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Abstract

We explore the properties of bosonic atoms loaded into the d bands of an isotropic square optical
lattice. Following the recent experimental success reported in Zhai et al (2013 Phys. Rev. A 87 063638),
in which populating d bands with a 99 % fidelity was demonstrated, we present a theoretical study of
the possible phases that can appear in this system. Using the Gutzwiller ansatz for the three d band
orbitals we map the boundaries of the Mott insulating phases. For not too large occupation, two of the
orbitals are predominantly occupied, while the third, of a slightly higher energy, remains almost
unpopulated. In this regime, in the superfluid phase we find the formation of a vortex lattice, where
the vortices come in vortex/anti-vortex pairs with two pairs locked to every site. Due to the orientation
of the vortices time-reversal symmetry is spontaneously broken. This state also breaks a discrete Z,
-symmetry. We further derive an effective spin-1/2 model that describe the relevant physics of the
lowest Mott-phase with unit filling. We argue that the corresponding two dimensional phase diagram
should be rich with several different phases. We also explain how to generate anti-symmetric spin
interactions that can give rise to novel effects like spin canting.

1. Introduction

Interest in systems of cold atoms in optical lattices has greatly increased during the last decade [ 1] partly
because of their versatility as simulators of quantum systems. More precisely, the flexibility, control, and
cleanness of these systems have led to numerous realizations of paradigm many-body models of condensed
matter physics. The field was greatly stimulated with experimental explorations of the Mott insulator-superfluid
transition of the Bose-Hubbard (BH) model [2] following the theoretical proposal of [3]. Today the list of
achievements is long, but to mention just a few: single-site resolved detection [4], simulation of magnetism and
spin models [5], realizing synthetic magnetic fields [6] and topological states [7], demonstration of a fermion
Mott insulator [8], as well as various dynamical studies like equilibration and Lieb—Robinson spread of
correlations [9]. Common to all the above examples is that the essential physics appear on the lowest energy band,
the sband. In particular, for spinless particles on the sband, the onsite atomic states are not degenerate. We know,
however, that many interesting phenomena in condensed matter theories have their origin in the degeneracies of
onsite states/orbitals. For example, understanding ‘orbital physics’ [10] is essential for giving a full description of
superfluid properties of *He [11] and the metal-insulating transitions in metal oxides [12]. Spurred by this, in
recent years the first steps towards controlled studies of orbital physics with cold atoms have been taken [13].
Degenerate orbital atomic states appear naturally on excited bands of optical lattices, and it was predicted
that bosonic atoms loaded into the first excited, the p bands, of a two dimensional (2D) square optical lattice give
rise to interesting physics beyond that found on the lowest band [14]. In particular, the superfluid order
parameter at zero temperature is complex valued and time-reversal symmetry is spontaneously broken [14—16].
Also the insulating phases provide rich physics with the possibilities to study exotic quantum magnetic phases
[17,18]. In different lattice geometries, the system may display ‘stripped phases’ [19], and in 3D the state of
bosons occupying an isotropic cubic lattice become frustrated both in the insulating as well as in the superfluid

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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phase [20, 21]. Fermionic systems in the p band are also known to feature rich physics, with a plethora of
different phases [22].

Experimentally, populating the p bands with bosonic atoms was first realized by accelerating the lattice
potential in such a way that the system traversed through a Landau—Zener transition non-adiabatically [23].
However, a more thorough experimental analysis of the coherence and life-time of p-band bosons was
performed by Miiller et al [24] using a two-laser Raman loading technique from an insulating s-band state. In
particular, it was found that the atoms on the p band relax very rapidly (on the order of a few tunneling times),
and that the life-time is relatively long in comparison to the tunneling time. This enables coherence to be
established from the initial Mott insulator and the possibility to detect dynamical processes. More recently, a 2D
superlattice was used in order to prepare bosonic atoms in hybridized states composed of s and p orbitals [25]. In
this experiment, and in a follow up one [26], clear evidences of a complex order parameter were presented. The
same loading method was further benchmarked by loading atoms into f-orbital states [27], i.e. the third set of
excited bands.

A completely different approach to initialize bosonic atoms in excited bands was proposed and
demonstrated by Zhai et al [28]. There the atoms start in a zero momentum eigenstate (held in a broad harmonic
trap) and then a sequence of ‘on/off pulses’ are applied to the atoms, where the ‘on pulse’ consists of a standing
wave which couple the zero momentum states to higher momentum states by photon recoils. With this method
the atoms were loaded into the d band with a fidelity as high as 99 %, which is much better than what was
reported for the p bands (around 80 %). This technique is, however, more easily applied for atom transfer
between bands of even or odd parities, e.g. s - d or p — f and so on, and is therefore not suitable for preparing
p-band atoms starting from the ground state. Surprisingly, the properties of d-band bosons remain unexplored.
Considering the recent experiment [28], it is therefore of importance to work out the relevant physics of such
systems.

Here we analyse the zero temperature phase diagram of d-band bosons in an isotropic 2D square lattice. On
the d bands we have three orbitals which are generally denoted d,2, d 2, and d,,. However, due to the
anharmonicity of the single site potential well, degeneracy is broken and the energy of the d,, orbital is somewhat
higher than the other two orbitals which stay degenerate. The Mott insulator boundaries are determined
within the Gutzwiller method. Atlow atomic densities, the d,-orbitals are only weakly populated and we can
therefore reduce the number of orbitals to two, i.e. we can describe the physics with an effective two-orbital
BH model. The properties of the superfluid phase are analysed analytically by minimizing the onsite energies.
Like for the p-band superfluid phase, the order parameter is complex but due to the particular shape
of the d orbitals a new type of vortex lattice is formed with two vortex/anti-vortex pairs fixed to every site. At
higher densities, the general structure of the vortex lattice persists but now also the d,-orbitals becomes
populated.

One difference with respect to p-band BH models is the lack of a characteristic Z,-parity symmetry for
bosonic atoms in the d band. The lack of this symmetry stems from density-assisted orbital-changing collision
terms. Nevertheless, there is another Z,-symmetry that is spontaneously broken in the superfluid phase. In the
Mottinsulating phase, we employ perturbation theory to derive an effective spin model, where it is seen that the
new interaction terms appear in the form of an external field. In particular, the first insulating phase (the Mott
with unit filling) can be described by an XYZ Heisenberg model in an external field. The model is, of course, still
supporting the Z,-symmetry and we expect a rich phase diagram within the insulating phase with the possibility
of ferromagnetic phases with broken symmetry. It should be noted that the phase diagram of the 2D XYZ model
in an external field is not fully known. We also present a brief discussion on how the so called Dzyaloshinsky—
Moriya (DM) interactions (or anti-symmetric spin exchange) may appear when the lattice is no longer isotropic
but the onsite degeneracy is kept. While not studied in detail, we point out that the insulating phases with higher
fillings are also of great interest. Such phases will represent exotic magnetic states of higher spins or quasi-spins
of SU (N) models.

