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Abstract
We consider the evolution of an initially localized wave packet after a sudden
change in the Hamiltonian, i.e. a quench. When both bound and scattering
eigenstates exist in the post-quench Hamiltonian, one might expect partial
delocalization of the wave packet to ensue. Here we show that if the quench
consists of a sudden switching-off of short-range inter-particle interactions, then
Tanʼs universal relations guarantee delocalization through the high-momentum
tail of the momentum distribution. Furthermore, we consider the influence of the
range of the interaction and show how a finite range alters the coupling to highly
excited states. We illustrate our results using numerical simulations of externally
trapped particles in one dimension. If the external potential is both disordered
and correlated, then the interaction quench leads to transport via delocalized
states, showing that localization in disordered systems is sensitive to non-adia-
batic changes in the interactions between particles.

Keywords: interaction quench, Tan relations, Anderson localization, disordered
systems, delocalization, diagonal ensemble

1. Introduction

The non-equilibrium dynamics of quantum systems after suddenly changing a parameter in the
Hamiltonian describing the system (a quantum quench) has been the topic of intense
investigation recently, and is relevant for fundamental research into the thermalization of
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(closed) quantum systems, localization phenomena, chaos, decoherence and quantum
information. Such a quench can be realized in various ways using ultracold atoms, for
instance by suddenly changing the shape of the trapping potential or by tuning the strength of
the interactions between particles using a Feshbach resonance [1]. A non-exhaustive list of
recent experimental [2–10] and theoretical works [11–34] (for a review, see [35]) highlights the
recent activity in this field.

In this work, we will consider the following scenario. Suppose we have an interacting,
localized and dilute cloud of particles, in the ground state of a Hamiltonian = +  g0 int,
where int represents the part of the Hamiltonian describing interactions between particles, and
its magnitude can be tuned using the parameter g. At a time t = 0 we now suddenly switch off
the interactions, so that g = 0, and we follow the time evolution of the system. Does the time
evolution of this generic system have any universal properties? We will show that this is indeed
the case, provided that the interactions between particles are of short range. For such a system,
Tan [36–38] showed that there exist a number of universal relations describing the system. One
of these relations involves the high-momentum tail of the momentum distribution nq, where q is
momentum:

∼ → ∞n C q q, ( ). (1)q
4

The quantity C is called the contact parameter (see earlier related work [39, 40]) and can be
interpreted as a measure for the probability of finding two particles in close proximity [41]. The
contact is also of interest because it can be measured experimentally [42, 43], even
dynamically [44].

If the non-interacting Hamiltonian 0 permits both bound and scattering (delocalized)
states, then equation (1) implies that the particles, previously in the interacting ground state of
the full Hamiltonian , must have some occupation of the scattering states after the interaction
quench, which leads to (at least partial) delocalization. We will demonstrate this principle,
which we call quench-induced delocalization, numerically for initially interacting particles in a
one-dimensional system. As a paradigmatic example of a system of which the single-particle
eigenstates can be bound as well as delocalized, we first consider the simple case of a finite
well, and analyze this case rigorously. This system is also simple enough to permit investigating
the influence of the range of inter-particle interactions.

We then proceed to consider a disordered potential, a case of particular interest to the study
of Anderson localization (AL). AL is the localization of single-particle eigenstates of a tight-
binding Hubbard model with on-site disorder (see section 5), as described by Anderson in a
seminal paper explaining the absence of diffusion in lattice systems with disorder [45]. This
localization more generally affects the transport of classical waves as well as quantum particles
through various media. For instance, AL was experimentally reported for light waves [46, 47],
sound [48] and ultracold atoms [49–52]. The particles are ‘localized’ in the following sense:
each eigenstate of the system is centered about some point in space r0 and has exponentially
decaying tails, where the strength of the decay is determined by the Anderson localization
length. The study of inter-particle interactions in disordered systems has received much interest
recently [53–68]. In particular, it has been experimentally reported [69] that interactions destroy
localization in disordered systems. We will not study the interacting dynamics in this work, but
instead show that as long as a transition or crossover to delocalized states exists in the single-
particle spectrum, then localization will be sensitive to the switching-off of inter-particle
interactions.

