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Abstract
Weexplore the properties of bosonic atoms loaded into the d bands of an isotropic square optical
lattice. Following the recent experimental success reported in Zhai et al (2013Phys. Rev.A 87 063638),
inwhich populating d bandswith a 99 % fidelity was demonstrated, we present a theoretical study of
the possible phases that can appear in this system.Using theGutzwiller ansatz for the three d band
orbitals wemap the boundaries of theMott insulating phases. For not too large occupation, two of the
orbitals are predominantly occupied, while the third, of a slightly higher energy, remains almost
unpopulated. In this regime, in the superfluid phasewefind the formation of a vortex lattice, where
the vortices come in vortex/anti-vortex pairs with two pairs locked to every site. Due to the orientation
of the vortices time-reversal symmetry is spontaneously broken. This state also breaks a discrete 2

-symmetry.We further derive an effective spin-1/2model that describe the relevant physics of the
lowestMott-phase with unitfilling.We argue that the corresponding two dimensional phase diagram
should be richwith several different phases.We also explain how to generate anti-symmetric spin
interactions that can give rise to novel effects like spin canting.

1. Introduction

Interest in systems of cold atoms in optical lattices has greatly increased during the last decade [1] partly
because of their versatility as simulators of quantum systems.More precisely, theflexibility, control, and
cleanness of these systemshave led to numerous realizations of paradigmmany-bodymodels of condensed
matter physics. Thefieldwas greatly stimulatedwith experimental explorations of theMott insulator-superfluid
transition of theBose–Hubbard (BH)model [2] following the theoretical proposal of [3]. Today the list of
achievements is long, but tomention just a few: single-site resolved detection [4], simulation ofmagnetism and
spinmodels [5], realizing syntheticmagneticfields [6] and topological states [7], demonstration of a fermion
Mott insulator [8], aswell as various dynamical studies like equilibration andLieb–Robinson spread of
correlations [9]. Common to all the above examples is that the essential physics appear on the lowest energy band,
the s band. In particular, for spinless particles on the s band, the onsite atomic states are not degenerate.We know,
however, thatmany interesting phenomena in condensedmatter theories have their origin in the degeneracies of
onsite states/orbitals. For example, understanding ‘orbital physics’ [10] is essential for giving a full description of
superfluid properties of 3He [11] and themetal-insulating transitions inmetal oxides [12]. Spurred by this, in
recent years thefirst steps towards controlled studies of orbital physicswith cold atoms have been taken [13].

Degenerate orbital atomic states appear naturally on excited bands of optical lattices, and it was predicted
that bosonic atoms loaded into the first excited, the p bands, of a two dimensional (2D) square optical lattice give
rise to interesting physics beyond that found on the lowest band [14]. In particular, the superfluid order
parameter at zero temperature is complex valued and time-reversal symmetry is spontaneously broken [14–16].
Also the insulating phases provide rich physics with the possibilities to study exotic quantummagnetic phases
[17, 18]. In different lattice geometries, the systemmay display ‘stripped phases’ [19], and in 3D the state of
bosons occupying an isotropic cubic lattice become frustrated both in the insulating aswell as in the superfluid
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phase [20, 21]. Fermionic systems in the p band are also known to feature rich physics, with a plethora of
different phases [22].

Experimentally, populating the p bandswith bosonic atomswasfirst realized by accelerating the lattice
potential in such away that the system traversed through a Landau–Zener transition non-adiabatically [23].
However, amore thorough experimental analysis of the coherence and life-time of p-band bosonswas
performed byMüller et al [24] using a two-laser Raman loading technique froman insulating s-band state. In
particular, it was found that the atoms on the p band relax very rapidly (on the order of a few tunneling times),
and that the life-time is relatively long in comparison to the tunneling time. This enables coherence to be
established from the initialMott insulator and the possibility to detect dynamical processes.More recently, a 2D
superlattice was used in order to prepare bosonic atoms in hybridized states composed of s and p orbitals [25]. In
this experiment, and in a follow upone [26], clear evidences of a complex order parameter were presented. The
same loadingmethodwas further benchmarked by loading atoms into f-orbital states [27], i.e. the third set of
excited bands.

A completely different approach to initialize bosonic atoms in excited bandswas proposed and
demonstrated by Zhai et al [28]. There the atoms start in a zeromomentum eigenstate (held in a broad harmonic
trap) and then a sequence of ‘on/off pulses’ are applied to the atoms, where the ‘on pulse’ consists of a standing
wavewhich couple the zeromomentum states to highermomentum states by photon recoils.With thismethod
the atomswere loaded into the d bandwith afidelity as high as 99 %, which ismuch better thanwhat was
reported for the p bands (around 80 %). This technique is, however,more easily applied for atom transfer
between bands of even or odd parities, e.g. →s d or →p f and so on, and is therefore not suitable for preparing
p-band atoms starting from the ground state. Surprisingly, the properties of d-band bosons remain unexplored.
Considering the recent experiment [28], it is therefore of importance towork out the relevant physics of such
systems.

Here we analyse the zero temperature phase diagramof d-band bosons in an isotropic 2D square lattice. On
the d bandswe have three orbitals which are generally denoted dx2, dy2, and dxy. However, due to the
anharmonicity of the single site potential well, degeneracy is broken and the energy of the dxy orbital is somewhat
higher than the other two orbitals which stay degenerate. TheMott insulator boundaries are determined
within theGutzwillermethod. At low atomic densities, the dxy-orbitals are only weakly populated andwe can
therefore reduce the number of orbitals to two, i.e. we can describe the physics with an effective two-orbital
BHmodel. The properties of the superfluid phase are analysed analytically byminimizing the onsite energies.
Like for the p-band superfluid phase, the order parameter is complex but due to the particular shape
of the d orbitals a new type of vortex lattice is formedwith two vortex/anti-vortex pairs fixed to every site. At
higher densities, the general structure of the vortex lattice persists but now also the dxy-orbitals becomes
populated.

One difference with respect to p-band BHmodels is the lack of a characteristic 2-parity symmetry for
bosonic atoms in the d band. The lack of this symmetry stems fromdensity-assisted orbital-changing collision
terms.Nevertheless, there is another 2-symmetry that is spontaneously broken in the superfluid phase. In the
Mott insulating phase, we employ perturbation theory to derive an effective spinmodel, where it is seen that the
new interaction terms appear in the formof an externalfield. In particular, the first insulating phase (theMott
with unit filling) can be described by an XYZ Heisenbergmodel in an externalfield. Themodel is, of course, still
supporting the 2-symmetry andwe expect a rich phase diagramwithin the insulating phasewith the possibility
of ferromagnetic phases with broken symmetry. It should be noted that the phase diagramof the 2D XYZ model
in an externalfield is not fully known.We also present a brief discussion on how the so calledDzyaloshinsky–
Moriya (DM) interactions (or anti-symmetric spin exchange)may appearwhen the lattice is no longer isotropic
but the onsite degeneracy is kept.While not studied in detail, we point out that the insulating phases with higher
fillings are also of great interest. Such phases will represent exoticmagnetic states of higher spins or quasi-spins
of SU N( )models.

2. d-Band bosons

Throughout wewill assume that all atoms reside on the d bands, i.e. the loading is perfect and that any time-
scales are short compared to the decay times, driven by intra-atomic collisions, of thesemeta-stable atoms. The
second condition implies that relaxation occurs on a time shorter than a few μs which is the experimentally
measured life-time of d-band atoms [28]. Relaxation typically happens during few tunneling times [24], which
allows coherence on these excited bands to formbefore substantial dissipation/decoherence sets in. This has in
particular been experimentally demonstrated for bosons loaded in the p [24, 25], the d [28], and the f [27] bands.