2.d-Band bosons

Throughout we will assume that all atoms reside on the d bands, i.e. the loading is perfect and that any time-
scales are short compared to the decay times, driven by intra-atomic collisions, of these meta-stable atoms. The
second condition implies that relaxation occurs on a time shorter than a few us which is the experimentally
measured life-time of d-band atoms [28]. Relaxation typically happens during few tunneling times [24], which
allows coherence on these excited bands to form before substantial dissipation/decoherence sets in. This has in
particular been experimentally demonstrated for bosons loaded in the p [24, 25], the d [28], and the f[27] bands.
Before discussing the physics on the d bands, let us first recapitulate the main results for the system of bosons
in the p bands of 2D square lattices. On the isotropic lattice, p-band bosons support two degenerate orbitals and
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avery interesting phase diagram. As for the regular s-band BH model [3, 29], the interplay between repulsive
interaction and kinetic hopping leads to Mott insulating phases with integer fillings ny = 0, 1, 2, ...and
condensed superfluid phases [ 14, 16]. The orbital degree of freedom implies, however, that both the insulating
and the superfluid phases are non-trivial. In the condensate, the superfluid order parameter y (x, y)isa
complex function representing a condensate with a vortex pinned to every site. The properties of the tunneling
of p-band atoms in 2D further implies that vortices in neighboring sites have angular momentum quantized in
opposite directions (i.e. winding numbers are +1) [14—16]. Thus, there is a ‘checkerboard’ lattice of vortices and
the two possible configurations underline the discrete Z,-parity symmetry of the model, as well as the
spontaneous breaking of time-reversal symmetry. The orbital degree of freedom also makes the insulating
phases very rich. The 1y, = 1 Mott phase with one atom per site can be mapped onto an effective Heisenberg
XYZ model [18], whose phase diagram in 1D is qualitatively known [30] but not known in 2D. In the spin
language of the Heisenberg XYZ model, the breaking of the Z,-parity symmetry represents for example an
Ising-like transition.

The goal of the present paper is to demonstrate that also the experimentally relevant d-band bosonic model
hosts very interesting physics with some notable differences from the physics in the p band. A first guess would
be that on the d bands, one again encounters a checkerboard of vortices but with winding numbers £2 instead.
This would be the direct generalization of the results appearing on the p bands. To construct such states all three
orbitals need to be populated, but as we will see in the following only two of them are actually populated due to
broken degeneracy. As a result we find a different type of vortex lattice. However, before discussing the possible
phases on the d band, we give the corresponding many-body Hamiltonian in the next section, and outline how
we will analyse it within the Gutzwiller mean-field approach.

2.1. Single particle properties
The single particle Hamiltonian for an atom with mass #1 in an isotropic 2D square optical lattice is [1]

2
—%(ai +02) + V[sinz(kx) + sinz(ky)]. (1)
For convenience we introduce dimensionless parameters by letting the recoil energy E, = 7#%k?/2m set the

energy scale and the inverse wave number k™! the characteristic length scale. Thus, in dimensionless variables,
A A, -
Hy= "= -0 — cﬁ + V[sin2 (x) + sinz(y)],with V = V/E,. Thespectrum E, (q,, q,), consisting of bands

separatea by forbidden gaps, is characterized by three quantum numbers, a discrete band index v and two
continuous quasi momenta g, and g,.. In scaled dimensions, the first Brillouin zone is defined by
4. q, € [ =1, +1). Increasing the potential amplitude Vimplies that the band gap increases while the widths of

the energy bands shrink. The ‘flatness’ of the bands determines the mobility of the atom. Consequently, as V'
increases the mobility is reduced and the bands become flatter. In the limit of very deep lattice each site mimics a
2D harmonic oscillator and hence the isotropic 2D case is characterized by a single sband, two degenerate p
bands, three degenerate d bands and so on for the higher excited bands. The similarity with an isotropic 2D
harmonic oscillator can also be seen from the quantum numbers of the onsite orbitals; if |, 7, ) represents the
eigenstate of the oscillator with quantum numbers 7, and , then the ground-state is the ‘vacuum’ |0, 0) (s-
orbital state), the first excited states are |0, 1) and |1, 0) (p-orbital states), and the second excited states are

|0, 2),]2, 0),and |1, 1) (d-orbital states). For finite, but large V, the separations between the different set of
bands (s, p, d, ...) may remain much larger than the band widths (at least for the lower bands). However, due to
the anharmonicity of the potential wells the bands are no longer equidistant from each other, and even the three
dbands may split. As an example, in figure 1 we display the three dbands (E,2, E 2, and E,,) for a potential of
amplitude V'= 20. As we can see, the d,,,band has a higher energy than the other two.

The eigenstates of the single particle Hamiltonian HSP are the Bloch states ¢j,, (x) with v = (n,, n, ) theband
index, q = (q,, q,) the quasimomentumand x = (x, y). Taking the modified (i.e. restrict the integration to the
first Brillouin zone) Fourier transform of these, one obtains the Wannier functions w,; (x) where i = (iy, i,)
with i, i y € N labelling the site. Contrary to the de-localized Bloch functions, the Wannier functions are
localized around the site i and can therefore be normalized in the usual way. In addition, although they are not
the eigenfunctions of the single-particle problem, Wannier functions are orthogonal and therefore provide an
alternative basis for describing such systems. In the infinitely deep lattice limit, they become simply the
harmonic oscillator (x|n,, n ) eigenfunctions localized at each site. For large but finite V, the harmonic
oscillator eigenfunctions are not exact, but they still preserve the general structure of w,; (x). That is, for the s
band, where v = (0, 0), w,; (x) is approximately Gaussian. For the pbands, of v = (1, 0) and (0, 1), the
Wannier functions wj ; (x) and Wpi (x) are approximately Gaussian in one direction and have anode in the
transverse direction (the subscripts x and y tell the direction of the node). In the dbands, v = (2, 0), (1, 1),and
(0, 2), the three Wannier functions are shown in figure 2. These are the three atomic d-orbital states, and the
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Figure 1. The three dbands; E,2(q,, q Y ) E2(q, q . )»and Ey, (q,, q y) for the potential amplitude V' = 20E,. The bandwidth gives
an estimate of the tunneling strength and the curvature the sign of the tunneling coefficient.

] : 1
2| d: | d
E X 3 Xy
0.5 ¢ 05 ¢ . 10.5
. a l a-
05 05 . .
| 7 0.5
w2 2 1 R
-2 0 w2 w2 0 /2 -m/2 0 /2
X X X
Figure 2. The three d-band Wannier orbitals (properly normalized) of an isotropic 2D square lattice. Here, blue/red colour represents
negative/positive values. Thus, the d,2 and d,2 orbitals have each two nodes in either the x- or the y-direction respectively, while the
d,,-orbit has a single node in both directions.

notation used is borrowed from atomic/chemical physics: The d,:-orbital state has two nodes in the x direction
and no node in the y direction. The opposite is true for the d,: orbital, while the d,,, orbital has a single node in
both directions. Furthermore, since the square lattice is separable, Wannier functions in 2D can be constructed
as a product of 1D Wannier functions. Explicit expressions for the d-band Wannier functions are:

Wi (X) = wg (y) wai (x),
Wa i (X) = wai (y) wii (%),

Wi (X) = wpi (X) wyi (¥), (2)

where we have introduced the subscripts s, p, d tolabel the Wannier functions of the different bands in 1D.

