38: upon reception of 〈COMMIT, sc, res, 〈H(M||res), (c +

1, v)〉σp 〉 at Si do
39: if H(sc) 6= hc or execute op 6= res
40: broadcast 〈REQ-VIEW-CHANGE, v, v′〉
41: 〈si

c+1, {ĥj
c+1}, hc+1〉 ← TEE.verify counter (〈H(M||res),

(c + 1, v)〉σp , $i
c)

42: if Si is a leaf node, send si
c+1 to its parent

43: else ŝi
c+1 := si

c+1, set timers for its direct children
44:
45: upon reception of 〈REPLY, M, res, sc, sc+1, 〈hc, (c, v)〉σp , 〈hc+1,

(c + 1, v)〉σp , 〈H(M), (c, v)〉σp , 〈H(M||res), (c + 1, v)〉σp 〉 at
Si do

46: if H(sc) 6= hc or H(sc+1) 6= hc+1
47: multicasts 〈REQ-VIEW-CHANGE, v, v′〉
48: else update state based on res
49: TEE.update counter(sc, 〈hc, (c, v)〉σp)
50: TEE.update counter(sc+1, 〈hc+1, (c + 1, v)〉σp)

Fig. 4: Pseudocode: normal-case operation with failure detec-
tion.

5

Sp

ŝ1
c := ŝ2

c ⊕ ŝ3
c

S1

ŝ2
c := s4

c ⊕ s5
c

S2

ŝ3
c

S3

s4
c

S4 S5

s5
c

...

Fig. 5: Communication structure for the commit/reply phase.

Reply. Upon receiving the COMMIT message, each ac-
tive Si verifies sc against hc, and executes op to ac-
quire the result res (line 39). Si then executes a pro-
cedure similar to commit to open sc+1 (line 41-43).
Sp sends 〈REPLY, M, res, sc, sc+1, 〈hc, (c, v)〉σp , 〈hc+1, (c +
1, v)〉σp , 〈H(M), (c, v)〉σp , 〈H(M||res), (c + 1, v)〉σp 〉 to C as
well as to all passive replicas(line 29). At this point M has
been replied. C verifies the validity of this message:

1) A valid 〈hc, (c, v)〉σp implies that (c, v) was bound to a
secret sc whose hash is hc. This implication holds only if
sc is not reused, which is an invariant that our protocol
ensures

2) A valid 〈H(M), (c, v)〉σp implies that (c, v) was bound
to the request message M.

3) Thus, M was bound to sc based on 1) and 2).
4) A valid sc (i.e., H(sc, (c, v)) = hc) implies that all active
Sis have agreed to execute op with counter value c.

5) A valid sc+1 implies that all active Sis have executed op,
which yields res.

Each passive replica performs this verification, updates its
state (line 48), and transfers the signed counter values to its
local TEE to update the latest counter value (line 49-50).

A communication structure for the commit/reply phase
is shown in Figure 5.

4.3 Failure Detection

Unlike classical BFT protocols which can tolerate non-
primary faults for free, optimistic BFT protocols usually
require transitions [22] or view-changes [28]. To tolerate non-
primary faults in a more efficient way, FastBFT leverages an
efficient failure detection mechanism.

Similar to previous BFT protocols [5], [40], we rely on
timeouts to detect crash failures and we have parent nodes
detect their children’s failures by verifying shares. Specifi-
cally, upon receiving a PREPARE message, Si starts a timer
for each of its direct children (Fig. 4, line 13). If Si fails to
receive a share from Sj before the timer expires (line 16)
or if Si receives a wrong share that does not match ĥj

c
(line 20), it sends 〈SUSPECT,Sj〉 to its parent and Sp to
signal potential failure of Sj. Whenever a replica receives
a SUSPECT message from its child, it cancels the timer of
this child to reduce the number of SUSPECT messages, and
forwards this SUSPECT message to its parent along the tree
until it reaches the root Sp (line 36). For multiple SUSPECT

messages along the same path, Sp only handles the node
that is closest to the leaf.

Upon receiving SUSPECT, Sp broadcasts 〈NEW-TREE,
T, T′, 〈H(T||T′), (c, v)〉σp 〉 (line 35), where T is the old tree
and T′ the new tree. Sp replaces the accused replica Sj
with a randomly chosen passive replica and moves the
accuser Si to a leaf position to prevent the impact of a
faulty accuser continuing to incorrectly report other replicas
as faulty. Notice that this allows a Byzantine Sp to evict
correct replicas. However, there will always be at least one
correct replica among the f + 1 active replicas. Notice that
Sj might be replaced by a passive replica if it did not
receive a PREPARE/COMMIT message and thus failed to
provide a correct share. In this case, its local counter value
will be smaller than that of other correct replicas. To rejoin
the protocol, Sj can ask Sp for the PREPARE/COMMIT
messages to update its counter.

If there are multiple faulty nodes along the same path,
the above approach can only detect one of them within
one round. We can extend this approach by having Sp
check correctness of all active replicas individually af-
ter one failure detection to allow detection of multiple
failures within one round.

Notice that f faulty replicas can take advantage of the
failure detection mechanism to trigger a sequence of tree
reconstructions (i.e., cause a denial of service DoS attack).
After the number of detected non-primary failures exceed
a threshold, Sp can trigger a transition protocol [22] to fall
back to a classical BFT protocol (cf. Section 4.5).

4.4 View-change
Recall that C sets a timer after sending a request to Sp.
It will broadcast the request to all replicas if no reply
was received before the timeout. If a replica receives no
PREPARE (or COMMIT/REPLY) message before the time-
out, it will initialize a view-change (Fig. 6) by broadcast-
ing a 〈REQ-VIEW-CHANGE, L, 〈H(L), (c, v)〉σi 〉 message,
where L is the message log that includes all messages it
has received/sent since the latest checkpoint4. In addition,
replicas can also suspect that Sp is faulty by verifying the
messages they received and initialize a view-change (i.e.,
line 10, line 39, 46 in Fig. 4). Notice that passive replicas can
also send REQ-VIEW-CHANGE messages. Thus, if faulty
primary occurs, there will be always f + 1 non-faulty repli-
cas initiate the view-change.

Upon receiving f + 1 REQ-VIEW-CHANGE messages,
the new primary Sp′ (that satisfies p′ = v′ mod n) constructs
the execution history O by collecting all prepared/commit-
ted/replied requests from the message logs (line 2). Notice
that there might be an existing valid execution history in the
message logs due to previously failed view-changes. In this
case, Sp′ just uses that history. This strategy guarantees that
replicas will always process the same execution history. Sp′

also constructs a tree T′ that specifies f + 1 new active repli-
cas for view v′ (line 3). Then, it invokes be primary on its
TEE to record T′ and generate a set of shared view keys for
the new active replicas’ TEEs (line 5). Next, Sp′ broadcasts
〈NEW-VIEW, O, T′, 〈H(O||T′), (c + 1, v)〉σp′ , {ωi}〉 (line 6).

4. Similar to other BFT protocols, FastBFT generates checkpoints periodically
to limit the number of messages in the log.