Before discussing the physics on the d bands, let usfirst recapitulate themain results for the systemof bosons
in the p bands of D2 square lattices. On the isotropic lattice, p-band bosons support two degenerate orbitals and
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a very interesting phase diagram. As for the regular s-band BHmodel [3, 29], the interplay between repulsive
interaction and kinetic hopping leads toMott insulating phases with integer fillings = …n 0, 1, 2,0 and
condensed superfluid phases [14, 16]. The orbital degree of freedom implies, however, that both the insulating
and the superfluid phases are non-trivial. In the condensate, the superfluid order parameter ψ x y( , ) is a
complex function representing a condensate with a vortex pinned to every site. The properties of the tunneling
of p-band atoms in 2D further implies that vortices in neighboring sites have angularmomentumquantized in
opposite directions (i.e. winding numbers are ±1) [14–16]. Thus, there is a ‘checkerboard’ lattice of vortices and
the two possible configurations underline the discrete 2-parity symmetry of themodel, as well as the
spontaneous breaking of time-reversal symmetry. The orbital degree of freedom alsomakes the insulating
phases very rich. The =n 10 Mott phasewith one atomper site can bemapped onto an effectiveHeisenberg
XYZ model [18], whose phase diagram in 1D is qualitatively known [30] but not known in 2D. In the spin
language of theHeisenberg XYZ model, the breaking of the 2-parity symmetry represents for example an
Ising-like transition.

The goal of the present paper is to demonstrate that also the experimentally relevant d-band bosonicmodel
hosts very interesting physics with some notable differences from the physics in the p band. Afirst guess would
be that on the d bands, one again encounters a checkerboard of vortices butwithwinding numbers ±2 instead.
This would be the direct generalization of the results appearing on the p bands. To construct such states all three
orbitals need to be populated, but aswewill see in the following only two of them are actually populated due to
broken degeneracy. As a result we find a different type of vortex lattice.However, before discussing the possible
phases on the d band, we give the correspondingmany-bodyHamiltonian in the next section, and outline how
wewill analyse it within theGutzwillermean-field approach.

2.1. Single particle properties
The single particleHamiltonian for an atomwithmassm in an isotropic 2D square optical lattice is [1]

′ = − ℏ ∂ + ∂ + +( ) ( ) ( )H
m

V kx kyˆ
2

˜ sin sin . (1)x ysp

2
2 2 2 2⎡⎣ ⎤⎦

For convenience we introduce dimensionless parameters by letting the recoil energy = ℏE k m2r
2 2 set the

energy scale and the inverse wave number −k 1 the characteristic length scale. Thus, in dimensionless variables,

= = −∂ − ∂ + +
′

H V x yˆ sin ( ) sin ( )
H

E x ysp

ˆ
2 2 2 2sp

r

⎡⎣ ⎤⎦, with =V V E˜
r. The spectrum νE q q( , )x y , consisting of bands

separated by forbidden gaps, is characterized by three quantumnumbers, a discrete band index ν and two
continuous quasimomenta qx and qy. In scaled dimensions, thefirst Brillouin zone is defined by

∈ − +q q, [ 1, 1)x y . Increasing the potential amplitudeV implies that the band gap increases while thewidths of

the energy bands shrink. The ‘flatness’ of the bands determines themobility of the atom. Consequently, asV
increases themobility is reduced and the bands become flatter. In the limit of very deep lattice each sitemimics a
2Dharmonic oscillator and hence the isotropic D2 case is characterized by a single s band, two degenerate p
bands, three degenerate d bands and so on for the higher excited bands. The similarity with an isotropic D2
harmonic oscillator can also be seen from the quantumnumbers of the onsite orbitals; if ∣ 〉n n,x y represents the
eigenstate of the oscillator with quantumnumbers nx and ny then the ground-state is the ‘vacuum’ ∣ 〉0, 0 (s-
orbital state), the first excited states are ∣ 〉0, 1 and ∣ 〉1, 0 (p-orbital states), and the second excited states are
∣ 〉0, 2 , ∣ 〉2, 0 , and ∣ 〉1, 1 (d-orbital states). For finite, but largeV, the separations between the different set of
bands ( …s p d, , , )may remainmuch larger than the bandwidths (at least for the lower bands). However, due to
the anharmonicity of the potential wells the bands are no longer equidistant from each other, and even the three
d bandsmay split. As an example, infigure 1we display the three d bands (Ex2, Ey2, andExy) for a potential of
amplitudeV = 20. Aswe can see, the dxy band has a higher energy than the other two.

The eigenstates of the single particleHamiltonian Ĥsp are the Bloch states ϕν x( )q with ν = n n( , )x y the band

index, = q qq ( , )x y the quasimomentum and = x yx ( , ). Taking themodified (i.e. restrict the integration to the

first Brillouin zone) Fourier transformof these, one obtains theWannier functions νw x( )i where = i ii ( , )x y

with ∈ i i,x y labelling the site. Contrary to the de-localized Bloch functions, theWannier functions are
localized around the site i and can therefore be normalized in the usual way. In addition, although they are not
the eigenfunctions of the single-particle problem,Wannier functions are orthogonal and therefore provide an
alternative basis for describing such systems. In the infinitely deep lattice limit, they become simply the
harmonic oscillator 〈 ∣ 〉n nx ,x y eigenfunctions localized at each site. For large butfiniteV, the harmonic
oscillator eigenfunctions are not exact, but they still preserve the general structure of ν xw ( )i . That is, for the s
band, where ν = (0, 0), w x( )si is approximately Gaussian. For the p bands, of ν = (1, 0) and (0, 1), the
Wannier functions w x( )p ix

and w x( )p iy
are approximately Gaussian in one direction and have a node in the

transverse direction (the subscripts x and y tell the direction of the node). In the d bands, ν = (2, 0), (1, 1), and
(0, 2), the threeWannier functions are shown infigure 2. These are the three atomic d-orbital states, and the
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notation used is borrowed from atomic/chemical physics: The dx2-orbital state has two nodes in the x direction
and no node in the y direction. The opposite is true for the dy2 orbital, while the dxy orbital has a single node in

both directions. Furthermore, since the square lattice is separable,Wannier functions in 2D can be constructed
as a product of 1DWannier functions. Explicit expressions for the d-bandWannier functions are:

=
=

=

w w y w x

w w y w x

w w x w y

x

x

x

( ) ( ) ( ),

( ) ( ) ( ),

( ) ( ) ( ), (2)

d s d

d d s

d p p

i i i

i i i

i i i

x

y

xy

2

2

wherewe have introduced the subscripts s p d, , to label theWannier functions of the different bands in 1D.
Naturally, the shape of theWannier functions play a crucial role in the dynamics of the system: on a single-

particle level, since the αd orbital (α = x y,2 2) ismuchwider in the direction of the two nodes, tunneling
processes parallel to this direction happenwith considerably larger amplitude than in the perpendicular one.
Thus, a dx2-orbital atom ismoremobile in the x than in the y direction. The dxy orbital, however, is equally
mobile in both directions. This direction-dependent propagation results in an anisotropy in the problem, that is
also present in the p-band system [14–16] (although absent on the s-band). This is also reflected as an anisotropy
in the single-particle spectrum. As illustrated infigure 1, Ex2 has amuch larger curvature (inverse effectivemass)
in the x direction than in the y direction.Moreover, the sign of the curvature is also of importance since it
determines whether the effectivemass is positive (particle-like) or negative (hole-like), and as wewill see below,
it also sets the sign of the tunneling coefficient in the extended BHmodel. Furthermore, on amany-body level
the amplitude of scattering processes is determined by overlaps of products ofWannier functions, and therefore
their shape strongly influences the possible interaction processes aswell as their strengths.

Figure 1.The three d bands; E q q( , )x x y2 , E q q( , )y x y2 , and E q q( , )xy x y for the potential amplitude =V E20 r . The bandwidth gives

an estimate of the tunneling strength and the curvature the sign of the tunneling coefficient.