Naturally, the shape of the Wannier functions play a crucial role in the dynamics of the system: on a single-
particle level, since the d,, orbital (@ = x?, yz) is much wider in the direction of the two nodes, tunneling
processes parallel to this direction happen with considerably larger amplitude than in the perpendicular one.
Thus, a d,2-orbital atom is more mobile in the x than in the y direction. The d,, orbital, however, is equally
mobile in both directions. This direction-dependent propagation results in an anisotropy in the problem, that is
also presentin the p-band system [14—16] (although absent on the s-band). This is also reflected as an anisotropy
in the single-particle spectrum. As illustrated in figure 1, E,2 has a much larger curvature (inverse effective mass)
in the x direction than in the y direction. Moreover, the sign of the curvature is also of importance since it
determines whether the effective mass is positive (particle-like) or negative (hole-like), and as we will see below,
italso sets the sign of the tunneling coefficient in the extended BH model. Furthermore, on a many-body level
the amplitude of scattering processes is determined by overlaps of products of Wannier functions, and therefore
their shape strongly influences the possible interaction processes as well as their strengths.
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2.2.Many-body Hamiltonian
The Hamiltonian of the full many-body problem describing contact interactions between the neutral atoms is
given by

Hyp = f dx [v‘” (X)Hyp ¥ (x) + %W ¥ 0¥ x)¥ (x)], (3)

where the coupling constant Uy = 4x#%a/m, with m the atomic mass and a the s-wave scattering length. The
field operators ' (x)and ' (x) annihilate and create a particle at the position x and obey the bosonic
commutation relations [¥ (x), ¥’ (x)] = 6 (x — x).

In order to constrain the atoms to the d bands (i.e., impose the single-band approximation), we expand the
field operators in the corresponding Wannier functions,

¥ (x) = ) deiwa i (%) + dysiwa i (%) + dygiwa, i (%) (4)

with the sum running over all the lattice sites, and the bosonic creation/annihilation operators obey

4 At .. . .
[d i d /,j] = &5, where = {x%, y%, xy}and all remaining commutators vanish. Following the usual
prescription, ¥ (x) and its Hermitian conjugate ! (x) are inserted into equation (3). We then impose the tight-
binding approximation such that the tunneling is restricted to nearest-neighbour sites and interactions to only
dominant onsite terms. This yields the final form of the many-body Hamiltonian describing bosons in the d

band. For later convenience, we separate it into two different parts, one containing all the processes that involve
the d,, orbital, and one part that only include contributions of the d,2 and d,: orbitals:

Hyu = H, + Ha. (5)

Furthermore, the two separate parts can be split up into
H, = Hop + Hpkin + Hpden + Hpe + Hpo,
Hg = Hoa + Hakin + Haden + Hac + Heo- (6)

The free part of the Hamiltonian accounts for the onsite energies E 4 of different bands together with the
chemical potential  and is given by

Hyg = Z(E/)’ - ﬂ) i (7)
i

. . N AT N . .
with the particle number operators 7ig; = d 5;d 5;. The kinetic energy contributions are

o At oA
HPkin = —tP deyidxyj’
(1)
A At oA
Hain = = ) Y 18 didaj, (8)
@0 (ij)e
with ) i) the sum over nearest neighbours in the direction o = {x, y}, ). i) the sum over nearest neighbours

inall directionsand @ = {x?, y?} thelabel of the orbital state. The tunneling coefficients satisfy
|ti°| > 1ep] > [¢£1, 9)

where #;* and ¢ " are the tunneling coefficients in the directions parallel and perpendicular to the two nodes of the
orbital state. Furthermore #", ¢{ > 0 and t? < 0. Explicit expression of the overlap integrals are given in appendix A.

The interacting part of the Hamiltonian (6) is characterized by various processes. It contains the density—
density interactions

U,
A P A A A A A A
deen = Z|: 7”xyi(nxyi - 1) + 2pr( N2 Nyyi + nyzinxyi):|>

i
Hdden = Z{%[ﬁxzi(ﬁxzi - 1) + ﬁyzi(ﬁyzi - 1)]
i

; ZUXyﬁxziﬁyzi}; (10)
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the orbital changing interactions

U
A px
Hye =

. U, At At oA oA Af oAt A
Hye = % I:(dxzidxzidyzidyzi + dyzidyzidxzidxzi) ]; (11)

and finally, the density assisted orbital changing collisions

Hyo = 2pry2(a;21ﬁxyiﬁy2i + ajziﬁxyiaxzi) (12)
i
and
Hyo = xxyZ[ﬁ;i(ﬁxzi + ﬁyzi)ﬁyzi (13)
i
+ ﬁ;zi<ﬁxzi + ﬁyzi)ﬁxzi]. (14)

Other interaction terms vanish due to the symmetries of the orbitals. Like for the tunnelling coefficients, the
various coupling constants can again be found in the appendix A.

As pointed out above, the system of bosons in the p band supports a Z,-symmetry which can be
spontaneously broken to give a vortex-checkerboard condensed phase or a spin-flop phase in the superfluid or
insulating phase respectively. This symmetry arises in that case because p-orbital bosons in different orbital
states scatter in pairs and therefore the number of particles in each orbital state is preserved modulo 2. On the d
band, this conserved quantity is broken by the density-assisted interactions (12). There exists, however, another
non-trivial discrete Z,-symmetry in the many-body Hamiltonian (5). With the notation i = (i, i, ), welet
i’ = (iy, i,),and the Hamiltonian is invariant under the transformation

axzi - ﬁyzi/:

L% yi Elxzi’:

dxyi g dxyi/- (15)
This swaps both the d,: and d, orbitals as well as the lattice indices i, and i,. Note that the interchange of indices
is necessary due to the tunneling anisotropy of the d,:- and d,:-orbital atoms (3 # t2).In the next section we
will see that this symmetry can indeed be spontaneously broken to give interesting phases. We should also
mention that in addition there are two more Z,-symmetries. Since the Hamiltonian only consists of quadratic
or quartic terms, it is invariant under a sign-change of all operators. This parity symmetry can be further divided
into two discrete symmetries, one which change the signs of the d,.2 and d > orbitals, leaving the d,,, orbital

unaltered, and one with the reverse operation. These last two symmetries are trivial in the case when the d,,
orbital is unpopulated as in sections 3.2.1 and 3.3.