6

Upon receiving a NEW-VIEW message from Sp′ , Si ver-
ifies whether O was constructed properly, and broadcasts
〈VIEW-CHANGE, 〈H(O||T′), (c + 1, v)〉σi 〉 (line 11). Upon
receiving f VIEW-CHANGE messages5, Si executes all re-
quests in O that have not yet been executed locally, following
the counter values (line 14). A valid NEW-VIEW message
and f valid VIEW-CHANGE messages represent that f + 1
replicas have committed to execute the requests in O. After
execution, Si begins the new view by invoking update view
on its local TEE (line 16).

The new set of active replicas run the preprocess-
ing phase for view v′, reply to the requests that have
not been yet replied, and process the requests that have
not yet been prepared.

The view-change protocol potentially leads to counters
out of sync. Suppose there is a quorum Q of less than
f + 1 replicas receive no message after a PREPARE message
with a counter value (c, v), they will keep sending a REQ-
VIEW-CHANGE with a counter value (c + 1, v). On the
other hand, there is a quorum Q′ of at least f + 1 replicas
are still in the normal-operation and keep increasing their
counters, (c + 1, v), (c + 2, v), ..., (c + x, v). In this case, the
replicas in Q cannot rejoin Q′ because their counter values
are out of sync, but the safety and liveness are still hold
as long as the replicas in Q′ follow the protocol. Next,
consider some replicas in Q′ misbehave and other replicas
initiate a VIEW-CHANGE by sending REQ-VIEW-CHANGE
with (c + x + 1, v). Now, there will be more than f + 1
REQ-VIEW-CHANGE messages and the view-change will
happen. The honest replicas in Q will execute the operations
up to (c + x + 1, v) based on the execution history sent by
the replicas in Q′. Then, all replicas will switch to a new
view with a new counter value (0, v + 1).

1: upon reception of f + 1 〈REQ-VIEW-CHANGE, L,
〈H(L), (c, v)〉σi 〉 messages at the new primary S ′p do

2: build execution history O based on message logs {L}
3: choose f + 1 new active replicas and construct a tree T′
4: 〈H(O||T′), (c+ 1, v)〉σp′ ← TEE.request counter(H(O||T′))
5: {ωi} ← TEE.be primary({Si}, T′)
6: broadcast 〈NEW-VIEW, O, T′, 〈H(O||T′), (c + 1, v)〉σp′ ,
{ωi}〉

7:
8: upon reception of 〈NEW-VIEW, O, T′, 〈H(O||T′), (c +

1, v)〉σp′ , {ωi}〉 at Si do
9: if O is valid

10: 〈H(O||T′), (c + 1, v)〉σi ← TEE.request counter (
H(O||T′))

11: broadcast 〈VIEW-CHANGE, 〈H(O||T′), (c+ 1, v)〉σi 〉
12:
13: upon reception of f 〈VIEW-CHANGE, 〈H(O||T′), (c +

1, v)〉σi 〉 messages at Si do
14: execute the requests in O that have not been executed
15: extract and store information from T′
16: TEE.update view(〈H(O||T′), (c + 1, v)〉σp′ , ωi〉)

Fig. 6: Pseudocode: view-change.

5. Sp′ uses NEW-VIEW to represent its VIEW-CHANGE message, so it is
actually f + 1 VIEW-CHANGE messages.

4.5 Fallback Protocol: classical BFT with message ag-
gregation

As we mentioned in Section 4.3, after a threshold number of
failure detections, Sp initiates a transition protocol, which is
exactly the same as the view-change protocol in Section 4.4,
to reach a consensus on the current state and switch to
the next “view” without changing the primary. Next, all
replicas run the following classical BFT as fallback instead of
running the normal-case operation. Given that permanent
faults are rare, FastBFT stays in this fallback mode for a
fixed duration after which it will attempt to transition back
to normal-case. Before switching back to normal-case oper-
ation, Sp check replicas’ states by broadcasting a message
and asking for responses. In this way, Sp can avoid choosing
crashed replicas to be active. Then, Sp initiates a protocol
that is similar to view-change but set itself as the primary.
If all f + 1 potential active replicas participate in the view
change protocol, they will successfully switch back to the
normal-case operation.

To this end, we propose a new classical BFT protocol
which combines the use of MinBFT with our hardware-
assisted message aggregation technique. Unlike speculative
or optimistic BFT where all (active) replicas are required to
commit and/or reply, classical BFT only requires a subset
(e.g., f + 1 out of 2 f + 1) replicas to commit and reply.
When applying our techniques to classical BFT, one needs to
use a (f + 1)-out-of-(2 f + 1) secret sharing technique, such
as Shamir’s polynomial-based secret sharing, rather than
the XOR-based secret sharing. In MinBFT, Sp broadcasts a
PREPARE message including a monotonic counter value.
Then, each Si broadcasts a COMMIT message to others
to agree on the proposal from Sp. To get rid of all-to-all
multicast, we again introduce a preprocessing phase, where
Sp’s local TEE first generates n random shares x1, ..., xn,
and for each xi, computes { xj

xj−xi
}j together with (x2

i , ..., x f
i).

Then, for each counter value c, Sp performs the following
operations:

1) Sp generates a polynomial with independent random
coefficients: fc(x) = sc + a1,cx1 + ... + a f ,cx f where sc is
a secret to be shared.

2) Sp calculates hc ← H(sc, (c, v)).
3) For each active Si, Sp calculates $i

c = E(ki, 〈(xi, fc(xi)),
(c, v), hc〉).

4) Sp invokes its TEE to compute 〈hc, (c, v)〉σp which is a
signature generated using the signing key inside TEE.

5) Sp gives 〈hc, (c, v)〉σp and {$i
c} to Sp.

Subsequently, Sp sends $i
c to each replica Si. Later, in the

commit phase, after receiving at least f + 1 shares, Sp re-
constructs the secret: sc = ∑

f+1
i=1 (fc(xi)∏j 6=i

xj
xj−xi

). With this
technique, the message complexity of MinBFT is reduced
from O(n2) to O(n). However, the polynomial-based secret
sharing is more expensive than the XOR-based one used in
FastBFT.

The fallback protocol does not rely on the tree structure
since a faulty node in the tree can make its whole subtree
“faulty”—thus the fallback protocol can no longer tolerate
non-primary faults for free. If on the other hand primary
failure happens in the fallback protocol, replicas execute the
same view-change protocol as normal-case.

7

5 CORRECTNESS OF FASTBFT
In this section, we provide an informal argument for the
correctness of FastBFT. A formal (ideally machine-checked)
proof of safety and liveness is left as future work.

5.1 Safety

We show that if a correct replica executed a sequence
of operations 〈op1, ..., opm〉, then all other correct replicas
executed the same sequence of operations or a prefix of it.

Lemma 1. In a view v, if a correct replica executes an
operation op with counter value (c, v), no correct replica
executes a different operation op′ with this counter value.

Proof. Assume two correct replicas Si and Sj executed two
different operations opi and opj with the same counter value
(c, v). There are following cases:

1) Both Si and Sj executed opi and opj during normal-case op-
eration. In this case, they must have received valid COM-
MIT (or REPLY) messages with 〈H(Mi||resi), (c, v)〉σp

and 〈H(Mj||resj), (c, v)〉σp respectively (Fig. 4, line 27
and line 29). This is impossible since Sp’s TEE will never
sign different requests with the same counter value.