Figure 2.The three d-bandWannier orbitals (properly normalized) of an isotropic 2D square lattice. Here, blue/red colour represents
negative/positive values. Thus, the dx2 and d y2 orbitals have each twonodes in either the x- or the y-direction respectively, while the
dxy-orbit has a single node in both directions.
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2.2.Many-bodyHamiltonian
TheHamiltonian of the fullmany-body problemdescribing contact interactions between the neutral atoms is
given by

∫ Ψ Ψ Ψ Ψ Ψ Ψ= +H H
U

x x x x x x xˆ d ˆ ( ) ˆ ˆ ( )
2

ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) , (3)BH
†

sp
0 † †⎡

⎣⎢
⎤
⎦⎥

where the coupling constant π= ℏU a m40
2 , withm the atomicmass and a the s-wave scattering length. The

field operatorsΨ xˆ ( ) andΨ xˆ ( )
†

annihilate and create a particle at the position x and obey the bosonic

commutation relations Ψ Ψ δ′ = − ′x x x x[ ˆ ( ), ˆ ( )] ( )
†

.
In order to constrain the atoms to the d bands (i.e., impose the single-band approximation), we expand the

field operators in the correspondingWannier functions,

∑Ψ = + +d w d w d wx x x xˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) (4)x d y d xy d

i

i i i i i ix y xy
2 2 2 2

with the sum running over all the lattice sites, and the bosonic creation/annihilation operators obey

δ=β βd dˆ , ˆ
i j ij

†⎡
⎣⎢

⎤
⎦⎥ , where β = x y xy{ , , }2 2 and all remaining commutators vanish. Following the usual

prescription,Ψ xˆ ( ) and itsHermitian conjugateΨ xˆ ( )
†

are inserted into equation (3).We then impose the tight-
binding approximation such that the tunneling is restricted to nearest-neighbour sites and interactions to only
dominant onsite terms. This yields the final formof themany-bodyHamiltonian describing bosons in the d
band. For later convenience, we separate it into two different parts, one containing all the processes that involve
the dxy orbital, and one part that only include contributions of the dx2 and dy2 orbitals:

= +H H Hˆ ˆ ˆ . (5)BH p d

Furthermore, the two separate parts can be split up into

= + + + +

= + + + +

H H H H H H

H H H H H H

ˆ ˆ ˆ ˆ ˆ ˆ ,

ˆ ˆ ˆ ˆ ˆ ˆ . (6)

p

d

p 0 pkin pden pc po

d 0 dkin dden dc do

The free part of theHamiltonian accounts for the onsite energies βE of different bands together with the
chemical potential μ and is given by

∑ μ= −
β

β β( )H E n̂ , (7)d

i

i0

with the particle number operators =β β βn d dˆ ˆ ˆ
i i i

†
. The kinetic energy contributions are

∑

∑∑

= −

= −
α σ

σ
α

α α
σ

H t d d

H t d d

ˆ ˆ ˆ ,

ˆ ˆ ˆ , (8)

xy xy

ij

i j

ij

i j

pkin
p †

dkin

,

†

with ∑〈 〉σi j, the sumover nearest neighbours in the direction σ = x y{ , }, ∑〈 〉i j,
the sumover nearest neighbours

in all directions and α = x y{ , }2 2 the label of the orbital state. The tunneling coefficients satisfy

> >α α
∥ ⊥t t t , (9)p

where α
∥t and α

⊥t are the tunneling coefficients in the directions parallel and perpendicular to the two nodes of the
orbital state. Furthermore >α α

∥ ⊥t t, 0 and <t 0p . Explicit expressionof the overlap integrals are given in appendixA.
The interacting part of theHamiltonian (6) is characterized by various processes. It contains the density–

density interactions

∑

∑

= − + +

= − + −

+

{
}

( )

( ) ( )

H
U

n n U n n n n

H
U

n n n n

U n n

ˆ
2

ˆ ˆ 1 2 ˆ ˆ ˆ ˆ ,

ˆ
2

ˆ ˆ 1 ˆ ˆ 1

2 ˆ ˆ ; (10)

p
xy xy px x xy y xy

x x y y

xy x y

i

i i i i i i

i

i i i i

i i

pden

dden

2 2

2 2 2 2

2 2

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎡⎣ ⎤⎦
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the orbital changing interactions

∑

∑

= +

+ +

+ +

= +

( )
( )
( )

( )

H
U

d d d d d d d d

d d d d d d d d

d d d d d d d d

H
U

d d d d d d d d

ˆ
2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ,

ˆ
2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ; (11)

px
xy xy x x x x xy xy

xy xy y y y y xy xy

xy xy x y x y xy xy

xy
x x y y y y x x

i

i i i i i i i i

i i i i i i i i

i i i i i i i i

i

i i i i i i i i

pc
† † † †

† † † †

† † † †

dc
† † † †

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2 2 2 2 2

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

andfinally, the density assisted orbital changing collisions

∑= +( )H U d n d d n dˆ 2 ˆ ˆ ˆ ˆ ˆ ˆ (12)pxy x xy y y xy x

i

i i i i i ipo
† †

2 2 2 2

and

∑= +( )H U d n n dˆ ˆ ˆ ˆ ˆ (13)xxy x x y y

i

i i i ido
†

2 2 2 2
⎡
⎣⎢

+ +( )d n n dˆ ˆ ˆ ˆ . (14)y x y xi i i i
†
2 2 2 2

⎤
⎦⎥

Other interaction terms vanish due to the symmetries of the orbitals. Like for the tunnelling coefficients, the
various coupling constants can again be found in the appendix A.

As pointed out above, the systemof bosons in the p band supports a 2-symmetry which can be
spontaneously broken to give a vortex-checkerboard condensed phase or a spin-flop phase in the superfluid or
insulating phase respectively. This symmetry arises in that case because p-orbital bosons in different orbital
states scatter in pairs and therefore the number of particles in each orbital state is preservedmodulo 2. On the d
band, this conserved quantity is broken by the density-assisted interactions (12). There exists, however, another
non-trivial discrete 2-symmetry in themany-bodyHamiltonian (5).With the notation = i ii ( , )x y , we let
′ = i ii ( , )y x , and theHamiltonian is invariant under the transformation

→

→

→

′

′

′

d d

d d

d d

ˆ ˆ ,

ˆ ˆ ,

ˆ ˆ . (15)

x y

y x

xy xy

i i

i i

i i

2 2

2 2

This swaps both the dx2 and dy2 orbitals as well as the lattice indices ix and iy. Note that the interchange of indices
is necessary due to the tunneling anisotropy of the dx2- and dy2-orbital atoms ( ≠σ σt td s). In the next sectionwe
will see that this symmetry can indeed be spontaneously broken to give interesting phases.We should also
mention that in addition there are twomore 2-symmetries. Since theHamiltonian only consists of quadratic
or quartic terms, it is invariant under a sign-change of all operators. This parity symmetry can be further divided
into twodiscrete symmetries, onewhich change the signs of the dx2 and dy2 orbitals, leaving the dxy orbital
unaltered, and onewith the reverse operation. These last two symmetries are trivial in the casewhen the dxy
orbital is unpopulated as in sections 3.2.1 and 3.3.

2.3.Mean-field approaches
In the simplestmean-field analysis, the ground-state Ψ∣ 〉0 of themany-body system can be expressed as the direct
product [32, 33]

∣ 〉Ψ ψ ψ ψ= ⊗ , , , (16)d d d
i

i i i iMF x y xy2 2

of coherent states; ψ ψ ψ ψ ψ ψ ψ∣ 〉 = ∣ 〉α α
d̂ , , , ,d d d d d d di i i i i i i i i i

x y xy x y xy2 2 2 2
and

ψ ψ ψ ψ ψ ψ ψ∣ 〉 = ∣ 〉d̂ , , , ,xy d d d d d d di i i i i i i i i i
x y xy xy x y xy2 2 2 2

. The classical energy functional is given by

ψ ψ ψ Ψ Ψ= 〈 ∣ ∣ 〉E H[ , , ] ˆ
d d di i icl MF BH MF

x y xy2 2
and themean-field solution Ψ∣ 〉MF is obtained from self-consis-

tentlyminimizing ψ ψ ψE [ , , ]d d di i icl
x y xy2 2

with respect to the (complex) amplitudes ψ
αd i and ψd ixy

and the particle

conservation constrain ψ ψ∑ ∑ ∣ ∣ + ∑ ∣ ∣ =α α
Nd di i i i

2 2
totxy
, whereNtot is the total number of particles. Note, in
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particular, that since theHamiltonian ĤBH is normally ordered5, the energy expectation values are simply

obtained by replacing operators αd̂ i, d̂xyi, αd̂ i
†
, and d̂xyi

†
by the corresponding coherent state amplitudes ψ

αd i,

ψd ixy
, ψ

αd i
* , and ψd i

*
xy
respectively. This crudemean-fieldmethod is capable of giving a qualitative correct picture

deep in the superfluid phasewith a large ormoderate number of particles per site, as will be utilized in section 3.2.
However, once the interaction is increased relative to the tunneling, the systembecomes insulating and the
above approach fails to predict such a phase: themethod calls for improvement.