2
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We will focus on the case where N fermionic particles interact with a single impurity,
where N is either one (in which case the problem reduces to the case of two distinguishable
particles) or up to a few dozen particles. The case of two (N = 1) interacting particles (TIP) can
be considered a precursor of many-body effects. As such, the TIP problem has been considered
for instance in the context of many-body tunneling [70, 71] and AL [72, 73]. Recent
experimental progress has made it feasible to study interactions between particles in few-body
systems using ultracold gases [74–77].

This paper is structured as follows. In section 2 we will outline the physical mechanism
behind the quench-driven transport. We then proceed, using the methods outlined in section 3,
by investigating specific systems as an example. In section 4 we consider the simple case where
the external trap is a square well of finite depth, which allows a detailed investigation of the
properties of quench-induced delocalization, as well as the investigation of the range of the
interaction. Next, we discuss how the quench-induced delocalization mechanism applies to
disordered systems in section 5. We summarize and conclude in section 6.

2. Quench-induced delocalization

In this section, we will briefly discuss the general mechanism leading to delocalization after a
non-adiabatic interaction quench. We then proceed to discuss some examples using numerical
simulations in one dimension.

Consider some interacting particles (fermions, bosons or a mixture thereof) in d
dimensions, trapped in an external potential rV ( )ext . We will assume that the external potential
permits at least some scattering (delocalized) single-particle eigenstates. Note that many models
commonly used in theoretical physics use potentials that do not have this property, but realistic
physical potentials do. For instance, Andersonʼs lattice model for disordered systems in one
dimension does not permit scattering states (see section 5). However, this property depends on
the lack of correlations in the external potential. A realistic potential will have short-range
correlations on at least some scale, with a corresponding crossover or transition to delocalized
states in momentum space.

Now we assume that we have an initially localized wave packet, in the ground state of the
full Hamiltonian = +  g0 int, where 0 describes the non-interacting dynamics of the
system. The initial localization implies that the system will remain localized for all time if  is
unchanged. The parameter g measures the strength of the interactions between the particles,
described by the interacting part of the Hamiltonian int. Furthermore, we assume that the
interactions have finite range r0. For simplicity, we will set =r 00 , although it is sufficient that r0
is small relative to the other length scales in the problem (in section 4 we will further investigate
the influence of the range). Under these conditions, it is known that the momentum distribution
nq obeys equation (1). In other words, the scattering states have some non-zero (only
algebraically decaying with respect to momentum q) occupation probability. This does not
necessarily entail delocalization, because destructive interference between the components of
the wave packet in scattering states may exist, so that only virtual particles exist in scattering
states. Such interference effects can be removed by introducing some source of dephasing to the
system. Here we will consider a possible source of dephasing: a non-adiabatic quench of the
interaction parameter g from some finite value to zero. That is, at a time t = 0 we switch off the
interacting part of the Hamiltonian int and investigate the non-interacting dynamics for >t 0.

3
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We will show that such an interaction quench indeed leads to dephasing in the systems that we
consider. The argument holds for any >g| | 0, under the same (fairly minimal) conditions where
the universal relation (1) is valid [41]. The dephasing will lead to the real occupation of the
scattering states, and therefore (at least partial) delocalization.

3. Methods

We consider interacting particles in one dimension, as described by the following Hamiltonian:

∫∑

∬

ψ ψ

ψ ψ ψ ψ

= − +

+ ′ ′ − ′ ′
σ

σ
σ

σ

↑ ↓ ↓ ↑

 ⎡
⎣⎢

⎤
⎦⎥



( ) ( )

x x
m x

V x x

x x x x V x x x x

d ( )
2

d

d
( ) ( )

d d ( ) ( ) ( ) , (2)

†
2 2

2 ext

† †
int

where x is position, σm is the mass of a particle, Vint is the inter-particle potential, ψσ x( )(†)

destroys (creates) a particle of the kind σ ∈ ↑ ↓{ , } and the external potential is given byV x( )ext .
First, we consider the case where the external potential is a finite well (section 4):

Δ= − ⩽⎧⎨⎩V x
V x X

( )
if 2,

0 otherwise.
(3)0

Furthermore, we investigate the case where the external potential is given by either correlated or
uncorrelated disorder (section 5):

= V , (4)x xuncorrelated,

∑
πξ ξ

= − −
⎡
⎣⎢

⎤
⎦⎥V

x y1
exp

( )

2
. (5)x

y

ycorrelated,
c

2

c
2

Here the uncorrelated disorder, in a discretized system, takes a random value on site x in the
interval ∈ − W W[ 2, 2]x and ξc is the correlation length (in units of the grid spacing).