2.3. Mean-field approaches
In the simplest mean-field analysis, the ground-state | ¥ ) of the many-body system can be expressed as the direct
product [32,33]

1Me =@ |wy.i Wa oio Wa, i (16)
1

of coherent states; daill//dxzi, Wa o> ‘//dxyi>i = ‘/’dai“//dxzi’ WYa oo ‘/’dxyi>i and

dyi lWy 00 Wi o> W, i i =W ilWae Wi o> W, i )i- The classical energy functional is given by

Ealy,,p Wi i vy il = me(¥ | Hppi | ¥ )ur and the mean-field solution | ¥ )y is obtained from self-consis-

tently minimizing Eq [w,; ,; Wy 0 Wy i ;] with respect to the (complex) amplitudes y;; ;, and i and the particle
x ) sy a X

conservation constrain 3, ¥ [ ;> + 21wy ; I* = Niot where Nio. s the total number of particles. Note, in
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particular, that since the Hamiltonian Hpy is normally ordered’, the energy expectation values are simply
. . v At At . .
obtained by replacing operators d, d.yi, do;> and d ; by the corresponding coherent state amplitudes v, ;,
Wa o Vi and y; | respectively. This crude mean-field method is capable of giving a qualitative correct picture
X a Xy
deep in the superfluid phase with a large or moderate number of particles per site, as will be utilized in section 3.2.
However, once the interaction is increased relative to the tunneling, the system becomes insulating and the
above approach fails to predict such a phase: the method calls for improvement.
As anext step to advance on this coherent-state ansatz, (16) we consider intra-site particle fluctuations, but
still without intersite correlations

|¥I>Gutz = ® ‘¢i>-’ (17)

1
1

where every single site state is

&; >i = Z C?ii)znyznxy

N,2,10,2, 1y

My, My2, nxy> (18)

i

with [n,2, 1,2, n,,); aFock state with 1,2 d,2-orbital atoms in site i and so on. Note that normalization implies
E @) 2

Nyeny iy
above, Egy, [C,Eymymxy] = Guel{¥Y |Hpu|¥)Guw, and the amplitudes ¢

= 1for everysite i. The corresponding semi-classical energy functional is similar to the
)

121,21y,

sty
are obtained again via self-
consistently minimization of the energy functional. This procedure, called the Gutzwiller mean-field method, is
particular for its ability of identifying the existence of Mott insulating phases [3, 34]. However, although the
factorization (17) becomes a more accurate approximation in higher dimensions, it already provides a good
estimate of the insulating—superfluid phase transition in 2D [35].

3. Phase diagram

In this section we characterize different phases that can be expected for bosonic atoms in the d bands. To
quantitatively determine the phase boundaries of the insulating phases we use the Gutzwiller method discussed
in the previous section. For the p-band system [14], the properties of the superfluid phase can be understood
from analysing the single site problem on a mean-field level and then considering how the presence non-zero
tunneling terms establish global long range order. Applying the same recipe for the d-band system fails for low
atomic densities; it suggests that all three orbitals are populated while from the Gutzwiller analysis it follows that
almost all population is distributed in the d,2 and d,: orbitals. For this reason, when identifying the superfluid
state in cases where the number of atoms per site n, < 5 with the coherent state mean-field approach, it is
reasonable to constrain the analysis to account for only two of the orbitals. At higher densities however, the
analysis must include all three orbitals.

Since mean-field methods are less reliable for probing the physics in Mott insulator phases, this regime will
be studied here in terms of an effective spin model derived to describe the limit where the magnitude of any
tunneling coefficient |t | < |U |, where Us the typical interaction strength.

3.1. Superfluid-insulator boundaries

The boundaries separating the Mott insulators from the condensed superfluid phase are determined, as
mentioned above, by the Gutzwiller ansatz wave function (17). The condensate order parameters for the three
orbitals are given by Wi, = Gut t4 Iﬁd 5| ¥)Gut,- Within the Gutzwiller method, the insulating phase is described

by vanishing order parameters, while it is non-zero in the condensed superfluid phase.

Before discussing the insulating-superfluid transition we make a brief detour on other possible phases absent
in our case due to the imposed approximations. When the lattice amplitude is not too large, the larger width of
the higher band Wannier functions may lead to non-negligible contributions from interaction between
neighbouring sites. The effective model then includes nearest neighbour interaction terms, which if large
enough (compared to the onsite interaction terms), may lead to supersolid phases [36]. The existence of such a
phase have been demonstrated for bosonic atoms in the p band [31] and occurs when the strength of interactions
on neighbouring sites is as large as one fourth of the onsite interaction strength. For 30 < V < 70 as considered
in this work, however, the strength of interactions on neighbouring sites is always less than 1% and such terms
can be safely neglected. Nevertheless, it could be interesting to analyse the possibility of using the d rather than
the p bands for realizing such novel phases. As one would be required to relax the tight-binding, and most likely
also the single-band approximation [37], this study goes beyond the scope of the present work.

5 . . . . N N At oAt oA A
To be precise, to normally order the Hamiltonian we need to commute a pair of operators: fig; (figi — 1) = a;i a;i Agigi.
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Figure 3. The order parameter y = | (ﬁxzi) | = (ﬁ 42 ) |. (The corresponding order parameter for the d,,-orbital is approximately zero
except for t/U < 1073 where it is, however, at least one order of magnitude smaller than y). As is seen, the chemical potential is varied
such that the first four Mott insulators are illustrated (dark blue regions representing a vanishing superfluid order parameter). For this
plot, the relative strengths between the interaction terms has been taken as {Usys Ups Upes Upsys Usxy } / U={0.17,0.9,0.3,0.04,-0.03}
corresponding to a lattice with amplitude V' = 40. With this lattice depth, E,2 = E,2 = 0 and Ey, = 1.6U, and the relative tunnelings
{tf, 1£2]} /¢ = {0.002, 0.007}.

Let us now turn to the Gutzwiller predictions for the transitions. The self-consistent minimization of the
Gutzwiller energy functional Eg,, [céi)mymxy] is based on the use of the Nelder—Mead simplex algorithm [38].

Since we are interested in the phases for the system with different densities, the chemical potential u
(independent of the orbital flavour) is added to the Hamiltonian, see equation (7). For the numerics we truncate
the number of Fock states in the sum (18) to four for every orbital, i.e. up to three atoms for each orbital state and
nine atoms in total per site. This gives an onsite Hilbert space dimension of 64, and we can accurately capture the
first four Mott lobes. Going to higher insulating states would require Fock states of larger particle number, and
thereby a rapid slow down of the numerics. Furthermore, we scale equation (6) with the interaction strength U.

The results of the numerical Gutzwiller calculation are presented in figure 3, showing the superfluid order
parameter in the ut-plane. In this range of the system’s parameters, the occupation of the d,,, orbital (71, ) ~ 0
everywhere. Throughout, proper Wannier functions are used in the computation of the overlap integrals (A1)
presented in the appendix A, and we consider the potential amplitudes 30 < V < 70. These large potential
amplitudes (up to 70 recoil energies) are required to ensure the validity of the single-band and tight-binding
approximations in the d band, that accommodates very broad Wannier functions. The order parameters for the
d.»and d,: orbital are identical and for simplicity we call it y = | (ﬁxzi) | = (d 12 ) |- Note that the effective
Gutzwiller tunneling t used in the figure is twice the sum of the s- and d-band tunnelings. More precisely, out of
the four nearest-neighbours in the 2D system, tunneling processes in the d band occur with (1D) d-band
tunneling strength to two of the neighbouring sites, and with (1D) s-band tunneling strength on the remaining
two neighbouring sites. The general structure of the Mott lobes are similar to those found for the regular one
orbital BH model using mean-field methods. That is, the extent of the higher lobes fall offas roughly 1, ! for the
filling factor ny [35].