As a next step to advance on this coherent-state ansatz, (16)we consider intra-site particle fluctuations, but
still without intersite correlations

Ψ ϕ= ⊗ , (17)
i

i iGutz

where every single site state is

∑ϕ = c n n n, , (18)
n n n

n n n x y xyi i
i

i
, ,

( )

x y xy

x y xy

2 2

2 2
2 2

with ∣ 〉n n n, ,x y xy i2 2 a Fock state with nx2 dx2-orbital atoms in site i and so on.Note that normalization implies

∣ ∣∑ =c 1n n n n n n
i

, ,
( ) 2

x y xy x y xy
for every site i. The corresponding semi-classical energy functional is similar to the

above, Ψ Ψ= 〈 ∣ ∣ 〉[ ]E c Ĥn n n
i

Gutz
( )

Gutz BH Gutzx y xy2 2 , and the amplitudes cn n n
i( )
x y xy2 2 are obtained again via self-

consistentlyminimization of the energy functional. This procedure, called theGutzwillermean-fieldmethod, is
particular for its ability of identifying the existence ofMott insulating phases [3, 34]. However, although the
factorization (17) becomes amore accurate approximation in higher dimensions, it already provides a good
estimate of the insulating–superfluid phase transition in 2D [35].

3. Phase diagram

In this sectionwe characterize different phases that can be expected for bosonic atoms in the d bands. To
quantitatively determine the phase boundaries of the insulating phases we use theGutzwillermethod discussed
in the previous section. For the p-band system [14], the properties of the superfluid phase can be understood
fromanalysing the single site problemon amean-field level and then considering how the presence non-zero
tunneling terms establish global long range order. Applying the same recipe for the d-band system fails for low
atomic densities; it suggests that all three orbitals are populatedwhile from theGutzwiller analysis it follows that
almost all population is distributed in the dx2 and dy2 orbitals. For this reason, when identifying the superfluid
state in cases where the number of atoms per site ≲n 50 with the coherent statemean-field approach, it is
reasonable to constrain the analysis to account for only two of the orbitals. At higher densities however, the
analysismust include all three orbitals.

Sincemean-fieldmethods are less reliable for probing the physics inMott insulator phases, this regimewill
be studied here in terms of an effective spinmodel derived to describe the limit where themagnitude of any
tunneling coefficient ∣ ∣ ≪ ∣ ∣t U , whereU is the typical interaction strength.

3.1. Superfluid-insulator boundaries
The boundaries separating theMott insulators from the condensed superfluid phase are determined, as
mentioned above, by theGutzwiller ansatz wave function (17). The condensate order parameters for the three
orbitals are given by ψ Ψ Ψ= 〈 ∣ ∣ 〉

β βd̂d dGutz Gutz.Within theGutzwillermethod, the insulating phase is described

by vanishing order parameters, while it is non-zero in the condensed superfluid phase.
Before discussing the insulating-superfluid transitionwemake a brief detour on other possible phases absent

in our case due to the imposed approximations.When the lattice amplitude is not too large, the larger width of
the higher bandWannier functionsmay lead to non-negligible contributions from interaction between
neighbouring sites. The effectivemodel then includes nearest neighbour interaction terms, which if large
enough (compared to the onsite interaction terms),may lead to supersolid phases [36]. The existence of such a
phase have been demonstrated for bosonic atoms in the p band [31] and occurswhen the strength of interactions
on neighbouring sites is as large as one fourth of the onsite interaction strength. For ⩽ ⩽V30 70 as considered
in this work, however, the strength of interactions on neighbouring sites is always less than1% and such terms
can be safely neglected. Nevertheless, it could be interesting to analyse the possibility of using the d rather than
the p bands for realizing such novel phases. As onewould be required to relax the tight-binding, andmost likely
also the single-band approximation [37], this study goes beyond the scope of the present work.

5
To be precise, to normally order theHamiltonianwe need to commute a pair of operators: − →α α α α α αn n a a a aˆ ( ˆ 1) ˆ ˆ ˆ ˆi ii i i i

† † .
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Let us now turn to theGutzwiller predictions for the transitions. The self-consistentminimization of the

Gutzwiller energy functional [ ]E cn n n
i

Gutz
( )

x y xy2 2 is based on the use of theNelder–Mead simplex algorithm [38].

Sincewe are interested in the phases for the systemwith different densities, the chemical potential μ
(independent of the orbital flavour) is added to theHamiltonian, see equation (7). For the numerics we truncate
the number of Fock states in the sum (18) to four for every orbital, i.e. up to three atoms for each orbital state and
nine atoms in total per site. This gives an onsiteHilbert space dimension of 64, andwe can accurately capture the
first fourMott lobes. Going to higher insulating states would require Fock states of larger particle number, and
thereby a rapid slow downof the numerics. Furthermore, we scale equation (6)with the interaction strengthU.

The results of the numerical Gutzwiller calculation are presented infigure 3, showing the superfluid order
parameter in the μt -plane. In this range of the systemʼs parameters, the occupation of the dxy orbital 〈 〉 ≈n̂ 0xy

everywhere. Throughout, properWannier functions are used in the computation of the overlap integrals (A1)
presented in the appendix A, andwe consider the potential amplitudes ⩽ ⩽V30 70. These large potential
amplitudes (up to 70 recoil energies) are required to ensure the validity of the single-band and tight-binding
approximations in the d band, that accommodates very broadWannier functions. The order parameters for the

dx2 and dy2 orbital are identical and for simplicity we call it ψ = ∣〈 〉∣ = ∣〈 〉∣d dˆ ˆ
x yi i2 2 . Note that the effective

Gutzwiller tunneling tused in thefigure is twice the sumof the s- and d-band tunnelings.More precisely, out of
the four nearest-neighbours in the D2 system, tunneling processes in the d band occurwith (1D) d-band
tunneling strength to two of the neighbouring sites, andwith (1D) s-band tunneling strength on the remaining
two neighbouring sites. The general structure of theMott lobes are similar to those found for the regular one
orbital BHmodel usingmean-fieldmethods. That is, the extent of the higher lobes fall off as roughly −n0

1 for the
filling factor n0 [35].

For higher densities n0, the typical interaction energy becomes considerably larger than the energy gap
separating the Exy from the Ex2 and Ey2 bands, and therefore the occupation of the dxy orbital is expected to

increase. This regime can be explored numerically but requires a higher truncation in the number of particles,
whichmakes computationsmuchmore costly. To circumvent this issue, we studied the system atfixed chemical
potential μ U and for various values of t U and indeed, the results show that with the the same parameters as in
figure 3, butwith for example μ =t U{ , } {5, 0.5} the population of the three orbitals are 〈 〉 〈 〉 〈 〉n n n( ˆ , ˆ , ˆ )x y xy2 2

≈ (3.3, 3.3, 1.7).

3.2.Onsite superfluid states
TheGutzwillermean-fieldmethod of the previous section provided uswith an estimate of theMott lobes, but
the orbital dependencewithin the superfluid phase was left implicit.Wewill approach this problemnext using of
the coherent statemean-field ansatz for clarity.