3.1. Two-particle case (numerically exact)

We will describe the two-particle case in the following; the generalization to the variational
approach used for +N 1 particles is described below. We solve the ground state of the
Hamiltonian (2) for fixed parameters by minimizing Ψ Ψ〈 〉| | , where the exact wavefunction
Ψ〉| is given by:

∑Ψ ϕ= ↑ ↓c c 0 . (6)
mn

mn m n
† †

Here σc m
† creates a particle of the kind σ in single-particle eigenstate m (m = 0 is the ground state

of the non-interacting system) and 〉|0 represents the vacuum. The numerically exact procedure
consists of minimizing 〈 〉 with respect to the coefficients ϕmn using a method described in
earlier work [78], thus obtaining the interacting ground state.

At a time t = 0, we suddenly switch off the interactions, so that g = 0. The time evolution
of the density (in units where = = m2 1) is now given by:

4
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∑ψ ψ ϕ ϕ α α=↑ ↑
−( )x t x t x x( , ) ( , ) ( ) ( )e , (7)

mnj
mn jn j m

E E t† * * i j m

where α j denotes the jth single-particle eigenstate with energy Ej. After a long time, we assume
that the different energy states will have dephased. This means the interference terms ≠m j can

be neglected, so that the time-averaged number density η ψ ψ= 〈 〉→∞ ↑ ↑x x t x t( ) lim ( , ) ( , )t
† (see

[30, 33, 79]) is given by:

∑η ϕ α=x x( ) ( ) . (8)
mn

mn m
2 2

In the language of e.g. [12, 28, 34], equation (8) is the ‘diagonal ensemble’ (with respect to a
specific observable: the density). This ensemble was previously introduced in the present
context by Deutsch [80]. We will show in the following that the assumption of dephasing
leading to equation (8) is justified a posteriori for the systems we consider.

3.2. N+ 1-particle case (approximative)

For the +N 1-particle system, we use the variational method based on Chevyʼs approach [81]
as described in [78]. In this case, we write the wavefunction approximately according to the
ansatz:

∑Ψ ϕ= ↑ ↑ ↓c c c FS , (9)
mkn

mkn m k n
† †

where 〉FS| represents the non-interacting Fermi sea with N ↑-fermions in the lowest N states.
This variational wavefunction includes all possible excitations with at most a single particle–
hole excitation (it is possible to generalize the ansatz to multiple particle–hole excitations [82],
but we will not consider such an extension here). If N = 1, then only one particle–hole excitation
is possible, and the ansatz becomes exact and equivalent to equation (6), as long as a procedure
to find the variational coefficients can be found. Analogous to the previous subsection we now
find the expectation value of the density operator of the impurity ↓

∑ψ ψ ϕ ϕ α α=↓ ↓
−( )x t x t x x( , ) ( , ) ( ) ( )e , (10)

mknj
mkn mkj n j

E E t† * * i n j

and the diagonal ensemble

∑η ϕ α=↓ x x( ) ( ) . (11)
mkn

mkn n
2 2

4. Finite well

In the following section, we will discuss a simple system that permits both bound and scattering
single-particle eigenstates of the non-interacting Hamiltonian 0, namely: two interacting
particles in a finite well external potential given by equation (3). This system provides an
intuitive illustration of quench-induced delocalization, and its simplicity allows us to
characterize the process in great detail. For instance, since the potential is relatively well-
behaved, so are our numerics, and we can consider a wide range of initial interactions, including
strongly repulsive interactions. Also, since we do not require an ensemble average, we can

5
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investigate the numerically much more demanding case of finite-range interactions with a
numerically exact method. Another feature of this system is that it contains both bound and
scattering single-particle states, a requirement for quench-induced localization. We can then use
the depth of the well to tune how many bound states are permitted in the system.