For higher densities 1, the typical interaction energy becomes considerably larger than the energy gap
separating the E, from the E,2 and E > bands, and therefore the occupation of the d,, orbital is expected to
increase. This regime can be explored numerically but requires a higher truncation in the number of particles,
which makes computations much more costly. To circumvent this issue, we studied the system at fixed chemical
potential 4/U and for various values of t/U and indeed, the results show that with the the same parameters as in
figure 3, but with for example {y, t}/U = {5, 0.5} the population of the three orbitals are ({11,2), (71,2), (7))

~ (3.3, 3.3, 1.7).

3.2. Onsite superfluid states

The Gutzwiller mean-field method of the previous section provided us with an estimate of the Mott lobes, but
the orbital dependence within the superfluid phase was left implicit. We will approach this problem next using of
the coherent state mean-field ansatz for clarity.
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3.2.1. Moderate atomic densities
Generalizing the results from the p bands [14, 16] we would expect a vortex with twice the angular momentum
on every site for the d-band system. Such a state takes the form

¥ (50 = N2 Waa (0 = wao (0 £ VZiwa, (9]

<

w= (N2 -1 |, (19)
+2i

where N; is the number of atoms at the site and is fixed a priori. However, according to the previous section, the
occurrence of a state as that of equation (19) is precluded for lower atomic densities by the negligible occupation
of the d,, orbital. Moreover, from only w, , (x) and Wa (x) itis not possible to construct a vortex state carrying
two quanta of angular momenta, which leads to the conclusion that the superfluid order parameter is a state of a
different type.

Following the results of the previous section and focusing first on the low-density case, we approximate
vy, =0, and rewrite the single-site order parameter as

vy, .
_ A cos O e
W= l‘/’dﬁ] = /Ns[ ], (20)

sin 0

where 0 < 6, < 7and 0 < ¢ < 2x. Even though this is valid for systems with onsite particle number limited to
10, we believe this gives a good picture of the superfluid state. Indeed, as we show in the next section, a similar
state is found when computation includes the third orbital state. With the parametrization of equation (20), the
energy functional becomes

Eq 6, Uy
Eal6, o] U cos 40 + — sin? 26’(l + cos? qo)
N? 16 2 2
+ Uy sin 20 cos ¢, (21)
which after minimization yields the fixed point (6, ¢,)
0o = 77:/4, o = arccos(—Uxxy/ny), (22)
where dgEq [6o, o] = 9,Eq (6o, ¢,] = 0. This solution,
Nir i
Fuor () = | 7 [ w0 (0 + wa (0] (23)

is depicted in figures 4(a) and (b), for the parameters corresponding to a lattice with V' = 40. The first plot (a)
shows the atomic onsite density | %, (x) |* and the second (b) the phase ¢ of the order parameter. As is evident,
the onsite condensate hosts two vortex/anti-vortex pairs. Each vortex has a phase winding of +2z around each
singular point. As argued above, while the naive harmonic approximation on the d bands suggests a single vortex
with a high angular momentum in each site, they do not occur here due to broken degeneracy of the orbitals. It
has also been known that such highly excited vortices should be energetically unstable in a harmonically trapped
Bose—Einstein condensate [39].

Throughout, proper Wannier functions are used in the computation of the overlap integrals (A1) presented
in the appendix A, and we consider the potential amplitudes 30 < V < 70. These large potential amplitudes (up
to 70 recoil energies) are required to ensure the validity of the single-band and tight-binding approximations in
the d band, that accommodates very broad Wannier functions. Typical ratios between the interaction strengths
for V=40 are presented in the caption of figure 3.

The condensates at neighbouring sites have the same ordering of the vortex pairs since ¢, ¢{ > 0, which
supports a ‘0’ or 27’ phase locking between consecutive sites. Note that this is always the solution in case of
occupation of only the d,> and d, orbitals, and that it does not depends on U. In addition, the configurations
defined by the vortices orientations spontaneously break the Z,-symmetry defined in equation (15) as well as
time-reversal symmetry. For the solution given in figures 4(a) and (b), and starting from the vortex in the upper
left corner, the phase winds clockwise/counter-clockwise/clockwise/counter-clockwise. The alternative
configuration with broken Z,-symmetry has instead counter-clockwise/clockwise/counter-clockwise/
clockwise winding.

Now the natural question is what are the properties of the phase with restored Z,-symmetry? To answer this,
we first notice that according to (22), the shape of the two-vortex pairs depend on the ratio R = Uy, /Uy,. When
R — 1thevortex/anti-vortex approach each other and annihilatesat R = 1. For R > 1, the order parameter
reads instead
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Figure 4. The onsite density | ¥ (x) |*/N; (a) and (c) and the corresponding phases Arg[¥ (x) ] (b) and (d). Here we assumed that the
atomic density is rather low such that we can neglect any population of the d,, orbital. In the upper two plots we consider a lattice with
anamplitude V = 40. Itis seen in (b) that the phase of the order parameter winds 2 at the four points where the density vanish. This
reflects the presence of four vortices—two vortex/anti-vortex pairs. In the lower two plots we use the same parameters but put

Uyyy = —2U,, in order to reach the regime where the state qualitatively changes. Here a dark soliton is separating the central peak from
the surrounding circle.

Voo () = E [ W (0 £ wa. 0] (24)

The atomic density and the order parameter phase are shown in figures 4(c) and (d). The density vanishes
identically around a circle, where also the phase makes a z-jump from ¢, = 0to ¢, = x. Such abehaviour
describes a dark soliton, immobile and confined to the lattice site.

Ifthe ratio R could be externally controlled, then the system could be driven through a phase transition from
a ‘soliton’-superfluid into a symmetry broken ‘vortex’-superfluid. In addition, since the derivative of the classical
energy is discontinuous at the critical point R, = 1, it suggests that the transition is of the first order. This is not
so surprising, since the states separated by the critical point are topologically different. How to control R
experimentally may be non-trivial, but nevertheless, the present analysis sheds some light on the underlying
physics of d-band bosons.

We end this section by noticing that on the p band in 3D the orbitals are also three-fold degenerate. In this
case an artificial instability appears whenever the harmonic approximation is considered, i.e. by replacing the
Wannier functions by the corresponding harmonic oscillator eigenfunctions, which implies that it can become
favourable to populate the orbitals unequally [16, 40]. On the d band, the depopulation of the d,, orbital does
not derive from such a spurious effect, but instead, it appears together with the self-consistent minimization of
the full (lattice) energy functional, that includes both the interacting and tunneling processes simultaneously.
This means, furthermore, that the combined (independent) knowledge of onsite properties with additional
considerations accounting for effects of the tunneling—as one usually proceeds for studying the system in the p
band, is not enough to determine the physics in the d band.

3.2.2. High atomic densities
In this section we consider a larger particle number 1y > 1 such thatall three orbitals are populated. Relaxing
theassumption y; = 0addsanew variable to be accounted for in the minimization of the energy functional.