Figure 3.The order parameter ψ = ∣〈 〉∣ = ∣〈 〉∣d dˆ ˆ
x yi i2 2 . (The corresponding order parameter for the dxy-orbital is approximately zero

except for < −t U 10 3 where it is, however, at least one order ofmagnitude smaller thanψ). As is seen, the chemical potential is varied
such that thefirst fourMott insulators are illustrated (dark blue regions representing a vanishing superfluid order parameter). For this
plot, the relative strengths between the interaction terms has been taken as U U U U U U{ , , , , }xy p px pxy xxy ={0.17,0.9,0.3,0.04,–0.03}
corresponding to a lattice with amplitudeV = 40.With this lattice depth, = =E E 0x y2 2 and =E U1.6xy , and the relative tunnelings

∣ ∣ =α α
⊥ ∥t t t{ , } {0.002, 0.007}p .
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3.2.1.Moderate atomic densities
Generalizing the results from the p bands [14, 16]wewould expect a vortexwith twice the angularmomentum
on every site for the d-band system. Such a state takes the form

Ψ

Ψ

= − ±
⇔

= −
±

N w w iw

N
i

x x x x( ) 2 ( ) ( ) 2 ( )

2
1
1
2

, (19)

s d d d

s

x y xy2 2
⎡⎣ ⎤⎦

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

whereNs is the number of atoms at the site and isfixed a priori. However, according to the previous section, the
occurrence of a state as that of equation (19) is precluded for lower atomic densities by the negligible occupation
of the dxy orbital.Moreover, fromonly w x( )dx2 and w x( )d y2 it is not possible to construct a vortex state carrying

two quanta of angularmomenta, which leads to the conclusion that the superfluid order parameter is a state of a
different type.

Following the results of the previous section and focusing first on the low-density case, we approximate
ψ = 0dxy

, and rewrite the single-site order parameter as

Ψ
ψ
ψ

θ
θ

= =
φ

N cos e
sin

, (20)
d

d
s

ix

y

2

2

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣⎢

⎤
⎦⎥

where θ π⩽ ⩽0 , and φ π⩽ ⩽0 2 . Even though this is valid for systemswith onsite particle number limited to
10, we believe this gives a good picture of the superfluid state. Indeed, as we show in the next section, a similar
state is foundwhen computation includes the third orbital state.With the parametrization of equation (20), the
energy functional becomes

θ φ
θ θ φ

θ φ

= + +

+

E

N

U U

U

[ , ]

16
cos 4

2
sin 2

1

2
cos

sin 2 cos , (21)
s

xy

xxy

cl

2
2 2⎜ ⎟⎛

⎝
⎞
⎠

which afterminimization yields the fixed point θ φ( , )0 0

θ π φ= = −( )U U4, arccos , (22)xxy xy0 0

where θ φ θ φ∂ = ∂ =θ φE E[ , ] [ , ] 0cl 0 0 cl 0 0 . This solution,

Ψ = +φN
w wx x x( )

2
e ( ) ( ) , (23)s

d dvor
i

x y
0

2 2
⎡⎣ ⎤⎦

is depicted infigures 4(a) and (b), for the parameters corresponding to a lattice withV = 40. Thefirst plot (a)
shows the atomic onsite density Ψ∣ ∣x( )vor

2 and the second (b) the phaseφ of the order parameter. As is evident,
the onsite condensate hosts two vortex/anti-vortex pairs. Each vortex has a phase winding of π±2 around each
singular point. As argued above, while the naïve harmonic approximation on the d bands suggests a single vortex
with a high angularmomentum in each site, they do not occur here due to broken degeneracy of the orbitals. It
has also been known that such highly excited vortices should be energetically unstable in a harmonically trapped
Bose–Einstein condensate [39].

Throughout, properWannier functions are used in the computation of the overlap integrals (A1) presented
in the appendix A, andwe consider the potential amplitudes ⩽ ⩽V30 70. These large potential amplitudes (up
to 70 recoil energies) are required to ensure the validity of the single-band and tight-binding approximations in
the d band, that accommodates very broadWannier functions. Typical ratios between the interaction strengths
forV = 40 are presented in the caption offigure 3.

The condensates at neighbouring sites have the same ordering of the vortex pairs since >α α
∥ ⊥t t, 0, which

supports a ‘0’ or ‘2π’ phase locking between consecutive sites. Note that this is always the solution in case of
occupation of only the dx2 and dy2 orbitals, and that it does not depends onU. In addition, the configurations
defined by the vortices orientations spontaneously break the 2-symmetry defined in equation (15) aswell as
time-reversal symmetry. For the solution given infigures 4(a) and (b), and starting from the vortex in the upper
left corner, the phasewinds clockwise/counter-clockwise/clockwise/counter-clockwise. The alternative
configurationwith broken 2-symmetry has instead counter-clockwise/clockwise/counter-clockwise/
clockwisewinding.

Now the natural question is what are the properties of the phase with restored 2-symmetry? To answer this,
wefirst notice that according to (22), the shape of the two-vortex pairs depend on the ratio ≡R U Uxxy xy.When

→R 1 the vortex/anti-vortex approach each other and annihilates atR = 1. For >R 1, the order parameter
reads instead

9
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Ψ = ±
N

w wx x x( )
2

( ) ( ) . (24)s
d dsol x y2 2

⎡⎣ ⎤⎦
The atomic density and the order parameter phase are shown infigures 4(c) and (d). The density vanishes
identically around a circle, where also the phasemakes a π-jump from φ = 00 to φ π=0 . Such a behaviour
describes a dark soliton, immobile and confined to the lattice site.

If the ratioR could be externally controlled, then the system could be driven through a phase transition from
a ‘soliton’-superfluid into a symmetry broken ‘vortex’-superfluid. In addition, since the derivative of the classical
energy is discontinuous at the critical point =R 1c , it suggests that the transition is of thefirst order. This is not
so surprising, since the states separated by the critical point are topologically different. How to controlR
experimentallymay be non-trivial, but nevertheless, the present analysis sheds some light on the underlying
physics of d-band bosons.

We end this section by noticing that on the p band in 3D the orbitals are also three-fold degenerate. In this
case an artificial instability appears whenever the harmonic approximation is considered, i.e. by replacing the
Wannier functions by the corresponding harmonic oscillator eigenfunctions, which implies that it can become
favourable to populate the orbitals unequally [16, 40]. On the d band, the depopulation of the dxy orbital does
not derive from such a spurious effect, but instead, it appears togetherwith the self-consistentminimization of
the full (lattice) energy functional, that includes both the interacting and tunneling processes simultaneously.
Thismeans, furthermore, that the combined (independent) knowledge of onsite properties with additional
considerations accounting for effects of the tunneling—as one usually proceeds for studying the system in the p
band, is not enough to determine the physics in the d band.

3.2.2. High atomic densities
In this sectionwe consider a larger particle number ≫n 10 such that all three orbitals are populated. Relaxing
the assumption ψ = 0dxy

adds a new variable to be accounted for in theminimization of the energy functional.

By using the parametrization of the three-orbital order parameter in spherical coordinates,

ψ θ ϕ

ψ θ ϕ

ψ θ

=

=

=

φ

ϑ

N

N

N

cos cos e ,

cos sin e ,

sin , (25)

d s

d s

d s

i

i

x

x

xy

2

2

the normalization constraint is automatically taken care of and by further choosing the overall phase to be zero
we are left with four angle parameters; θ ϕ φ ϑE [ , , , ]cl . Since in the general case we do notfind analytical

Figure 4.The onsite density Ψ∣ ∣ Nx( ) s
2 (a) and (c) and the corresponding phases Ψ xArg[ ( )](b) and (d).Herewe assumed that the

atomic density is rather low such that we can neglect any population of the dxy orbital. In the upper two plots we consider a lattice with
an amplitudeV = 40. It is seen in (b) that the phase of the order parameter winds π2 at the four points where the density vanish. This
reflects the presence of four vortices—two vortex/anti-vortex pairs. In the lower two plotswe use the same parameters but put

= −U U2xxy xy in order to reach the regimewhere the state qualitatively changes. Here a dark soliton is separating the central peak from
the surrounding circle.
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solutions for theminimization (fix point) the system is studied numerically (again utilizing theNelder–Mead
simplex algorithm).

When occupation of the dxy-orbital increases, it is in principle possible to formdoubly excited vortices in
each of the lattice sites. However, as argued above, it is questionable whether such state could be energetically
favourable. Another aspect arisingwith all three orbitals populated is that the other two 2-symmetries
discussed after equation (15) become relevant as will be demonstrated. These two symmetries are reflected in the
fact that the energyEcl is invariant under either ψ ψ ψ ψ ψ ψ↔ − −( , , ) ( , , )d d d d d dx y xy x y xy2 2 2 2

and/or
ψ ψ ψ ψ ψ ψ↔ −( , , ) ( , , )d d d d d dx y xy x y xy2 2 2 2

(we note that these two are equivalent via a gauge transformation of the
overall phase).