There is in fact a solution for TIP in a finite well using the Bethe ansatz [83]. Furthermore,
there are solutions available for TIP in an infinite well [84] as well as a periodic potential [85],
an impurity potential [86], two [87] and several [88] particles in a harmonic trap and an
approximate solution for a general external trap [89] (for a recent review on few-body physics,
see [90]). Also, there are solutions for two bosons in the case of a double well [91, 92] and a
delta function potential barrier [93]. However, the evaluation of physical observables such as
the density from the Bethe ansatz solution is not straightforward. Here we solve the TIP
problem numerically, giving direct access to the wavefunctions and their time evolution. This
allows us to characterize the properties of the TIP problem in detail. Note that the problems of
two bosons and two distinguishable particles are equivalent, apart from a factor of 2 in the
interaction term of the Hamiltonian.

Let us first consider a potential of fixed depth V0 and some fixed initial interaction between
two particles of identical mass (see figure 1). We use a discretized system of length Δ=L X8
and we choose units where the well width Δ =X 1, using the boundary condition that the
wavefunction vanishes at the boundaries of the system ( Δ= ±x X4 ) and a discretized grid with
16 grid points per ΔX . Let us define a dimensionless interaction parameter γ Δ= g V X0 , and
check whether equation (8) is indeed reproduced for sufficiently long timescales for γ = ±1 (we
choose =V 300 and express time in units of V1 0). Note that the parameter γ is not universal;
different values of g and V0 with a constant γ may give different results, as we will show below.
At t = 0, the density (7) decays exponentially, where the decay is stronger (weaker) for
attractive (repulsive) interactions [75] since the interaction energy causes the barrier to be
effectively higher (lower). This means that while the interaction does couple to scattering states,
destructive interference between the scattering states results in the localization of the interacting
ground state. Since we can explicitly track the time evolution of the system exactly, we can
verify to what extent equation (8), which assumes dephasing, is reproduced. The agreement
between the long-time average of the expectation value of the density operator (7) and the
diagonal ensemble (8) is excellent, as shown in figure 1. After the quench, waves emanate from
the trap and start moving outwards light-cone-like [94, 95] with a wavefront velocity
approximately equal to Δ V X0 for the values of γ we have considered. This is consistent with
the existence of a Lieb-Robinson bound (a similar bound is found in the disordered case of
section 5); although the system is non-interacting after the quench, the deterministic time
evolution of the system implies that correlations in the initial interacting state are preserved. The
waves reflect from the boundary of the system and move back and forth indefinitely (in an open
system, the waves would move outward to infinity).

4.1. The long-time limit

Let us henceforth focus on the function η x( ), the density of a particle in the long-time limit after
an interaction quench. Figure 2(a) shows the value of η x( ) for various values of γ and fixed

=V 300 . Outside the well η x( ) approaches a constant value (let us define this value as ηfar)
rather than continuing the exponential decay of the single-particle or interacting ground state. In
the weakly interacting limit ( γ ≪| | 1) ηfar is independent of the sign of γ and scales γ∝ 2, see

6
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[78] (see figure 2(b)). By contrast, for stronger interactions the attractive case (γ < 0) results in
a larger value of ηfar compared to the repulsive case (γ > 0). Although this may seem counter-
intuitive (the decay of the interacting ground state is stronger in the attractive case), it can be
understood in terms of the momentum distribution (1). Attractive particles are more likely to be
found at the same position, resulting in a larger value of the contact parameter [96, 97], and
therefore the coupling to scattering states is stronger. For moderately attractive interactions, ηfar

increases more rapidly than γ∝ 2, which then crosses over when γ ≈ 1 to a regime where the

Figure 1. Number density (note the log scale) of an ↑-particle in a finite well initially
interacting through repulsive or attractive contact interactions with a ↓-particle, a time t
after a quench to γ = 0, calculated numerically using equation (7). Results shown are
for an initial γ = −1 (attractive, panel (a)) and γ = 1 (repulsive, panel (c)). Panels (b)
(attractive) and (d) (repulsive) show zoomed regions. Plus symbols show η x( )
calculated numerically using equation (8). The result given by τ—the gray line
coinciding with η x( )—is the result of averaging 51 evenly spaced runs in the interval t
∈ [100:200]. The black dashed line shows the number density of the single-particle
ground state. Note the effect of reflection from the boundary for t = 10. In panel (d), a
broken symmetry appears (see main text). The simulations use the parameters

= =L V8, 300 .
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increase is slower than γ∝ 2. In the limit that γ → −∞, η x( ) is expected to approach the
constant value L1 (shown in figure 2(b)) as the probability of occupying single-particle bound
states becomes negligible compared to the occupation probability of scattering states.