2) Si executed opi during normal-case operation while Sj ex-
ecuted opj during view-change operation. In this case, Si
must have received a COMMIT (or REPLY) message
for opi with an “opened” secret sc−1. To open sc−1, a
quorum Q of f + 1 active replicas must provide their
shares (Fig. 4, line 23). This also implies that they
have received a valid PREPARE message for opi with
(c − 1, v) and their TEE-recorded counter value is at
least c− 1 (Fig. 4, line 10). Recall that before changing
to the next view, Sj will process an execution history
O based on message logs provided by a quorum Q′ of
at least f + 1 replicas (Figure 6, line 2). So, there must
be an intersection replica Sk between Q and Q′, which
includes the PREPARE message for opi in its message
log, otherwise the counter values will not be sequential.
Therefore, a correct Sj will execute the operation opi
with counter value (c, v) before changing to the next
view (Fig. 6, line 14).

3) Both Si and Sj execute opi and opj during view-change
operation. They must have processed the execution his-
tories that contains the PREPARE messages for opi and
opj respectively. Sp’s TEE guarantees that Sp cannot
generate different PREPARE messages with the same
counter value.

4) Both Si and Sj execute opi and opj during the fallback
protocol. Similar to case 1, they must have received valid
COMMIT messages with 〈H(Mi||resi), (c, v)〉σp and
〈H(Mj||resj), (c, v)〉σp respectively, which is impossible.

5) Si executed opi during the fallback protocol while Sj executed
opj during view-change operation. The argument for this
case is the same as case 2.

Therefore, we conclude that it is impossible for two
different operations to be executed with the same counter
value during a view.

Lemma 2. If a correct replica executes an operation op in a
view v, no correct replica will change to a new view without
executing op.

Proof. Assume that a correct replica Si executed op in view
v, and another correct replica Sj change to the next view
without executing op. We distinguish between two cases:

1) Si executed op during normal-case operation (or during fall-
back). As mentioned in Case 2 of the proof of Lemma 1,
the PREPARE message for op will be included in the
execution history O. Therefore, a correct Sj will execute
it before changing to the next view.

2) Si executed op during view-change operation. There are two
possible cases:
a) Si executed op before Sj changing to the next view.

In this case, there are at least f + 1 replicas that
have committed to execute the history containing op
before Sj changing to the next view. Since Sj needs to
receive f + 1 REQ-VIEW-CHANGE messages, there
must be an intersection replica Sk that includes op to
its REQ-VIEW-CHANGE message. Then, a correct Sj
will execute op before changing to the next view.

b) Si executed op after Sj changing to the next view. Due to
the same reason as case (a), Si will process the same
execution history (without op) as the one Sj executed.

Therefore, we conclude that if a correct replica executes
an operation op in a view v, all correct replicas will execute
op before changing to a new view.

Theorem 1. Let seq = 〈op1, ..., opm〉 be a sequence of opera-
tions executed by a correct replica Si, then all other correct
replicas executed the same sequence or a prefix of it.

Proof. Assume a correct replica Sj executed a sequence of
operations seq′ that is not a prefix of seq, i.e., there is at least
one operation op′k that is different from opk. Assume that
opk was executed in view v and op′k was executed in view
v′. If v′ = v, this contradicts Lemma 1, and if v′ 6= v, this
contradicts Lemma 2—thus proving the theorem.

5.2 Liveness

We say that C’s request completes when C accepts the reply.
We show that an operation requested by a correct C even-
tually completes. We say a view is stable if the primary is
correct.

Lemma 3. During a stable view, an operation op requested
by a correct client will complete.

Proof. Since the primary Sp is correct, a valid PREPARE
message will be sent. If all active replicas behave correctly,
the request will complete. However, a faulty replica Sj may
either crash or reply with a wrong share. This behavior will
be detected by its parent (Fig. 4, line 20) and Sj will be
replaced by a passive replica (Fig. 4, line 33). If a thresh-
old number of failure detections has been reached, correct
replicas will initiate a view-change to switch to the fallback
protocol. The view-change will succeed since the primary is
correct. In the fallback protocol, the request will complete as
long as the number of non-primary faults is at most f .

Lemma 4. A view v eventually will be changed to a stable
view if f + 1 correct replicas request view-change.

Proof. Suppose a quorum Q of f + 1 correct replicas requests
a view-change. We distinguish between three cases:

8

1) The new primary Sp′ is correct and all replicas in Q received
a valid NEW-VIEW message. They will change to a
stable view successfully (Fig. 6, line 6).

2) None of the correct replicas received a valid NEW-VIEW
message. In this case, another view-change will start.

3) Only a quorum Q′ of less than f + 1 correct replicas re-
ceived a valid NEW-VIEW message. In this case, faulty
replicas can follow the protocol to make the correct
replicas in Q′ change to a non-stable view. Other correct
replicas will send new REQ-VIEW-CHANGE messages
due to timeout, but a view-change will not start since
they are less than f + 1. When faulty replicas devi-
ate from the protocol, the correct replicas in Q′ will
trigger a new view-change.

In cases 2 and 3, a new view-change triggers the sys-
tem to reach again one of the above three cases. Recall
that, under a weak synchrony assumption, messages are
guaranteed to be delivered in polynomial time. Therefore,
the system will eventually reach case 1, i.e., a stable view
will be reached.

Theorem 2. An operation requested by a correct client
eventually completes.

Proof. In stable views, operations will complete eventually
(Lemma 3). If the view is not stable, there are two cases:

1) At least f + 1 correct replicas request a view-change. The
view will eventually be changed to stable (Lemma 4).

2) Less than f + 1 correct replicas request a view-change. Re-
quests will complete if all active replicas follow the pro-
tocol. Otherwise, requests will not complete within a
timeout, and eventually all correct replicas will request
view-change and the system falls to case 1.

Therefore, all replicas will eventually fall into a stable
view and clients’ requests will complete.

6 DESIGN CHOICES

6.1 Virtual Counter
Throughout the paper, we assume that each TEE main-
tains a monotonic counter. The simplest way to realize a
monotonic counter is to directly use a hardware monotonic
counter supported by the underlying TEE platform (for
example, MinBFT used TPM [16] counters and CheapBFT
used counters realized in FPGA; Intel SGX platforms also
support monotonic counters in hardware [20]). However,
such hardware counters constitute a bottleneck for BFT
protocols due to their low efficiency: for example, when
using SGX counters, a read operation takes 60-140 ms and
an increment operation takes 80-250 ms, depending on the
platform [29].

An alternative is to have the TEE maintain a virtual
counter in volatile memory; but it will be reset after each
system reboot. This can be naively solved by recording the
counter value on persistent storage before reboot, but this
solution suffers from the rollback attacks [29]: a faulty Sp
can call the request counter function twice, each of which
is followed by a machine reboot. As a result, Sp’s TEE will
record two counter values on the persistent storage. Sp can
just throw away the second value when the TEE requests the
latest backup counter value. In this case, Sp can successfully
equivocate.

To remedy this, we borrow the idea from [35]: when TEE
wants to record its state (e.g., in preparation for a machine
reboot), it increments its hardware counter C and stores
(C + 1, c, v) on persistent storage. On reading back its state,
the TEE accepts the virtual counter value if and only if the
current hardware counter value matches the stored one. If
the TEE was terminated without incrementing and saving
the hardware counter value (called unscheduled reboot), it will
find a mismatch and refuse to process any further requests
from this point on. This completely prevents equivocation; a
faulty replica can only achieve DoS by causing unscheduled
reboots.