The numerically obtained ground state is displayed infigures 5(a) and (b).Here, the population of the three
orbitals dx2, dy2, and dxy are 0.36, 0.33, and 0.31 respectively, and hence none of the orbital states dominates the
others. The effect of the non-zero population of the dxy orbital is to squeeze and rotate (in this example counter-
clockwise) the atomic distributionwithout destroying the two vortex/anti-vortex pairs; the larger population in
the dxy orbital themore rotated and squeezed is the atomic distribution. Thus, as is clear from the deformations
infigure 5, vortices of (for example) positive winding are closer to the centre of the site where the density is
higher. This suggests that as interactions become stronger and the different orbitals become effectivelymore
degenerate, the squeezing is also increased and finally two of the vortices appearwere the density is vanishingly
small. In this case the onsite states start to approach vortex states with angularmomentum two. This is an
interesting observation, since aswe have pointed out earlier such a vortex is typically not stable.However, one
should bare inmind that herewe have two singly excited vortices coming infinitely close to each other.
Furthermore, this continuous deformation does not imply a violation of conserved angularmomentum; the
state only appears as a doubly excited state, and in the full latticemodel the doubly excited vortices would
alternate between neighbouring sites such that the total angularmomentum vanishes.

To understand the full superfluid state that extends over thewhole lattice we recall that the tunneling
amplitude tp on the p band comeswith a negative sign. This implies that ψdxy

changes sign between neighbouring

sites while ψdx2
and ψd y2

do not. This is illustrated in figures 5(c) and (d). The reversed sign of ψdxy
has the effect

of rotating the distribution in the opposite direction (i.e. here clockwise), but thewinding numbers are
unaffected.Now recall that the 2-symmetry of equation (15) corresponds to reversal of the phasewinding.
Taking all into account we have that in the symmetry broken phase the onsite rotation direction alternates
between neighbouring sites (breaking of the parity symmetry ψ ψ ψ ψ ψ ψ↔ −( , , ) ( , , )d d d d d dx y xy x y xy2 2 2 2

) and

furthermore the phasewinding is determined frombreaking of the symmetry (15). In addition, we have

Figure 5.The same asfigure 4 but deep in the superfluid phase ( ≫n 10 ) where all three orbitals are considerably populated. The
difference between the upper and lower plots is the sign of the order parameter ψdxy

(the two states have equal energy), which reflects
the states in twoneighbouring sites in the lattice. Despite the fact that the dxy orbital is largely populated in this case, the general
structure of the superfluid state shown infigures 4(a) and (b) survives, i.e. the onsite order parameter hosts two vortex/anti-vortex
pairs. However, the state gets distortedwith twoof the vortices at the very edge of the distribution. As forfigure 4, the potential
amplitudeV = 40.
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numerically checked that in the sameway as in the previous section, the state in the phasewith restored
symmetry is characterized by a dark soliton.

3.3. Insulating phases forfilling n0 = 1
Deep inside theMott insulating phases the relevant physics of themany-body system can be studied in terms of
an effective (pseudo) spinmodel derived from the perturbative treatment of the tunneling processes relative to
the interaction [41]. Bymapping the problemonto a spin system, the effective dimension of theHilbert space is
greatly reduced and the relevant physics becomesmore transparent and easily analysed.Moreover, even though
the properties ofmany spinmodels are still unknown, known results of previous studies can be applied to the
present case.

Since the differentMott lobes are characterized by a definite integerfilling n0, the derivation of the effective
spinmodel can bemost naturally handledwith the use of operators that project the eigenvalue problemonto
orthogonal particle number subspaces of theHilbert space. As a consequence, the result of the perturbative
treatment is not general to any insulating state, and thus we restrict the study here to thefirstMott lobe ( =n 10 )

which ismost relevant for experimental studies.We proceed by defining the P̂ and Q̂ operators, =P Pˆ ˆ2
and

=Q Qˆ ˆ2
, that project, respectively, onto the space of states with unit filling, and the states with at least one doubly

occupied site. For the lowestMott insulator wemay again impose the assumption that the dxy-orbital state is
negligibly populated, and that the only relevant degrees of freedom considered stem from the dx2 and dy2

orbitals.
The eigenvalue problem can then bewritten as (for amore detailed derivation see the appendix and [18, 21])

= −
−

=H PH Q
QHQ E

QH Pˆ ˆ ˆ ˆ 1
ˆ ˆ ˆ

ˆ ˆ ˆ, (26)n 1 dkin dkin0

⎛
⎝⎜

⎞
⎠⎟

where Ĥdkin is given by equation (8) and the interaction part = + +H H H Hˆ ˆ ˆ ˆ
U dden dc do, see equations (10)–

(12). Due to the assumptions of theMott phase, the resolvent −( )QHQ E1 ˆ ˆ ˆ can be expanded such that the

effectiveHamiltonian contains contributions to second order in t U . In addition, the tight-binding
approximation allows proceedingwith the analysis as a two-site problem. Therefore, we define the basis
spanning the P̂ subspace by

= x x x y y x y y{ , , , , , , , }, (27)

where α β∣ 〉 = ∣ 〉α βd d, ˆ ˆ 0i j
† †

corresponds to the statewith a αd -orbital atom in the site i and a βd -orbital atom in

the neighbouring site j, α β = x y, { , }. In the sameway, the relevant states in the basis of the subspace Q̂ of
doubly occupied sites is given by

= { }x xy y0, 2 , 0, , 0, 2 , (28)

with α∣ 〉 = ∣ 〉α α
− d d0, 2 2 ˆ ˆ 0j j

1 2 † †
and αβ∣ 〉 = ∣ 〉α βd d0, ˆ ˆ 0j j

†
,

†
.

Due to the possibility of transferring population between the different orbital states via Ĥdc and Ĥdo, we
notice, however, that the projection of theHamiltonian onto the  subspace is non-diagonal in the basis of
intermediate states of the perturbation theory. A practical way of dealingwith this situation is to notice that the
contributions of the different processes can be obtained from computation of −H E( ˆ )Q , where =H QHQˆ ˆ ˆ ˆ

Q ,

with a subsequent inversion. In addition, since the energy ∼E t U2 wehave − ≈− −
H E H( ˆ ) ˆ

Q Q
1 1

.More
explicitly, ordering the basis of  according to (28),

=H

U U U

U U U

U U U

ˆ

2

2 2 2

2

(29)Q

xxy xy

xxy xy xxy

xy xxy

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

and

Λ=

− − −

− − −

− − −

−
( ) ( ) ( )

( ) ( )
( ) ( ) ( )

H

U U U U U U U U

U U U U U U U U U U

U U U U U U U U U

ˆ

2 2 2

2 2

2 2 2 ,

(30)Q

xxy xy xxy xxy yy xxy xy

xy xxy xxy xy xy xxy xxy

xxy xy xy xxy xxy xy xxy

1

2 2 2 2

2 2

2 2 2

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
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with

Λ = + −

− +
−

(
)

U U U UU

UU U U

2 4 2

2 2 . (31)

xy xxy xy xxy

xxy xy

3 2 2

2 1

Wedetermine the final formof the effectiveHamiltonian by computing the relevantmatrix elements of
equation (26). This yields (see appendix B formore details of the derivation)

∑Λ= − − +

+ − +

+ − + + +

+ − + + + +

+ − + + + +

σ σ

σ σ

σ σ σ σ

σ σ σ

σ σ σ

=

σ

( )
( )

( ) ( )
( ) ( )

{ ( )( )

( )

( )

( )

( )