For strongly repulsive interactions, ηfar looks to be saturating to a fixed value, in
accordance with the saturation of the contact parameter [96, 97]. The sloped dashed line in
figure 2(b) shows the weakly interacting limit η κγ= Lfar

2 . κ is a dimensionless constant; its
value can be inferred from a simple perturbative calculation. In the weakly interacting limit, the
occupation probability of a scattering state with momentum q and energy Eq is approximately

= −p gn E E( ) (2 2 )q q0
2

0
2, where n0 is the density [98]. The total number of particles in

scattering states divided by L is then (in the continuum limit) ∫π γ κ=L q p L1 (2 ) d ( )q
2 . If we

approximate Δ≈n X10 and ≈ −E V0 0, we obtain κ ≈ 0.31, which is the same value as obtained
using a fit. We have verified that the value of ηL far is independent of the system size. Thus, the
constant value of ηfar for fixed L, while an artifact of the finiteness of the system and the
boundary conditions, should be understood as a measure of the fraction of particles occupying
scattering states, independent from the boundary conditions. Also, our results converge with
respect to the spacing of the grid (we use 16 grid points per ΔX). As a check on the robustness
of our result, we repeated various simulations using an inverted Gaussian potential and found
no qualitative differences. Furthermore, the ground state energy obtained for a harmonic trap
using our method agrees with the exact result of Busch et al [87].

Figure 2. (a) Number density (note the log scale) of an ↑-particle in a finite well initially
interacting through repulsive (symbols) or attractive (lines) contact interactions with a
↓−particle, a long time after an interaction quench to γ = 0. Results shown are for an
initial γ = ± ± ± ±0.01, 0.1, 1.0, 3.0. The black dashed line shows the number density of
the single-particle ground state. = =L V8, 300 . (b) Asymptotic density tail value ηfar

(note the double log scale) evaluated at x = 2.5 as a function of the interaction strength γ,
for both repulsive (lower solid line, γ > 0) and attractive (upper solid line, γ < 0)
interactions. The sloped dashed line is given by κγ L2 (κ = 0.31), the horizontal dashed
line is equal to L1 .
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Since equation (8) describes the late-time properties of the system, all of the relevant
physics is contained within the occupation numbers ϕ| |mn

2. In figure 3(a) we show the contact

tail (∝ q1 4), which manifests itself in the elements ϕ| |nn
2. Since the high-energy scattering states

are almost plane waves with a dispersion ∝ q2 (see [78]), this tail exhibits a E1 2 decay, where E
is the energy (expressed in units of Δ m X22 2). Figure 3(b) shows the elements ϕ| |00

2 and

ϕ| |01
2 as a function of the interaction strength γ. The former can be identified with the

quasiparticle weight, which is equal to 1 for zero interactions and is reduced for stronger
interactions. For weak interactions, there is an odd–even effect in the occupation numbers, so
that ϕ = 0mn if −m n| | is odd. This effect is due to the even symmetry of the problem, which is
broken at finite interaction, as is visible in the density profile of figure 1(d). The total density of
both particles remains symmetric since ϕ ϕ=| | | |mn nm . On the repulsive side, there is a sharp
transition around γ ≈ 0.7, which depends only weakly on g for different values of V0; for
instance, at =V 300 the transition is around ≈g 21 and at =V 1000 it is approximately ≈g 26.
This is because the symmetry breaking is related to the difference between the first two energy
levels in the trap. However, for sufficiently deep wells this is independent of V0. Conversely, the
effect is much weaker on the attractive side. The breaking of symmetry for repulsive
interactions can be associated with the onset of Luttinger liquid behavior and spin–charge
separation.