In FastBFT, we treat an unscheduled reboot as a crash
failure. To bound the number of failures in the system,
we provide a reset counter function to allow crashed (or
rebooted) replicas to rejoin the system. Namely, after an
unscheduled reboot, Si can broadcast a REJOIN message.
Replicas who receive this message will reply with a signed
counter value together with the message log since the last
checkpoint (similar to the VIEW-CHANGE message). Si’s
TEE can reset its counter value and work again if and only
if it receives f + 1 consistent signed counter values from
different replicas (line 59 in Fig. 3). However, a faulty Sp can
abuse this function to equivocate: request a signed counter
value, enforce an unscheduled reboot, and then broadcast
a REJOIN message to reset its counter value. In this case,
Sp can successfully associate two different messages with
the same counter value. To prevent this, we have all replicas
refuse to provide a signed counter value to an unscheduled
rebooted primary, so that Sp can reset its counter value only
when it becomes a normal replica after a view-change.

6.2 BFT À la Carte
In this section, we revisit our design choices in FastBFT,
show different protocols that can result from alter-
native design choices and qualitatively compare them
along two dimensions:
• Performance: latency required to complete a request

(lower the better) and the peak throughput (higher the
better) of the system in common case. Generally (but
not always), schemes that exhibit low latency also have
high throughput; and

• Resilience: cost required to tolerate non-primary
faults6.

Fig. 7(a) depicts design choices for constructing BFT
protocols; Fig. 7(b) compares interesting combinations. Be-
low, we discuss different possible BFT protocols, informally
discuss their performance, resilience, and placement in
Fig. 7(b).
BFT paradigms. As mentioned in Section 2, we distin-
guish between three possible paradigms: classical (C) (e.g.,
PBFT [5]), optimistic (O) (e.g., Distler et. al [9]), and specu-
lative (S) (e.g., Zyzzyva [24]). Clearly, speculative BFT proto-
cols (S) provide the best performance since it avoids all-to-
all multicast. However, speculative execution cannot tolerate
even a single crash fault and requires clients’ help to recover
from inconsistent states. In real-world scenarios, clients
may have neither incentives nor resources (e.g., lightweight

6. All BFT protocols require view-change to recover from primary faults,
which incurs a similar cost in different protocols.

9

BFT paradigms

Hardware assistance

Message aggregation

Communication topology

Classical (C)
BFT

Optimistic (O)
BFT

Speculative (S)
BFT

Hardware (H)
security mechanisms

Tree (T)
with failure detection

Polynomial (P)
secret sharing

XOR (X)
secret sharing

Multisignature(M)

Chain
with failure detection

(a) Design choices (not all combinations are possible:
e.g., X and C cannot be combined).

P
e
rf
o
rm

a
n
c
e

Resilience

SHXT

SHX

SH

OH

O

OHX

CMT

CHPT

OHXT

CHP

CH

C

ByzCoin[20]

MinZyzzyva [34]

CheapBFT [19]

 ReBFT [9] MinBFT [34]

PBFT [4]

FastBFT (normal-case)

Zyzzyva [21]

S

FastBFT (fallback)

(b) Performance of some design choice combinations.

Fig. 7: Design choices for BFT protocols.

clients) to do so. If a (faulty) client fails to report the
inconsistency, replicas whose state has diverged from others
may not discover this. Moreover, if inconsistency appears,
replicas may have to rollback some executions, which makes
the programming model more complicated. Therefore, spec-
ulative BFT fares the worst in terms of resilience. In contrast,
classical BFT protocols (C) can tolerate non-primary faults
for free but requires all replicas to be involved in the agree-
ment stage. By doing so, these protocols achieve the best
resilience but at the expense of bad performance. Optimistic
BFT protocols (O) achieve a tradeoff between performance
and resilience. They only require active replicas to execute
the agreement protocol which significantly reduces message
complexity but still requires all-to-all multicast. Although
these protocols require transition [22] or view-change [28]
to tolerate non-primary faults, they require neither support
from the clients nor any rollback mechanism.
Hardware assistance. Hardware security mechanisms
(H) can be used in all three paradigms. For instance,
MinBFT [40] is a classical (C) BFT leveraging hardware
security (H); to ease presentation, we say that MinBFT is
of the CH family. Similarly, CheapBFT [22] is OH (i.e.,
optimistic + hardware security) and MinZyzzyva [40] is SH
(i.e., speculative + hardware security). Hardware security
mechanisms improve performance in all three paradigms
(by reducing the number of required replicas and/or com-
munication phases) without impacting resilience.
Message aggregation. We distinguish between message ag-
gregation based on multisignatures (M) [37] and on secret
sharing (such as the one used in FastBFT). We further
classify secret sharing techniques into (the more efficient)
XOR-based (X) and (the less efficient) polynomial-based (P).
Secret sharing techniques are only applicable to hardware-
assisted BFT protocols (i.,e to CH, OH, and SH). In the CH
family, only polynomial-based secret sharing is applicable
since classical BFT only requires responses from a threshold
number of replicas in commit and reply. Notice that CHP is
the fallback protocol of FastBFT. XOR-based secret sharing
can be used in conjunction with OH and SH. Message ag-
gregation significantly increases performance of optimistic

and classical BFT protocols but is of little help to spec-
ulative BFT which already has O(n) message complexity.
After adding message aggregation, optimistic BFT protocols
(OHX) become more efficient than speculative ones (SHX),
since both of them have O(n) message complexity but OHX
requires less replicas to actively run the protocol.
Communication topology. In addition, we can improve
efficiency using better communication topologies (e.g., tree).
We can apply the tree topology with failure detection (T) to
any of the above combinations e.g., CHPT, OHXT (which
is FastBFT), SHXT and CMT (which is ByzCoin [23]). Tree
topology improves the performance of all protocols. For
SHXT, resilience remains the same as before, since it still
requires rollback in case of faults. For OHXT, resilience will
be improved, since transition or view-change is no longer
required for non-primary faults. On the other hand, for
CHPT, resilience will almost be reduced to the same level
as OHXT, since a faulty node in the tree can make its
whole subtree “faulty”, thus it can no longer tolerate non-
primary faults for free. Chain is another communication
topology widely used in BFT protocols [2], [11]. It offers
high throughput but incurs large latency due to its O(n)
communication steps. Other communication topologies may
provide better efficiency and/or resilience. We leave the
investigation and comparison of them as future work.

In Fig. 7(b), we summarize the above discussion visually.
We conjecture that the use of hardware and the message
aggregation can bridge the gap in performance between
optimistic and speculative paradigms without adversely im-
pacting resilience. The reliance on the tree topology further
enhances performance and resilience. In the next section, we
confirm these conjectures experimentally.

7 EVALUATION

In this section, we implement FastBFT, emulating both
the normal-case (cf. Section 4.2) and the fallback proto-
col (cf. Section 4.5), and compare their performance with
Zyzzyva [24], MinBFT [40], CheapBFT [22] and XPaxos [28].
Noticed that the fallback protocol is considered to be the
worst-case of FastBFT.

10

 10

 100

 1000

 10000

 0 50 100 150 200

P
ea

k
th

ro
ug

hp
ut

 (
op

/s
)

Total number of replicas (n)

Zyzzyva
MinBFT

CheapBFT
FastBFT(normal-case)

FastBFT(fallback)
XPaxos

(a) Peak throughput vs. n.