H U U U t n n t n n

U U t t d d d d d d d d

U U t n n t n n t t d d d d d d d d

U U U U t t t n d d d d d d d d n

U U U U t t t n d d d d d d d d n

ˆ 8 ˆ ˆ ˆ ˆ

8 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

2 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

2( ) ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

2( ) ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ . (32)

n xy xxy
x

x y
y

y x

xxy xy
x y

x y x y y x y x

xy
x

x y
y

y x
x y

x y y x y x x y

xxy xy xxy
x x y

x y x x y y x x y x

xxy xy xxy
y x y

y y x x y y x x y y

ij

i j i j

i i j j i i j j

i j i j i i j j i i j j

i j j j j i i i i j

i j j j j i i i i j

1
2 2 2

2 2 † † † †

2 2 2 2 † † † †

2 † † † †

2 † † † †

0
2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭
By further employing the Schwinger angularmomentum representation [42]

= −

= + =

= − =

+

−

( )S n n

S S iS d d

S S iS d d

ˆ 1

2
ˆ ˆ ,

ˆ ˆ ˆ ˆ ˆ ,

ˆ ˆ ˆ ˆ ˆ , (33)

z
x y

x y
x y

x y
y x

i i i

i i i i i

i i i i i

†

†

2 2

2 2

2 2

togetherwith the constraint of unit filling = + =n n nˆ ˆ ˆ 1x yi i i2 2 , equation (32) can bemapped into a spin-1 2
XYZ model withDM interactions [43, 44] and externalfields

∑

∑

∑

γ γ

Δ δ

Γ

= − + + −

− + +

+ +

( ) ( )

( )

H J S S S S

S S S S S S

S hS

ˆ 1 ˆ ˆ 1 ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ . (34)

XYZ
x x y y

i
z z x

j
z z x

x z

ij

i j i j

ij

j i i j

i

i i

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

Here Λ= σ σJ t t U2 ¯x y 2 , with = −U U U¯ ( )xy
2 2 2 andΛ given by equation (31), the anisotropy parameter

γ = −U U U8( ) ¯
xxy xy
2 2 2,

Δ = + −

− + −

σ σ

σ σ

( )( )
( )( )
t t U U U

t t U U

8

2 ,

x y
xy xxy

x y
xy

2 2 2

2 2 2 2

δ = − −σ σ( )( )U U U U t t2 ,xy xxy xxy
x y2 2

Γ = − −σ σ( )( )U U U U t t ,xy xxy xxy
x y2 2

and

= − −σ σ( )( )h U U U t t8 .xy xxy
x y2 2 2

However, in the isotropic lattice as considered in this work, the external field of Ŝi and theDM interactions

vanish due to the 2-symmetry discussed in equation (15), which in the spin language read →S Sˆ ˆx x
i i ,

→ −S Sˆ ˆy y
i i , and → −S Sˆ ˆz z

i i . This symmetry is broken in anisotropic lattices. In fact, there ≠∥ ∥t tx y and ≠⊥ ⊥t tx y ,
and in such case, since δ ≠ 0, theDM terms reappear in the effective spinmodel.

Several interesting facts should be noted. First, that in the sameway as for the systemof bosons in the p band
[18], d-orbital bosons provide an alternative realization of the XYZ Heisenbergmodel, albeit here with the
presence of an externalfield even in the isotropic case. This is a consequence of the fact that the density assisted
processes, equation (12), break the 2-parity symmetry associated to orbital changing interactions of
equation (11) which preserves the number of orbital atomsmodulo two. This also explains the presence of the
Si

x term in theHamiltonian and it readily follows that in the absence of thisfield the parity symmetry is restored.
Second, that in the sameway as for the external field, theDM interaction results from the density-assisted
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processes. Third, that in the limit of vanishing density-assisted interactions, the effective spinHamiltonian
becomes identical to the corresponding one of the p-orbital system, of [18]. That this indeed should be the case
can be understood from the fact that the anisotropy parameter γ is a consequence of the orbital changing
processes. However, a difference between the twomodels is that while the <α β

∥ ⊥t t 0 for the p-orbital system,

>α β
∥ ⊥t t 0 in the d band, and therefore the effective spinmodel favours primarily ferromagnetic alignment at
neighbouring sites in all the pseudo-spin components.

To the best of our knowledge, the phase diagramof thismodel is not fully known in D2 even for the simplest
case of the isotropic lattice, where δ = 0. However, the underlying 2-symmetry suggests the possibility of a
rich phase diagram.Wenote that for Γ Δ≫J J ( γ∣ ∣ < 1) the system is characterized by a highlymagnetized
state in the x-spin component, while in the opposite limit it is ferromagnetic in the z-component of the spin
(noting that Δ > 0). The later is a symmetry broken phase withmagnetization in either positive or negative z-
direction. For γ Δ∼J , another possible symmetry broken ferromagnetic phase could appearwith the spin in
the xy-plane or possibly a gapless floating phase which exists in the 1D XYZ model. In 1D the qualitative features
of the XYZ phase diagram are known [30]. This has been studied in terms of p-band bosons [18], but following
the same procedure of that study to reduce the dimensionality to an effective 1Dmodel onewould inevitably
generate theDM interaction terms for the system in the d band. This, however, gives interesting possibilities
since thismodel is known to host an interesting phase diagramwith ferromagnetic and Luttinger liquid
phases [45].

4. Concluding remarks

Motivated by a recent experiment [28], we have studied the zero temperature properties of bosonic atoms on the
d bands of an isotropic square optical lattice. Due to the particular shapes of the onsite d orbitals, the phases
characterizing the ground-state of thismodel are different from those analysed in the past for systems on the p
band [14–16]. This is not surprising if we think of the orbitals in the harmonic approximationwhere the p
orbitals carry angularmomentum components = ±l 1and the d orbitals = ±l 0, 2. The ∣ ∣ =l 1 angular
momentumof the p orbital is reflected in the singly excited vortex at each site in the superfluid phase. The higher
angularmomentum components of the d orbitals implies that the onsite state can take different forms than a
state with single vortices. The direct generalization of the superfluid phase on the d bandwould be a
checkerboard lattice of a single ∣ ∣ =l 2 vortex located at every site.However, we found instead that two vortex/
anti-vortex pairs appear on each site. The commonwisdom is thatmultiple excited vortices are energetically
unstable to form several singly excited vortices [39], and one could argue that this explains whywe should not
find doubly excited vortices in this system. This simplified argument cannot be true here since the total angular
momentum should be preserved, which is not the case for a state carrying two vortex/anti-vortex pairs where the
total angularmomentum vanishes.

The inter-site phase locking of the different intra-site order parameters is determined by the signs of the
different tunneling coefficients. For the d band this implied that the corresponding single site vortex states are
ordered in the sameway in all the sites. This is in contrast with the checkerboard type (or anti-ferromagnetic)
arrangement of vortices in the superfluid phase of the system in the p band. This ferromagnetic phase is a
symmetry broken phase with respect to the direction of phase windings of the vortices. The spontaneous
breaking of the symmetry (15) is also accompanied by breaking of time-reversal symmetry, which otherwise
would imply the possibility of switching between the two degenerate vortex states of different orientation. In the
symmetry preserved superfluid state, a dark ring soliton is formed on every site. This phasemay, however, not
occur naturally in experiments since the strength of the density assisted interaction coefficientmust become
comparable to the coefficient of the orbital changing interaction. This said, it does not necessarilymean that this
phase cannot bemonitored but then by external driving like suggested in [18].

Like for the superfluid phase, the orbital structure alsomakes the physics of the insulating phases very
intriguing.We focused on the lowestfilling =n 10 , where theMott phasewas shown to feature very interesting
properties.With a perturbative treatment, this systemwasmapped onto an XYZ Heisenberg spinmodel in an
externalfield. The phase diagramof thismodel is not known in 2D, but by considering limiting cases we argued
that themodel should posses a very rich phase diagram.We further showed the appearance ofDM interactions
in the casewhere the lattice is no longer isotropic. In particular, by fine tuning the lattice is is possible to restore
the degeneracy between the dx2 and dy2 orbitals and still break the lattice isotropy. In the harmonic

approximation this accounts to fulfilling the condition =V k V kx x y y
2 2 [17] (in unscaled variables, where μV

and μk are the potential amplitudes andwave numbers in the directions μ = x y, ). Thus, it is possible to study
effects arising from theDM interactions, of which themost famous effect is perhaps that of spin canting
where an anti-ferromagnetic state builds afinitemagnetization orwhere themagnetization in a ferromagnetic
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state gets quenched [44]. The presence of these terms imply the breaking of the 2-symmetry (15) and as a result
the transitions should turn into first order or of Berezinskii–Kosterlitz–Thouless type [46].