4.2. Pair correlations

To characterize transport of particles away from the well, we consider the conditional
probability:

Figure 3. (a) Occupation probability of excited states ϕ| |nn
2 as a function of the energy

of the single-particle state −E En 0. Symbols show the repulsive case γ = 1, the solid
line shows the attractive case γ = −1. The dashed line is a guide to the eye and has a

E1 2 decay. Results shown use 64 grid points per ΔX and an energy cutoff to reduce the
aliasing error. (b) Quasiparticle weight (plus symbols, left y-axis) and ϕ| |01

2 (crosses,
right y-axis) as a function of γ ( =V 300 ).
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ϕ

ϕ
= ↑ ↓

↓
=

∑

∑
P

P

P
( , in scattering states)

( in scattering state)
, (12)

m n m n

mn mn

2

2

s s s s

s s

where the summation over ms (ns) is restricted to single-particle scattering states and the
summation over m runs over all states. This probability ∈P [0, 1] can thus be interpreted as the
probability of finding a ↑-particle in a scattering state, given that the ↓-particle is in a scattering
state. In figure 4(a) we show this value as a function of γ for fixed V0. Interestingly, for weak
interactions (γ ≪ 1) there is a substantial conditional probability of finding two particles in a
scattering state, even though the probability of finding the first particle in a scattering state
decays as γ2. P further increases and approaches one for strongly attractive interactions,
suggesting a role of pair correlations [75]. Meanwhile, P is suppressed for strongly repulsive
interactions. Figure 4(b) shows the dependence of P on V0 in the weakly interacting limit
(γ = −0.01). This dependence has the peculiar feature that the conditional probability of finding
a particle in a bound state decreases as the depth of the well is increased, even though the
number of bound states as well as the energy difference between bound and scattering states
increase, suggesting that the pair tunneling effect is enhanced for deeper wells. Note, however,
that while the conditional probability increases, the probability of finding at least one particle in
a scattering state after the quench does decrease for deeper wells, as expected. Numerical
constraints limit the range of values we can consider for V0, prohibiting a full quantitative
analysis of the influence of the well depth.

4.3. Finite-range interactions

The problem of interacting particles with a finite-range interaction potential is considerably
more difficult to handle than contact interactions, especially in a system without translation
invariance (e.g., an externally trapped system). Fortunately, assuming zero-range interactions is

Figure 4. (a) Conditional probability P that an ↑-particle is found in a scattering state,
given that the ↓-particle is in a scattering state, as a function of γ (note the log scale).
Both repulsive (lower line, γ > 0) and attractive (upper line, γ < 0) interactions are
considered. Values computed using equation (12). = =L V8, 300 . (b) P as a function
of V0 for fixed interaction γ = −0.01. Vertical lines separate regions where the number
of single-particle bound states is constant; due to finite size-effects, the transition is not
sharp.
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often a good approximation for realistic physical systems, especially in one dimension, where
the δ-function potential does not require renormalization. Nevertheless, it is of interest to
investigate the influence of the range of the inter-particle potential [99–104].

In this work we will model the finite range of the inter-particle potential by a Gaussian
with standard deviation r0 (in units of ΔX), and cut off the potential at 2r0. We normalize the
Gaussian so that the integral over real space is equal to g. Therefore, in the limit that →r 00 , we
recover the δ-function potential with strength g. Otherwise, we use the same parameters as in
the preceding sections; i.e. the well depth =V 300 , the system size L = 8 and the well width
Δ =X L 1 8. Energies are expressed in units of Δ m X22 2.

We consider the influence of the range r0 on the contact tail. The result is plotted in
figure 5, which can be compared to figure 3(a). As the range r0 is increased, the deviation with
respect to the universal scaling increases, and non-universal behavior appears as the energy
approaches the energy  mr22

0
2 associated with the range; the occupation numbers then show

behavior that depends on the details of the inter-particle potential (such non-universal features
are clearly visible in the result for =r 1 80 and γ = 1, see figure 5). Recently, this breakdown of
the contact regime has been experimentally reported in nuclear matter, where −r0

1 differs from
the Fermi momentum by less than an order of magnitude and universal behavior only appears
within a limited momentum window [105]. Theoretically, this crossover to a regime where the
finite range of the interaction is significant was investigated from the viewpoint of the high-
frequency tail in radio-frequency spectroscopy [106]. Note that the effect of the finite range is
generally to induce a reduction in the coupling to highly excited states, in agreement with the
aforementioned experimental and theoretical results. This reduction will be significant when the
energy of the lowest scattering state is comparable to or higher than the energy associated with
the range of the inter-particle interactions.