 10

 100

 1000

 10000

 0 10 20 30 40 50 60 70 80 90 100

P
ea

k
th

ro
ug

hp
ut

 (
op

/s
)

Tolerable number of faulty replicas (f)

Zyzzyva
MinBFT

CheapBFT
FastBFT(normal-case)

FastBFT(fallback)
XPaxos

(b) Peak throughput vs. f .

 1

 10

 100

 0 10 20 30 40 50 60 70 80 90 100

La
te

nc
y

(m
s)

Tolerable number of faulty replicas (f)

Zyzzyva
MinBFT

CheapBFT
FastBFT(normal-case)

FastBFT(fallback)
XPaxos

(c) Latency vs. f .

Fig. 10: Evaluation results for 1 KB payload.

7.1 Performance Evaluation: Setup and Methodology

Our implementation is based on Golang. We use Intel SGX
to provide hardware security support and implement the
TEE part of a FastBFT replica as an SGX enclave. We use
SHA256 for hashing, 128-bit CMAC for MACs, and 256-
bit ECDSA for client signatures. We set the size of the
committed secret in FastBFT to 128 bits and implement the
monotonic counter as we described in Section 6.1.

We deployed our BFT implementations on a private net-
work consisting of five 8 vCore Intel Xeon E3-1240 equipped
with 32 GB RAM and Intel SGX. All BFT replicas were run-
ning in separate processes. At all times, we load balance the
number of BFT replicas running on each machine; by vary-
ing the server failure threshold f from 1 to 99, we spawned
a maximum of 298 processes across 5 machines. The clients
were running on an 8 vCore Intel Xeon E3-1230 equipped
with 16 GB RAM as multiple threads. Each machine has
1 Gbps of bandwidth and the communication between vari-
ous machines was bridged using a 1 Gbps switch. This setup
emulates a realistic enterprise deployment; for example IBM
plans the deployment of their blockchain platform within
a large internal cluster [18], serving mutually distrustful
parties (e.g., a consortium of banks using a cloud service
for running a permissioned blockchain).

Each client invokes operation in a closed loop, i.e., each
client may have at most one pending operation. The latency
of an operation is measured as the time when a request is
issued until the replicas’ replies are accepted; and we define
the throughput as the number of operations that can be

 0.1

 1

 10

 100

 1000

 0 20 40 60 80 100 120 140 160 180 200

S
ha

re
 g

en
er

at
io

n
tim

e
(m

s)

Total number of replicas (n)

FastBFT(normal-case)
FastBFT(fallback)

Fig. 8: Cost of pre-processing vs. number of replicas (n)

 1

 10

 100

 1000

 10000

1B 1KB 1MB
La

te
nc

y
(m

s)
Reply payload size

Zyzzyva
MinBFT

CheapBFT
FastBFT(normal-case)

FastBFT(fallback)
XPaxos

Fig. 9: Latency vs. payload size.

handled by the system in one second. We evaluate the peak
throughput with respect to the server failure threshold f .
We also evaluate the latency incurred in the investigated
BFT protocols with respect to the attained throughput. We
require that the clients issue back to back requests, i.e., a
client issues the next request as soon as the replies of the
previous one have been accepted. We then increase the con-
currency by increasing the number of clients in the system
until the aggregated throughput attained by all requests
is saturated. In our experiments, we vary the number of
concurrent clients from 1 to 10 to measure the latency and
find the peak throughput. Note that each data point in our
plots is averaged over 1,500 different measurements; where
appropriate, we include the corresponding 95% confidence
intervals.

7.2 Performance Evaluation: Results
Pre-processing time. Fig. 8 depicts the CPU time vs. number
of replicas (n) measured when generating shares for one
secret. Our results show that in the normal case, TEE only
spends about 0.6 ms to generate additive shares for 20
replicas; this time increases linearly as n increases (e.g.,
1.6 ms for 200 replicas). This implies that it only takes
several seconds to generate secrets for thousands of counters
(queries). We therefore argue that the preprocessing will not
create a bottleneck for FastBFT. In the case of the fallback
variant of FastBFT, the share generation time (of Shamir
secret shares) increases significantly as n increases, since the
process involves n · f modulo multiplications. Our results
show that it takes approximately 100 ms to generate shares

11

 0.1

 1

 10

 100

 1000

 0 50 100 150 200

P
ea

k
th

ro
ug

hp
ut

 (
op

/s
)

Total number of replicas (n)

Zyzzyva
MinBFT

CheapBFT
FastBFT(normal-case)

FastBFT(fallback)
XPaxos

(a) Peak throughput vs. n.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50 60 70 80 90 100

P
ea

k
th

ro
ug

hp
ut

 (
op

/s
)

Tolerable number of faulty replicas (f)

Zyzzyva
MinBFT

CheapBFT
FastBFT(normal-case)

FastBFT(fallback)
XPaxos

(b) Peak throughput vs. f .

 10

 100

 1000

 10000

 100000

 0 10 20 30 40 50 60 70 80 90 100

La
te

nc
y

(m
s)

Tolerable number of faulty replicas (f)

Zyzzyva
MinBFT

CheapBFT
FastBFT(normal-case)

FastBFT(fallback)
XPaxos

(c) Latency vs. f .

Fig. 11: Evaluation results for 1 MB payload.

for 200 replicas. Next, we evaluate the online performance
of FastBFT.
Impact of reply payload size. We start by evaluating the
latency vs. payload size (ranging from 1 byte to 1MB). We
set n = 103 (which corresponds to our default network size).
Fig. 9 shows that FastBFT achieves the lowest latency for
all payload sizes. For instance, to answer a request with
1 KB payload, FastBFT requires 4 ms, which is twice as
fast as Zyzzyva. Our findings also suggest that the latency
is mainly affected by payload sizes that are larger than
1 KB (e.g., 1 MB). We speculate that this effect is caused
by the overhead of transmitting large payloads. Based on
this observation, we proceed to evaluate online performance
for payload sizes of 1 KB and 1 MB respectively. The
payload size plays an important role in determining the
effective transactional throughput of a system. For instance,
Bitcoin’s consensus requires 600 seconds on average, but
since payload size (block size) is 1 MB, Bitcoin can achieve a
peak throughput of 7 transactions per second (each Bitcoin
transaction is 250 bytes on average).
Performance for 1KB reply payload. Fig. 10(a) depicts the
peak throughput vs. n for 1 KB payload. FastBFT’s perfor-
mance is modest when compared to other protocols when
n is small. While the performance of these latter protocols
degrades significantly as n increases, FastBFT’s performance
is marginally affected. For example, when n = 199, FastBFT
achieves a peak throughput of 370 operations per second
when compared to 56, 38, 42 op/s for Zyzzyva, CheapBFT
and XPaxos respectively. Even in the fallback case, FastBFT
achieves almost 152 op/s when n = 199 and outperforms
the remaining protocols. Notice that comparing perfor-
mance with respect to n does not provide a fair basis to com-
pare BFT protocols with and without hardware assistance.
For instance, when n = 103, Zyzzyva can only tolerate at
most f = 34 faults, while FastBFT, CheapBFT, and MinBFT
can tolerate f = 51. We thus investigate how performance
varies with the maximum number of tolerable faults in
Figs. 10(b) and 10(c). In terms of the peak throughput vs.
f , the gap between FastBFT and Zyzzyva is even larger. For
example, when f = 51, it achieves a peak throughput of 490
operations per second, which is 5 times larger than Zyzzyva.
In general, FastBFT achieves the highest throughput while
exhibiting the lowest average latency per operation when
f > 24. The competitive advantage of FastBFT (and its
fallback variant) is even more pronounced as f increases.