In 3D, the =n 10 Mott insulator could be effectively described by an SU (3)pseudo-spinmodel, as was
recently shown for the system in the p band [21]. The density assisted orbital changing collision terms (12)
present on the d bandwould, however, give some additional terms to the effectivemodel in comparison to that
emerging on the p band.Now,what couldwe expect from the physics on other insulating phases? On the =n 20

insulating phase, the projected (two atoms/site) single siteHilbert space is spanned by the three states
∣ 〉 ∣ 〉 ∣ 〉xx xy yy{ , , }. In the Schwinger spin representation (33)with the constraint =n̂ 2i onewould obtain an
effective spin-1 XYZ model. The integer spin implies the possibility of a gaplessHaldane phase to appear [47].
Going up into theMott lobes with largerfilling, the effective spinmodels would be characterized by higher spin,
but as long aswe remain in 2D, the (pseudo) spins in the two-orbital case would be generators of the SU (2)

group. If occupation of the d̂xy orbital becomes non-negligible, then the pseudo-spins are the generators of the

SU (3) group even in the D2 lattice, with a corresponding spinmodel withDM interactions in all the
components.

Since this work presents thefirst theoretical study of the physics in the d band, we have limited the
analysis to the isotropic 2D lattice. Naturally, with different lattice geometries and in other dimensions, the
physics is expected to change as well as if one considers fermionic atoms instead of bosonic ones. Another aspect
left out here is the influence of a trapping potential. On the p band it was recently demonstrated that the
presence of a harmonic trap is amost simpleway to directly detect outcomes of the anisotropic tunneling (that is
the orbital nature of the system) on the excited bands [48]. In particular for the system addressed here, we expect
the properties of the superfluid phase to be persistent at the centre of the trap. Due to population imbalance in
the different orbitals near the edges of the atomic cloud, the vortex lattice or soliton structure aremost likely lost
at the boundaries. This result, as pointed out in [48], is also amanifestation of going beyond the local density
approximation; the trapping potential alone does notfix the particle density. In themore strongly interacting
regime, despite the failure of the local density approximation, we still expect the famous ‘wedding-cake’
structure of the atomic density [49], where the effective spin physics described in this work should be applicable
in the plateauwith unit density. Time-of-flight detection of the freely expanding atomic cloud or single-site
addressing [50]would reveal information about the intrinsic tunneling annisotropy on the d bands aswell as
the phases. For example, whether the system is in the soliton or the vortex superfluid phasewill result in different
momentumdistributions. Crucial for such observations is that the coherence of the condensate prevail the loss
due to residing on the excited bands.However, already in the d band experimental work [28] coherencewas
demonstrated, which shouldmake our results for the superfluid phase relevant. In theMott regimes, the decay
ratemay increase since the anharmonicity of the lattice is weaken. Themain source of losses here are due
to two-body processes which scatter one atom to the next higher and lowest bands [24]. Such two-body losses
are, however, greatly suppressedwithin theMott phasewith unitfilling studied in this work. Indeed, it has
been predicted that the life-timemay increase by a factorfive in this insulating state [24]. The physics of the
higher insulating states is probablymuchmore challenging to access experimentally, and onewould
probably need to hinder the decaywith othermeans. The alternatives include the use of fermionic atoms
in the s band tomimic the anharmonicty of the lattice by shifting the onsite energies [51], or the use of
superlattices [25].
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AppendixA.Hamiltonian parameters

Herewe give the general expressions for the overlap integrals rendering the various parameters of themany-
bodyHamiltonian (3).Making use of the separability of the potential and theWannier functions (2), and after
introducing the 1D single particleHamiltonian = −∂ +H V xˆ sin ( )x1sp

2 2 , the coefficients become
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∫
∫
∫
∫ ∫

∫

∫
∫ ∫

∫
∫ ∫

=

=

=

=

=

=

=

=

=

⊥ +

+

∥ +

( )

( )
( )( )

( )( )

( )
( )( )

t x w x H w x

t x w x H w x

t x w x H w x

U x w x x w x

U x w x

U x w x w x

U x w x w x x w x w x

U x w x w x w x

U x w x w x x w x w x

d ( ) ˆ ( ),

d ( ) ˆ ( ),

d ( ) ˆ ( ),

d ( ) d ( ) ,

d ( ) ,

d ( ) ( ) ,

d ( ) ( ) d ( ) ( ) ,

d ( ) ( ) ( ) ,

d ( ) ( ) d ( ) ( ) . (A1)

si si

pi pi

di di

di si

p pi

xy di si

xxy di si di si

pxy pi si di

px di pi si pi

s
1 1sp

p
1

* 1sp

d
1 1sp

4 4

4 2

2 2
2

2 3

2 2

2 2 2 2

In the above expressions we have used the phase convention that w x( )si and w x( )di are purely real while w x( )pi is
purely imaginary.

Appendix B. Explicit computation of the effective spinmodel

Thefinal formof the effectiveHamiltonian is obtained after computing the relevantmatrix elements of
equation (26). That is, we consider all the different transitions allowed for each state. In the following, the
expressions of these amplitudes are given in terms of the coupling constants of the system in the isotropic lattice
considered here.

The states of the type α α∣ 〉,i j , i.e. the same type of orbital atom in the twoneighbouring sites, are connected

via tunneling to the three different intermediate states in the  subspace;

α α α

α α β β= + +

α α

αα
αα

αα
αβ

αα
ββ( )

K d d K

K K K

ˆ ˆ ˆ , 2 ˆ 0, 2

2 0, 2 0, 0, 2 ,

j i i j j

j j j j

†

wherewe have introduced the shorthand notation = −
K Hˆ ˆ

Q
1
. The possible transitions are

• To α α∣ 〉,i j via action of α αd dˆ ˆ
i j

†
, which contribute to the effectiveHamiltonianwith terms of the type

∑∑
Λ

− −
α β

σ
α

α α
σ

( )t
U U U n n4 ˆ ˆ . (B1)xy xxy

ij

i j

,

2

• To α β∣ 〉,i j via action of α αd dˆ ˆ
i j

†
;

∑∑
Λ

− −
α β

σ
α

α β α
σ

( )t
U U U U n d d2 ˆ ˆ ˆ . (B2)xy xxy xxy

ij

i j j

,

2 †

• To β α∣ 〉,i j via action of β βd dˆ ˆ
i j

†
;

∑∑
Λ

− −
α β

σ
α

σ
β

β α α
σ

( )t t
U U U U d d n2 ˆ ˆ ˆ . (B3)xy xxy xxy

ij

i i j

,

†
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• To β β∣ 〉,i j via action of β βd dˆ ˆ
i j

†
;

∑∑
Λ

−
α β

σ
α

σ
β

β α β α
σ

( )t t
U U d d d d2 ˆ ˆ ˆ ˆ . (B4)xxy xy

ij

i i j j

,

2 2 † †

The states of the the type α β∣ 〉,i j are also connected via tunneling to the three intermediate states in the 
subspace;

α β α β

α α β β

= =

+ +

α α

αβ
αα

αβ
αβ

αβ
ββ( )

Kd d K

K K K

ˆ ˆ ˆ , ˆ 0,

0, 2 0, 0, 2 . (B5)

ji j i j j

j j j j

†

Here, in addition to the conjugates of equations (B2) and (B3), the other possible transitions are

• To α β∣ 〉,i j via action of α αd dˆ ˆ
i j

†
, which results in the contribution

∑∑
Λ

− −
α β

σ
α

α β
σ

( )t
U U n nˆ ˆ . (B6)xy i j

ij ,

2
2 2

• To β α∣ 〉,i j via action of β βd dˆ ˆ
i j

†
;

∑∑
Λ

− −
α β

σ
α

σ
β

β α α β
σ

( )t t
U U d d d dˆ ˆ ˆ ˆ . (B7)xy i i

ij

j j

,

2 2 † †

Combining thematrix elements of equations (B1)–(B7), we derive the effectiveHamiltonian (32).
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