Figure 5. Occupation probability of excited states ϕ| |nn
2 as a function of the energy of

the single-particle state −E En 0, for attractive (γ = −1, top) and repulsive (γ = 1,
bottom) interactions. As the range of the interaction increases, the deviation from the

E1 2 scaling expected from equation (1) increases. The dashed line indicates the result
obtained by using zero-range contact interactions.
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5. Disordered potential

5.1. Anderson localization

In Andersonʼs original work [45] he considers a system described by the following Hamiltonian
(the Anderson–Hubbard Hamiltonian):

∑

∑ ∑

= − +

+ +
σ

σ σ

σ
σ σ

+

↑ ↑ ↓ ↓

 J c c

U c c c c V c c

h.c.

, (13)

i
i i

i
i i i i

i

i
i i

Anderson
†

1

† †
ext

†

where σci
(†) destroys (creates) a particle of the kind σ ∈ ↑ ↓{ , } on lattice site i, J is the hopping

parameter, which determines the kinetic energy required for particles to tunnel to adjacent
lattice sites, and U determines the strength of inter-particle interactions (in Andersonʼs paper,
U = 0). The external (on-site) potential V i

ext is given by equation (4), with a different random
value at each site. Anderson showed that a remarkable property of this Hamiltonian is that all
eigenstates of the system, regardless of their energy, are localized in the sense that the large-
distance density tail of any eigenstate centered about some point in space x0 decays at least as
fast as ξ− ′e x2 A, where ′ = −x x x| |0 is the distance from the initial point and ξA is the AL length.
In other words, the AL length ξA determines the decay of the least localized single-particle
eigenstate, which may be populated by an arbitrary wave packet. The feature of exponential
localization of all eigenstates actually holds only in one and two dimensions [107]. In three
dimensions, there is an energy cutoff, the mobility edge, beyond which the states are no longer
localized. This transition from localized to extended states is captured approximately by the
Ioffe–Regel criterion [108].

However, the appearance of AL for all eigenstates in one dimension depends on the
assumption that the disorder is uncorrelated from site to site. In experiments with ultracold
atoms, the disordered potential is often created using a speckle potential [53], where the
correlation between two points of the potential decays over a characteristic length scale ξc, the
correlation length. For bosons in one dimension as described by the Gross–Pitaevskii equation,
it has been shown [109] that the correlation length induces an effective mobility edge. The
speckle potential causes the localization length to increase strongly beyond this effective
mobility edge [110, 111]. Clearly, any physically realistic potential must have some short-range
correlations, otherwise the Fourier spectrum of the potential is not bounded and the potential
will have significantly populated frequency components corresponding to arbitrarily high
energies. Even in the case of a lattice, where the assumption of uncorrelated disorder from site
to site might be justified, the interaction will couple to higher Bloch bands, which will resolve
any correlation that exists on length scales shorter than the distance between lattice sites [78]. It
now follows that, due to equation (1), an interaction quench of the type considered here will
lead to partial delocalization through single-particle delocalized states.

Let us consider a disordered external potential, where the potential is given by
equations (4) and (5). The potential may be uncorrelated from site to site, or have correlations
between sites, schematically depicted in figure 6. We will here consider Gaussian correlations
only, with a correlation length ξc. This correlated potential is slightly different from the speckle
potential used in many experiments [53], but the long-range properties of such a potential are
difficult to take into account in a closed, finite system. We do not expect major differences
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between this potential and the speckle potential such that our conclusions will be altered [51],
although the dependence of the localization length ξA on the energy is subtly different. In the
case of a speckle potential, the localization length can increase as a function of energy in finite
energy windows [112], whereas in the case of Gaussian correlations ξA diverges monotonically
[113]. Strictly speaking, there is no mobility edge in the case of Gaussian correlations, since the
localization length diverges smoothly as a function of momentum [113]. However, ξ → ∞A as

→ ∞k as long as there is some kind of finite-range correlation, and there is a crossover to
delocalized states in the case of Gaussian correlated disorder. For the uncorrelated potential, we
can use known values of ξA [114] (uniquely determined by W) to benchmark our results.