Although FastBFT-fallback achieves comparable latency to
CheapBFT, it achieves a considerably higher peak through-
put. For example, when f = 51, FastBFT-fallback reaches 320
op/s when compared to 110 op/s for CheapBFT. This is due
to the fact that FastBFT exhibits considerably less commu-
nication complexity than CheapBFT. Furthermore, we em-
phasize that XPaxos [28] provides comparable performance
to Paxos. So we conclude that FastBFT even outperforms the
crash fault-tolerant schemes.
Performance for 1MB reply payload. The superior perfor-
mance of FastBFT becomes more pronounced as the payload
size increases since FastBFT incurs very low communication
overhead. Fig. 11(a) shows that for 1MB payload, the peak
throughput of FastBFT outperforms the others even for
small n, and the gap keeps increasing as n increases (260
times faster than Zyzzyva when n = 199). Figure 11(b)
and 11(c) show the same pattern as in the 1KB case when
comparing FastBFT and Zyzzyva for a given f value. We
also notice that all other protocols beside FastBFT exhibit
significant performance deterioration when the payload size
increases to 1 MB. For instance, when the system comprises
200 replicas, a client needs to wait for at least 100 replies
(each 1MB in size) in MinBFT, CheapBFT and XPaxos, and
200 replies amounting to 200 MB in Zyzzyva. FastBFT over-
comes this limitation by requiring only the primary node to
reply to the client. An alternative way to overcome this limi-
tation is having the client specifies a single replica to return
a full response. Other replicas only return a digest of the
response. This optimisation affects the resilience when the
designated replica is faulty. Nevertheless, we still measured
the response latencies of protocols with this optimisation
and the results are shown in Figure 12. The performance of
FastBFT remains the same since it only returns one value to
the client. Even through the performance of other protocols
have been significantly improved, FastBFT (normal-case)
still outperforms others.

Assuming that each payload comprises transactions of
250 bytes (similar to Bitcoin), FastBFT can process a max-
imum of 113,246 transactions per second in a network of
around 199 replicas.

Our results confirm our conjectures in Section 6: FastBFT
strikes a strong balance between performance and resilience.

7.3 Security Considerations
TEE usage. Since we assumed that TEEs may only crash (cf.

12

 10

 100

 1000

 0 10 20 30 40 50 60 70 80 90 100

L
a

te
n

c
y
 (

m
s
)

Tolerable number of faulty replicas (f)

Zyzzyva

MinBFT

CheapBFT

FastBFT(normal-case)

FastBFT(fallback)

XPaxos

Fig. 12: Latency vs. f (with single full-response)

system model in Section 3), a naive approach to implement
a BFT protocol is to simply run a crash fault-tolerant variant
(e.g., Paxos) within TEEs. However, running large/complex
code within TEEs increases the risk of vulnerabilities in
the TEE code. The usual design pattern is to partition a
complex application so that only a minimal, critical part
runs within TEEs. Previous work (e.g., MinBFT, CheapBFT)
showed that using minimal TEE functionality (maintaining
an monotonic counter) improves the performance of BFT
schemes. FastBFT presents a different way of leveraging
TEEs that leads to significant performance improvements
by slightly increasing the complexity of TEE functionality.
FastBFT’s TEE code has 7 interface primitives and 1,042 lines
of code (47 lines of code are for SGX SDK); In comparison,
MinBFT uses 2 interface functions and 191 lines (13 lines
of code are for SGX SDK) of code in our implementation.
Both are small enough to make formal/informal verification
as needed, ever though FastBFT places more functionality
in the TEE than just a counter. In contrast, Paxos (based on
LibPaxos [33]) requires more than 4,000 lines of code.
TEE side-channels. SGX enclave code that deals with sensi-
tive information must use side-channel resistant algorithms
to process them [21]. However, the only sensitive informa-
tion in FastBFT are cryptographic keys/secret-shares which
are processed by standard cryptographic algorithms/imple-
mentations such as the standard the SGX crypto library
(libsgx tcrypto.a) which are side-channel resistant. Existing
side-channel attacks are based on either the RSA public
component or the RSA implementation from other libraries,
which we did not use in our implementation.

8 RELATED WORK

Randomized Byzantine consensus protocols have been pro-
posed in 1980s [4], [34]. Such protocols rely on crypto-
graphic coin tossing and expect to complete in O(k) rounds
with probability 1 − 2−k. As such, randomized Byzantine
protocols typically result in high communication and time
complexities. In this paper, we therefore focus on the effi-
cient deterministic variants. Honeybadger [31] is a recent
randomized Byzantine protocol that provides comparable
throughput to PBFT.

Liu et al. observed that Byzantine faults are usually in-
dependent of asynchrony [28]. Leveraging this observation,
they introduced a new model, XFT, which allows designing
protocols that tolerate crash faults in weak synchronous

networks and, meanwhile, tolerates Byzantine faults in syn-
chronous network. Following this model, the authors pre-
sented XPaxos, an optimistic state machine replication, that
requires n = 2 f + 1 replicas to tolerate f faults. However,
XPaxos still requires all-to-all multicast in the agreement
stage—thus resulting in O(n2) message complexity.

FastBFT’s message aggregation technique is similar to
the proof of writing technique introduced in PowerStore [10]
which implements a read/write storage abstraction. Proof
of writing is a 2-round write procedure: the writer first
commits to a random value, and then opens the commit-
ment to “prove” that the first round has been completed.
The commitment can be implemented using cryptographic
hashes or polynomial evaluation—thus removing the need
for public-key operations.

Hybster [3] is a TEE-based BFT protocol that leverages
parallelization to improve performance, which is orthogonal
to our contribution.

9 CONCLUSION AND FUTURE WORK

In this paper, we presented a new BFT protocol, FastBFT.
We analyzed and evaluated our proposal in comparison
to existing BFT variants. Our results show that FastBFT
is 6 times faster than Zyzzyva. Since Zyzzyva reduces
replicas’ overheads to near their theoretical minima, we
argue that FastBFT achieves near-optimal efficiency for
BFT protocols. Moreover, FastBFT exhibits considerably
slower decline in the achieved throughput as the net-
work size grows when compared to other BFT protocols.
This makes FastBFT an ideal consensus layer candidate for
next-generation blockchain systems.

We assume that TEEs are equipped with certified key-
pairs (Section 4.1). Certification is typically done by the TEE
manufacturer, but can also be done by any trusted party
when the system is initialized. Although our implementa-
tion uses Intel SGX for hardware support, FastBFT can be
realized on any standard TEE platform (e.g., GlobalPlat-
form [15]).

We plan to explore the impact of other topologies, be-
sides trees, on the performance of FastBFT. This will enable
us to reason on optimal (or near-optimal) topologies that
suit a particular network size in FastBFT.

ACKNOWLEDGMENTS

The work was supported in part by a grant from NEC Labs
Europe as well as funding from the Academy of Finland
(BCon project, grant #309195).