By using the parametrization of the three-orbital order parameter in spherical coordinates,

W, = \/ﬁs cos 6 cos ¢el?,
W, = /N: cos 6 sin e’
Wi, = \/ﬁs sin 6, (25)

the normalization constraint is automatically taken care of and by further choosing the overall phase to be zero
we are left with four angle parameters; Eq [0, ¢, @, 9]. Since in the general case we do not find analytical
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Figure 5. The same as figure 4 but deep in the superfluid phase (119 > 1) where all three orbitals are considerably populated. The
difference between the upper and lower plots is the sign of the order parameter v,  (the two states have equal energy), which reflects
the states in two neighbouring sites in the lattice. Despite the fact that the d,, orbital is largely populated in this case, the general
structure of the superfluid state shown in figures 4(a) and (b) survives, i.e. the onsite order parameter hosts two vortex/anti-vortex
pairs. However, the state gets distorted with two of the vortices at the very edge of the distribution. As for figure 4, the potential
amplitude V = 40.

solutions for the minimization (fix point) the system is studied numerically (again utilizing the Nelder—Mead
simplex algorithm).

When occupation of the d,,-orbital increases, it is in principle possible to form doubly excited vortices in
each of the lattice sites. However, as argued above, it is questionable whether such state could be energetically
favourable. Another aspect arising with all three orbitals populated is that the other two Z,-symmetries
discussed after equation (15) become relevant as will be demonstrated. These two symmetries are reflected in the
fact that the energy E is invariant under either (y, ,, Wi » l//dxy) < (=W, —W, 0 V. dxy) and/or
W v, 4,0 Va, ) o Wy, v, a0 ~Va, ) (we note that these two are equivalent via a gauge transformation of the
overall phase).

The numerically obtained ground state is displayed in figures 5(a) and (b). Here, the population of the three
orbitals d,2, d,2, and dy, are 0.36, 0.33, and 0.31 respectively, and hence none of the orbital states dominates the
others. The effect of the non-zero population of the d,, orbital is to squeeze and rotate (in this example counter-
clockwise) the atomic distribution without destroying the two vortex/anti-vortex pairs; the larger population in
the d,, orbital the more rotated and squeezed is the atomic distribution. Thus, as is clear from the deformations
in figure 5, vortices of (for example) positive winding are closer to the centre of the site where the density is
higher. This suggests that as interactions become stronger and the different orbitals become effectively more
degenerate, the squeezing is also increased and finally two of the vortices appear were the density is vanishingly
small. In this case the onsite states start to approach vortex states with angular momentum two. This is an
interesting observation, since as we have pointed out earlier such a vortex is typically not stable. However, one
should bare in mind that here we have two singly excited vortices coming infinitely close to each other.
Furthermore, this continuous deformation does not imply a violation of conserved angular momentum; the
state only appears as a doubly excited state, and in the full lattice model the doubly excited vortices would
alternate between neighbouring sites such that the total angular momentum vanishes.

To understand the full superfluid state that extends over the whole lattice we recall that the tunneling
amplitude # on the p band comes with a negative sign. This implies that Wi, changes sign between neighbouring

sites while y, , and Wi, donot. Thisisillustrated in figures 5(c) and (d). The reversed sign of W, has the effect

of rotating the distribution in the opposite direction (i.e. here clockwise), but the winding numbers are
unaffected. Now recall that the Z,-symmetry of equation (15) corresponds to reversal of the phase winding.
Taking all into account we have that in the symmetry broken phase the onsite rotation direction alternates
between neighbouring sites (breaking of the parity symmetry (y, ,, Wa » yfdxy) < (W v, 4, Vi, )) and

furthermore the phase winding is determined from breaking of the symmetry (15). In addition, we have

11
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numerically checked that in the same way as in the previous section, the state in the phase with restored
symmetry is characterized by a dark soliton.

3.3. Insulating phases for filling ny = 1

Deep inside the Mott insulating phases the relevant physics of the many-body system can be studied in terms of
an effective (pseudo) spin model derived from the perturbative treatment of the tunneling processes relative to
the interaction [41]. By mapping the problem onto a spin system, the effective dimension of the Hilbert space is
greatly reduced and the relevant physics becomes more transparent and easily analysed. Moreover, even though
the properties of many spin models are still unknown, known results of previous studies can be applied to the
present case.

Since the different Mott lobes are characterized by a definite integer filling 7, the derivation of the effective
spin model can be most naturally handled with the use of operators that project the eigenvalue problem onto
orthogonal particle number subspaces of the Hilbert space. As a consequence, the result of the perturbative
treatment is not general to any insulating state, and thus we restrict the study here to the first Mott lobe (1 = 1)

which is most relevant for experimental studies. We proceed by defining the P and Q operators, P’ =Pand

Qz = Q, that project, respectively, onto the space of states with unit filling, and the states with at least one doubly
occupied site. For the lowest Mott insulator we may again impose the assumption that the d,-orbital state is
negligibly populated, and that the only relevant degrees of freedom considered stem from the d,2and d 2
orbitals.

The eigenvalue problem can then be written as (for a more detailed derivation see the appendixand [18, 21])

Hypm1 = _pHdkinQA(MA;)QAHdkinﬁ, (26)
QHQ - E

where I:Idkin is given by equation (8) and the interaction part HU = Hdden + HdC + Hdo, see equations (10)—

(12). Due to the assumptions of the Mott phase, the resolvent 1 / ( OHQ — E) can be expanded such that the

effective Hamiltonian contains contributions to second order in ¢/U. In addition, the tight-binding

approximation allows proceeding with the analysis as a two-site problem. Therefore, we define the basis

spanning the P subspace by

Hp = {|x, x), |, y), [y, x)> [y, » (27)

atoat . . . o e . .
where |a, ) = d,;d;|0) corresponds to the state with a d,,-orbital atom in the site i and a d s-orbital atom in

the neighbouringsite j, @, # = {x, y}. In the same way, the relevant states in the basis of the subspace Q of
doubly occupied sites is given by

Ho = {]0, 2x), |0, xp), [0, 2y)}, (28)

with |0, 2a) = 2_1/26?;]‘6?;,40) and |0, aff) = d;d;]|0)

Due to the possibility of transferring population between the different orbital states via Hy. and Hy,, we
notice, however, that the projection of the Hamiltonian onto the Hg subspace is non-diagonal in the basis of
intermediate states of the perturbation theory. A practical way of dealing with this situation is to notice that the
contributions of the different processes can be obtained from computation of (ﬁQ — E), where I:IQ = QH Q,

with a subsequent inversion. In addition, since the energy E ~ t/U we have (HQ —E)'» HQ_ ' More
explicitly, ordering the basis of Hg accordingto (28),

U V2Uy Uy
HQ = \/zUxxy 2ny \/EUxxy (29)
Uy V2Uy U
and
2(U2-U2y)  V2(UyUsy — Uy Uy, ) 2(UL, - Uy)
Hy' = A| V2 (Uy Usy = Uny U) Ut - U, V2 (Uy Uny — Uy U) (30)
2(Usy = U3)  V2(UyUey — UeyU)  2(UyU = UZ,),

12
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with
— 3 2 2
A=(2U3, + 4U2, U, — 2UUZ,
— 2Ty +2U°0,,) . (31)

We determine the final form of the effective Hamiltonian by computing the relevant matrix elements of
equation (26). This yields (see appendix B for more details of the derivation)