REFERENCES

[1] I. Anati, S. Gueron, S. Johnson, and V. Scarlata,
“Innovative technology for cpu based attestation and
sealing,” in Proceedings of the 2nd international workshop on
hardware and architectural support for security and privacy,
vol. 13, 2013.

[2] P.-L. Aublin, R. Guerraoui, N. Knežević, V. Quéma, and
M. Vukolić, “The next 700 BFT protocols,” ACM Trans.
Comput. Syst., Jan. 2015. [Online]. Available:
http://doi.acm.org/10.1145/2658994

13

http://doi.acm.org/10.1145/2658994

[3] J. Behl, T. Distler, and R. Kapitza, “Hybrids on steroids:
Sgx-based high performance bft,” in Proceedings of the
Twelfth European Conference on Computer Systems, ser.
EuroSys ’17. ACM, 2017, pp. 222–237. [Online].
Available: http://doi.acm.org/10.1145/3064176.3064213

[4] M. Ben-Or, “Another advantage of free choice (extended
abstract): Completely asynchronous agreement
protocols,” in Proceedings of the Second Annual ACM
Symposium on Principles of Distributed Computing, 1983.

[5] M. Castro and B. Liskov, “Practical Byzantine fault
tolerance,” in Proceedings of the Third Symposium on
Operating Systems Design and Implementation, 1999.
[Online]. Available:
http://dl.acm.org/citation.cfm?id=296806.296824

[6] B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz,
“Attested append-only memory: Making adversaries stick
to their word,” in Proceedings of Twenty-first ACM SIGOPS
Symposium on Operating Systems Principles, 2007. [Online].
Available: http://doi.acm.org/10.1145/1294261.1294280

[7] J. C. Corbett, J. Dean et al., “Spanner: Google’s
globally-distributed database,” in 10th USENIX
Symposium on Operating Systems Design and Implementation,
Oct. 2012. [Online]. Available:
https://www.usenix.org/conference/osdi12/
technical-sessions/presentation/corbett

[8] M. Correia, N. F. Neves, L. C. Lung, and P. Verı́ssimo,
“Low complexity byzantine-resilient consensus,”
Distributed Computing, vol. 17, no. 3, pp. 237–249, 2005.
[Online]. Available:
http://dx.doi.org/10.1007/s00446-004-0110-7

[9] T. Distler, C. Cachin, and R. Kapitza, “Resource-efficient
byzantine fault tolerance,” IEEE Transactions on Computers,
vol. 65, no. 9, pp. 2807–2819, Sept 2016.

[10] D. Dobre, G. Karame, W. Li, M. Majuntke, N. Suri, and
M. Vukolić, “PoWerStore: Proofs of writing for efficient
and robust storage,” in Proceedings of the 2013 ACM
SIGSAC Conference on Computer & Communications
Security, 2013. [Online]. Available:
http://doi.acm.org/10.1145/2508859.2516750

[11] S. Duan, H. Meling, S. Peisert, and H. Zhang, “Bchain:
Byzantine replication with high throughput and
embedded reconfiguration,” in Principles of Distributed
Systems: 18th International Conference, 2014.

[12] J. Ekberg, K. Kostiainen, and N. Asokan, “The untapped
potential of trusted execution environments on mobile
devices,” IEEE Security & Privacy, 2014. [Online].
Available: http://dx.doi.org/10.1109/MSP.2014.38

[13] M. J. Fischer, N. A. Lynch, and M. S. Paterson,
“Impossibility of distributed consensus with one faulty
process,” J. ACM, Apr. 1985. [Online]. Available:
http://doi.acm.org/10.1145/3149.214121

[14] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis,
H. Ritzdorf, and S. Capkun, “On the security and
performance of proof of work blockchains,” in Proceedings
of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, Vienna, Austria, October 24-28,
2016, 2016. [Online]. Available:
http://doi.acm.org/10.1145/2976749.2978341

[15] GlobalPlatform, “GlobalPlatform: Device specifications
for trusted execution environment.” 2017. [Online].
Available:
http://www.globalplatform.org/specificationsdevice.asp

[16] T. C. Group, “Tpm main, part 1 design principles.
specification version 1.2, revision 103.” 2007.

[17] IBM, “IBM blockchain,” 2015. [Online]. Available:
http://www.ibm.com/blockchain/

[18] ——, “IBM Blockchain, underpinned by highly secure
infrastructure, is a game changer.” 2017. [Online].
Available: https://www-03.ibm.com/systems/linuxone/
solutions/blockchain-technology.html

[19] Intel, “Software Guard Extensions Programming
Reference,” 2013. [Online]. Available: https:
//software.intel.com/sites/default/files/329298-001.pdf

[20] ——, “SGX documentation:sgx create monotonic
counter,” 2016. [Online]. Available:
https://software.intel.com/en-us/node/696638

[21] S. Johnson, “Intel SGX and Side-Channels,” 2017.
[Online]. Available: https://software.intel.com/en-us/
articles/intel-sgx-and-side-channels

[22] R. Kapitza, J. Behl, C. Cachin, T. Distler, S. Kuhnle, S. V.
Mohammadi, W. Schröder-Preikschat, and K. Stengel,
“CheapBFT: Resource-efficient Byzantine fault tolerance,”
in Proceedings of the 7th ACM European Conference on
Computer Systems, 2012. [Online]. Available:
http://doi.acm.org/10.1145/2168836.2168866

[23] E. K. Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser,
and B. Ford, “Enhancing Bitcoin security and
performance with strong consistency via collective
signing,” in 25th USENIX Security Symposium, Aug. 2016.
[Online]. Available: https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/kogias

[24] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong,
“Zyzzyva: Speculative Byzantine fault tolerance,” ACM
Trans. Comput. Syst., Jan. 2010. [Online]. Available:
http://doi.acm.org/10.1145/1658357.1658358

[25] L. Lamport, “The part-time parliament,” ACM Trans.
Comput. Syst., May 1998. [Online]. Available:
http://doi.acm.org/10.1145/279227.279229

[26] L. Lamport, R. Shostak, and M. Pease, “The Byzantine
generals problem,” ACM Trans. Program. Lang. Syst., Jul.
1982. [Online]. Available:
http://doi.acm.org/10.1145/357172.357176

[27] D. Levin, J. R. Douceur, J. R. Lorch, and T. Moscibroda,
“TrInc: Small trusted hardware for large distributed
systems,” in Proceedings of the 6th USENIX Symposium on
Networked Systems Design and Implementation, 2009.