Hﬂo=1 = _AZ{S(nyU_ szxy)(“;clzﬁxziﬁyzj + |tc):/|2ﬁy2iﬁx2j)
()s
(U2, — U2 )txt) (dsd,ud od oy + d doond osd
+ xxy — Yxy)lte'leo x2iAy2id g2 vyt yrAx2id 2502
2(U% = UZ)| 113 ittty + 02 Pituiy + 1507 (A ndud byl + i d Ly
+ - Yy |t(r| Nx21y2 + |t(;| Ny2y2y + 1505 | Ay2i0y2i0,25d 525 + 020525 250 2
<0 o\ 4 AN A At a At A .
+ 2Usy Uy = UeyU) (165 P + 1282 )| v dy gy + digdysg) + (dyadin + ddyn ) iy
2(Ugy Uy = UeU) (1827 + 1582 )| s (s + d d ud + ddys )i 2
+ ( xxy Uxy — Uxxy ) |t0| + 5t My24 y%j x2j+ x4 y%j + 2 x2 T Ay 4y - (3)

By further employing the Schwinger angular momentum representation [42]

n . At oA
§ =8 +i8 = dyd,s,

Ao A At oA

$ =8 —i8 =dnde, (33)

together with the constraint of unit filling 7i; = 71, + 7,2 = 1, equation (32) can be mapped into a spin-1/2
XYZ model with DM interactions [43, 44] and external fields

Froz ==Y [ (14+7)8757 + (1-7)88/
(ij)
= Y[ 4878 + 6 (878 + 578 |
(ij)
+ Z[rﬁ;‘ + hSiZ]. (34)

Here ] = 21t} U%/A, with U? = (U* — U;,) and A given by equation (31), the anisotropy parameter
y=8(U, — Uy)/U?%
A=8(|tP + [t P)(UyU - UZ,)
—2(1e5P + 112 P) (U2 - Ud),
8 =2( Uy Uny — Uy U) (1£2F — 12 F),
I = (UyUsy — Uey U) (1L5F = 12 P),
and
h=8(UyU = UL (It2P = £ 7).

However, in the isotropic lattice as considered in this work, the external field of §i and the DM interactions
vanish due to the Z,-symmetry discussed in equation (15), which in the spin language read $;” — 8,

SY - —SY, and §iz - —§iz. This symmetry is broken in anisotropic lattices. In fact, there ¢ # #{ and ¢} # ¢,
and in such case, since § # 0, the DM terms reappear in the effective spin model.

Several interesting facts should be noted. First, that in the same way as for the system of bosons in the p band
[18], d-orbital bosons provide an alternative realization of the XYZ Heisenberg model, albeit here with the
presence of an external field even in the isotropic case. This is a consequence of the fact that the density assisted
processes, equation (12), break the Z,-parity symmetry associated to orbital changing interactions of
equation (11) which preserves the number of orbital atoms modulo two. This also explains the presence of the
S;* term in the Hamiltonian and it readily follows that in the absence of this field the parity symmetry is restored.
Second, that in the same way as for the external field, the DM interaction results from the density-assisted
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processes. Third, that in the limit of vanishing density-assisted interactions, the effective spin Hamiltonian
becomes identical to the corresponding one of the p-orbital system, of [ 18]. That this indeed should be the case
can be understood from the fact that the anisotropy parameter y is a consequence of the orbital changing
processes. However, a difference between the two models is that while the ¢ ¢ { < 0 for the p-orbital system,

t't # > 0in the d band, and therefore the effective spin model favours primarily ferromagnetic alignment at
neighbouring sites in all the pseudo-spin components.

To the best of our knowledge, the phase diagram of this model is not fully known in 2D even for the simplest
case of the isotropic lattice, where & = 0. However, the underlying Z,-symmetry suggests the possibility of a
rich phase diagram. We note that for I'/] > A/] (|y| < 1) the system is characterized by a highly magnetized
state in the x-spin component, while in the opposite limit it is ferromagnetic in the z-component of the spin
(noting that A > 0). The later is a symmetry broken phase with magnetization in either positive or negative z-
direction. For J ~ y, A another possible symmetry broken ferromagnetic phase could appear with the spin in
the xy-plane or possibly a gapless floating phase which exists in the 1D XYZ model. In 1D the qualitative features
of the XYZ phase diagram are known [30]. This has been studied in terms of p-band bosons [18], but following
the same procedure of that study to reduce the dimensionality to an effective 1D model one would inevitably
generate the DM interaction terms for the system in the d band. This, however, gives interesting possibilities
since this model is known to host an interesting phase diagram with ferromagnetic and Luttinger liquid
phases [45].

4. Concluding remarks

Motivated by a recent experiment [28], we have studied the zero temperature properties of bosonic atoms on the
dbands of an isotropic square optical lattice. Due to the particular shapes of the onsite d orbitals, the phases
characterizing the ground-state of this model are different from those analysed in the past for systems on the p
band [14-16]. This is not surprising if we think of the orbitals in the harmonic approximation where the p
orbitals carry angular momentum components / = +1and the d orbitals [ = 0, +2. The |l| = 1angular
momentum of the p orbital is reflected in the singly excited vortex at each site in the superfluid phase. The higher
angular momentum components of the d orbitals implies that the onsite state can take different forms than a
state with single vortices. The direct generalization of the superfluid phase on the d band would be a
checkerboard lattice of a single | /| = 2 vortex located at every site. However, we found instead that two vortex/
anti-vortex pairs appear on each site. The common wisdom is that multiple excited vortices are energetically
unstable to form several singly excited vortices [39], and one could argue that this explains why we should not
find doubly excited vortices in this system. This simplified argument cannot be true here since the total angular
momentum should be preserved, which is not the case for a state carrying two vortex/anti-vortex pairs where the
total angular momentum vanishes.

The inter-site phase locking of the different intra-site order parameters is determined by the signs of the
different tunneling coefficients. For the d band this implied that the corresponding single site vortex states are
ordered in the same way in all the sites. This is in contrast with the checkerboard type (or anti-ferromagnetic)
arrangement of vortices in the superfluid phase of the system in the p band. This ferromagnetic phase is a
symmetry broken phase with respect to the direction of phase windings of the vortices. The spontaneous
breaking of the symmetry (15) is also accompanied by breaking of time-reversal symmetry, which otherwise
would imply the possibility of switching between the two degenerate vortex states of different orientation. In the
symmetry preserved superfluid state, a dark ring soliton is formed on every site. This phase may, however, not
occur naturally in experiments since the strength of the density assisted interaction coefficient must become
comparable to the coefficient of the orbital changing interaction. This said, it does not necessarily mean that this
phase cannot be monitored but then by external driving like suggested in [18].

Like for the superfluid phase, the orbital structure also makes the physics of the insulating phases very
intriguing. We focused on the lowest filling ny = 1, where the Mott phase was shown to feature very interesting
properties. With a perturbative treatment, this system was mapped onto an XYZ Heisenberg spin model in an
external field. The phase diagram of this model is not known in 2D, but by considering limiting cases we argued
that the model should posses a very rich phase diagram. We further showed the appearance of DM interactions
in the case where the lattice is no longer isotropic. In particular, by fine tuning the lattice is is possible to restore
the degeneracy between the d,2 and d 2 orbitals and still break the lattice isotropy. In the harmonic
approximation this accounts to fulfilling the condition V,k? = V,k yZ [17] (in unscaled variables, where V,
and k/, are the potential amplitudes and wave numbers in the directions u = x, y). Thus, itis possible to study
effects arising from the DM interactions, of which the most famous effect is perhaps that of spin canting
where an anti-ferromagnetic state builds a finite magnetization or where the magnetization in a ferromagnetic
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state gets quenched [44]. The presence of these terms imply the breaking of the Z,-symmetry (15) and as a result
the transitions should turn into first order or of Berezinskii—Kosterlitz—Thouless type [46].

In 3D, the ny = 1 Mottinsulator could be effectively described by an SU (3) pseudo-spin model, as was
recently shown for the system in the p band [21]. The density assisted orbital changing collision terms (12)
present on the d band would, however, give some additional terms to the effective model in comparison to that
emerging on the p band. Now, what could we expect from the physics on other insulating phases? On the ny = 2
insulating phase, the projected (two atoms/site) single site Hilbert space is spanned by the three states
{lxx), |xy), |lyy)}. In the Schwinger spin representation (33) with the constraint 7i; = 2 one would obtain an
effective spin-1 XYZ model. The integer spin implies the possibility of a gapless Haldane phase to appear [47].
Going up into the Mott lobes with larger filling, the effective spin models would be characterized by higher spin,
but aslong as we remain in 2D, the (pseudo) spins in the two-orbital case would be generators of the SU (2)
group. If occupation of the d \y orbital becomes non-negligible, then the pseudo-spins are the generators of the
SU (3) group even in the 2D lattice, with a corresponding spin model with DM interactions in all the
components.

Since this work presents the first theoretical study of the physics in the d band, we have limited the
analysis to the isotropic 2D lattice. Naturally, with different lattice geometries and in other dimensions, the
physics is expected to change as well as if one considers fermionic atoms instead of bosonic ones. Another aspect
left out here is the influence of a trapping potential. On the p band it was recently demonstrated that the
presence of a harmonic trap is a most simple way to directly detect outcomes of the anisotropic tunneling (that is
the orbital nature of the system) on the excited bands [48]. In particular for the system addressed here, we expect
the properties of the superfluid phase to be persistent at the centre of the trap. Due to population imbalance in
the different orbitals near the edges of the atomic cloud, the vortex lattice or soliton structure are most likely lost
at the boundaries. This result, as pointed out in [48], is also a manifestation of going beyond the local density
approximation; the trapping potential alone does not fix the particle density. In the more strongly interacting
regime, despite the failure of the local density approximation, we still expect the famous ‘wedding-cake’
structure of the atomic density [49], where the effective spin physics described in this work should be applicable
in the plateau with unit density. Time-of-flight detection of the freely expanding atomic cloud or single-site
addressing [50] would reveal information about the intrinsic tunneling annisotropy on the d bands as well as
the phases. For example, whether the system is in the soliton or the vortex superfluid phase will result in different
momentum distributions. Crucial for such observations is that the coherence of the condensate prevail the loss
due to residing on the excited bands. However, already in the d band experimental work [28] coherence was
demonstrated, which should make our results for the superfluid phase relevant. In the Mott regimes, the decay
rate may increase since the anharmonicity of the lattice is weaken. The main source oflosses here are due
to two-body processes which scatter one atom to the next higher and lowest bands [24]. Such two-body losses
are, however, greatly suppressed within the Mott phase with unit filling studied in this work. Indeed, it has
been predicted that the life-time may increase by a factor five in this insulating state [24]. The physics of the
higher insulating states is probably much more challenging to access experimentally, and one would
probably need to hinder the decay with other means. The alternatives include the use of fermionic atoms
in the s band to mimic the anharmonicty of the lattice by shifting the onsite energies [51], or the use of
superlattices [25].
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Appendix A. Hamiltonian parameters

Here we give the general expressions for the overlap integrals rendering the various parameters of the many-
body Hamiltonian (3). Making use of the separability of the potential and the Wannier functions (2), and after
introducing the 1D single particle Hamiltonian H, o = =05 + V sir?(x), the coefficients become
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= [ i (0 P ),

= / dx W3y () Fligpwii (),

ti = [ dx waie () Frgwa (),

v=( [arwh)( [arwie).

Up=( [ ax [wwa]'),

Uy = [axwiomie),

([ axwiwato) ([ e watowiw),

Upy =[x oo o)

Upe = ([ dx i) w0 ) (f % w0 P ). (A1)

Uey

In the above expressions we have used the phase convention that wy; (x) and wy; (x) are purely real while w; (x) is
purely imaginary.

Appendix B. Explicit computation of the effective spin model

The final form of the effective Hamiltonian is obtained after computing the relevant matrix elements of
equation (26). That is, we consider all the different transitions allowed for each state. In the following, the
expressions of these amplitudes are given in terms of the coupling constants of the system in the isotropic lattice
considered here.

The states of the type |a;, ;), i.e. the same type of orbital atom in the two neighbouring sites, are connected
via tunneling to the three different intermediate states in the Hg subspace;

o\ oatoa N
Kdajdai Qai, aj>ﬁK‘O, 2aj>
=ﬁ(1<;§;" 0, 2a;) + K2¥ |0, ajﬂj> + K/ o, 2/3j>>,

. L oAl . .
where we have introduced the shorthand notation K = Hy, . The possible transitions are

e To|a, aj) viaaction of ﬁ(:i dy j> which contribute to the effective Hamiltonian with terms of the type
t2 |? s
—ZZL&%(UMU— Ussy ) i - (B1)
(ii)e a,p
N At s
o To|a;, f;) viaaction of dy; dyjs
Its s 4t
-y ; (Uy Uy = Uay U) frid g (B2)
(ij)o a.p
. . at e
e Tolp;, a;j)viaaction of d 5;d ;5
totf it s
_222%((-]90/ Uxxy - Uxxy U) dﬂidainaj' (B3)

<ij>,, ap
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. . AT oA
e To|p;, p;) viaaction of d ;d 53

a4 st oa At
PRI (U2, - U2) dpiduid pjda;. (B4)
<ij>ﬁa>ﬂ

The states of the the type |a;, f;) are also connected via tunneling to the three intermediate states in the Hg
subspace;

L, oAt oA
Kdaidaj

< aa
ap

Here, in addition to the conjugates of equations (B2) and (B3), the other possible transitions are

aj, ﬂj> =IA<

0, ajﬂj>=

0, 2a;) + Kgf

0, Zﬂj>). (BS)

. . At oA . . . .
e Tolaj, ﬂj Yviaactionof d daj> which results in the contribution

|5 I Vs s
—ZZT(Uz - ny)nm-nﬂj. (BG)
<ij>rra>ﬂ
e To|p;, a;)viaaction ofﬁ;iﬁﬂj;
ayp
tetl S\ 4t A At
—ZZT(U — U} )dpidaidggdy; (B7)
(ij)s @

Combining the matrix elements of equations (B1)—(B7), we derive the effective Hamiltonian (32).
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