[28] S. Liu, P. Viotti, C. Cachin, V. Quema, and M. Vukolic,
“XFT: Practical fault tolerance beyond crashes,” in 12th
USENIX Symposium on Operating Systems Design and
Implementation, 2016. [Online]. Available:
https://www.usenix.org/conference/osdi16/
technical-sessions/presentation/liu

[29] S. Matetic, M. Ahmed, K. Kostiainen, A. Dhar, D. Sommer,
A. Gervais, A. Juels, and S. Capkun, “ROTE: Rollback
protection for trusted execution,” 2017. [Online].
Available: http://eprint.iacr.org/2017/048

[30] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas,
H. Shafi, V. Shanbhogue, and U. R. Savagaonkar,
“Innovative instructions and software model for isolated
execution,” in HASP, 2013. [Online]. Available:
http://doi.acm.org/10.1145/2487726.2488368

[31] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The
honey badger of BFT protocols,” in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications
Security, 2016. [Online]. Available:
http://doi.acm.org/10.1145/2976749.2978399

[32] D. Ongaro and J. Ousterhout, “In search of an
understandable consensus algorithm,” in 2014 USENIX
Annual Technical Conference (USENIX ATC 14). USENIX
Association, 2014, pp. 305–319. [Online]. Available:
https://www.usenix.org/conference/atc14/
technical-sessions/presentation/ongaro

[33] M. Primi and D. Sciascia, “LibPaxos,” 2013. [Online].
Available: http://libpaxos.sourceforge.net/paxos
projects.php#libpaxos3

[34] M. O. Rabin, “Randomized byzantine generals,” in 24th
Annual Symposium on Foundations of Computer Science, Nov
1983. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1382847

14

http://doi.acm.org/10.1145/3064176.3064213
http://dl.acm.org/citation.cfm?id=296806.296824
http://doi.acm.org/10.1145/1294261.1294280
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/corbett
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/corbett
http://dx.doi.org/10.1007/s00446-004-0110-7
http://doi.acm.org/10.1145/2508859.2516750
http://dx.doi.org/10.1109/MSP.2014.38
http://doi.acm.org/10.1145/3149.214121
http://doi.acm.org/10.1145/2976749.2978341
http://www.globalplatform.org/specificationsdevice.asp
http://www.ibm.com/blockchain/
https://www-03.ibm.com/systems/linuxone/solutions/blockchain-technology.html
https://www-03.ibm.com/systems/linuxone/solutions/blockchain-technology.html
https://software.intel.com/sites/default/files/329298-001.pdf
https://software.intel.com/sites/default/files/329298-001.pdf
https: //software.intel.com/en- us/node/696638
https://software.intel.com/en-us/articles/intel-sgx-and-side-channels
https://software.intel.com/en-us/articles/intel-sgx-and-side-channels
http://doi.acm.org/10.1145/2168836.2168866
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/kogias
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/kogias
http://doi.acm.org/10.1145/1658357.1658358
http://doi.acm.org/10.1145/279227.279229
http://doi.acm.org/10.1145/357172.357176
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/liu
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/liu
http://eprint.iacr.org/2017/048
http://doi.acm.org/10.1145/2487726.2488368
http://doi.acm.org/10.1145/2976749.2978399
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
http://libpaxos.sourceforge.net/paxos_projects.php#libpaxos3
http://libpaxos.sourceforge.net/paxos_projects.php#libpaxos3
http://dl.acm.org/citation.cfm?id=1382847

[35] H. Raj, S. Saroiu, A. Wolman, R. Aigner, J. Cox,
P. England, C. Fenner, K. Kinshumann, J. Loeser,
D. Mattoon, M. Nystrom, D. Robinson, R. Spiger,
S. Thom, and D. Wooten, “fTPM: A software-only
implementation of a TPM chip,” in 25th USENIX Security
Symposium, Aug 2016. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity16/
technical-sessions/presentation/raj

[36] F. B. Schneider, “Implementing fault-tolerant services
using the state machine approach: A tutorial,” ACM
Comput. Surv., Dec. 1990. [Online]. Available:
http://doi.acm.org/10.1145/98163.98167

[37] E. Syta, I. Tamas, D. Visher, D. I. Wolinsky, P. Jovanovic,
L. Gasser, N. Gailly, Khoffi, Ismail, and B. Ford, “Keeping
authorities “honest or bust” with decentralized witness
cosigning,” in 37th IEEE Symposium on Security and
Privacy, 2016. [Online]. Available:
http://ieeexplore.ieee.org/document/7546521/

[38] A. Verbitski, A. Gupta, D. Saha, M. Brahmadesam,
K. Gupta, R. Mittal, S. Krishnamurthy, S. Maurice,
T. Kharatishvili, and X. Bao, “Amazon aurora: Design
considerations for high throughput cloud-native
relational databases,” in Proceedings of the 2017 ACM
International Conference on Management of Data, ser.
SIGMOD ’17. ACM, 2017, pp. 1041–1052. [Online].
Available: http://doi.acm.org/10.1145/3035918.3056101

[39] G. S. Veronese, M. Correia, A. N. Bessani, and L. C. Lung,
“EBAWA: Efficient Byzantine agreement for wide-area
networks,” in High-Assurance Systems Engineering (HASE),
2010 IEEE 12th International Symposium on, Nov 2010.

[40] G. S. Veronese, M. Correia, A. N. Bessani, L. C. Lung, and
P. Verissimo, “Efficient Byzantine fault-tolerance,” IEEE
Transactions on Computers, Jan 2013. [Online]. Available:
http://ieeexplore.ieee.org/document/6081855/

[41] Visa, “Stress test prepares VisaNet for the most wonderful
time of the year,” 2015. [Online]. Available:
http://www.visa.com/blogarchives/us/2013/10/10/
stresstest-prepares-visanet-for-the-mostwonderful-time-of-the-year/
index.html

[42] M. Vukolić, “The quest for scalable blockchain fabric:
Proof-of-Work vs. BFT replication,” in Open Problems in
Network Security: IFIP WG 11.4 International Workshop,
iNetSec 2015, Zurich, Switzerland, October 29, 2015, Revised
Selected Papers, 2016. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-39028-4 9

Jian Liu is a Doctoral Candidate
at Aalto University, Finland. He received
his Masters of Science in University
of Helsinki in 2014. He is instructed
in applied cryptography and blockchains.

Wenting Li is a Senior Software
Developer at NEC Laboratories Europe.
She received her Masters of Engineering
in Communication System Security from
Telecom ParisTech in September 2011.
She is interested in security with a focus
on distributed system and IoT devices.

Ghassan Karame is a Manager
and Chief researcher of Security Group of
NEC Laboratories Europe. He received his
Masters of Science from Carnegie Mellon
University (CMU) in December 2006, and
his PhD from ETH Zurich, Switzerland,
in 2011. Until 2012, he worked as
a postdoctoral researcher in ETH Zurich.
He is interested in all aspects of security
and privacy with a focus on cloud security,

SDN/network security and Bitcoin security. He is a member of
the IEEE and of the ACM. More information on his research at
http://ghassankarame.com/.

N. Asokan is
a Professor of Computer Science at Aalto
University where he co-leads the secure
systems research group and directs
Helsinki-Aalto Center for Information
Security – HAIC. More information on
his research at http://asokan.org/asokan/.

15

https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/raj
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/raj
http://doi.acm.org/10.1145/98163.98167
http://ieeexplore.ieee.org/document/7546521/
http://doi.acm.org/10.1145/3035918.3056101
http://ieeexplore.ieee.org/document/6081855/
http://www.visa. com/blogarchives/us/2013/10/10/stresstest-prepares-visanet-for-the-mostwonderful-time-of-the-year/index.html
http://www.visa. com/blogarchives/us/2013/10/10/stresstest-prepares-visanet-for-the-mostwonderful-time-of-the-year/index.html
http://www.visa. com/blogarchives/us/2013/10/10/stresstest-prepares-visanet-for-the-mostwonderful-time-of-the-year/index.html
http://dx.doi.org/10.1007/978-3-319-39028-4_9
http://ghassankarame.com/
http://asokan.org/asokan/