We consider particles interacting through a contact potential δ= − ′V g x x( )int , so that the
universal relation (1) is valid for all momenta ≫ q , where  is any physically relevant length
scale in the problem. With this approximation, we solve the ground state of the Hamiltonian (2)
in a discretized system with L sites (we use units where the grid spacing δ =x 1 and energies are
expressed in terms of δ m x22 2), with the boundary condition that the wavefunction vanishes at
the boundary. For reliable numerical results, we would ideally like to have weak disorder

≪W 1, ξ ≪ LA , ξ ≪ Lc and ξ ≫ 1c . We cannot hope to fulfill these conditions and still
compute the interacting ground state without further approximations. Therefore, we relax the
requirement for weak disorder. This means that the single-particle ground state will populate a
state in the so-called Lifshits tail [54, 115], where it is ‘classically’ trapped. However, this is not
a major issue, because the interactions lead to the population of most single-particle states,
including the states in the Lifshits tail, the Anderson-localized states beyond the Lifshits tail as
well as all delocalized states in the tail of the momentum distribution (1). We also relax the
requirement that ξ ≫ 1c and instead choose ξ =  (1)c . This means that the ratio of localized to
delocalized states in the discrete system with correlated disorder is also of  (1), resulting in a
relatively low population of delocalized states. However, this does not affect the result
qualitatively.

Equation (8) implies that after the quench most of the single-particle eigenstates will have
some occupation. Therefore, the initial wave packet, which is strongly localized due to
occupying the lowest state in the Lifshits tail (in the weakly interacting limit), will start to
expand. A long time after the quench, the long-distance density tail is then expected to be
dominated by the least localized state in the single-particle eigenspectrum. With uncorrelated
disorder, this state decays according to the AL length ξA. In the case of correlated disorder, the
least localized state is actually delocalized, resulting in the delocalization of a certain fraction of
the wave packet. This delocalization depends on the initial interaction, since this determines the

Figure 6. Schematic depiction of a Gaussian correlated (a) and an uncorrelated (b)
potential. The correlation length ξc is depicted in panel (a).
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coupling to scattering states. Specifically, since the contact scales as g2 for ≪g| | 1 [96–98] we
expect this fraction to be proportional to g2 in the weakly interacting limit.

5.2. Numerical results

We consider a system of size L = 151, either uncorrelated disorder or ξ = 2c and various values
of the initial interaction strength g. We choose a value of the disorder strength so that ξ ≪ LA ,
but we also want to use as weak a disorder as possible under this constraint so that the
approximate solution for ξA is valid and the numerics are well-behaved; we take W = 4, for
which ξ ≈ 7.6A [114]. Because the peak density will take an almost random position
somewhere on the grid, we only consider the tail in the direction where the grid has the most
sites until the boundary of the system is reached. The result is shown in figure 7, where we plot
equation (8), the long-time density η x( ) for various values of g. Since the peak density will be a
minimum distance L 2 away from the edge of the system, we plot η x( ) as a function of distance
away from the peak density in the interval [0, 75]. We take the average of 250 runs, using a
different random seed for each run, where the average is obtained by logarithmic averaging.
Note that a similar approach was used to study a non-interacting wave packet in a disordered
potential [116]. In our case, the interaction quench combined with the relation (1) guarantee that
the phase randomization ansatz discussed in [116] is valid for an arbitrary initial wave packet
with significant overlap of interacting particles (see also [117]). Indeed, it is valid even when
starting from the interacting ground state, deep in the Lifshits tail.

Figure 7. Number density (note the log scale) of a particle in a disordered potential,
initially in the interacting ground state, interacting with a second particle with
interaction strength g. The plotted density is obtained from equation (8) and shows the
density a long time after an interaction quench to g = 0 (averaged over 250 runs). Panel
(a) shows the result for uncorrelated disorder (4) and panel (b) shows correlated disorder
(5). The solid line in panel (a) is a guide to the eye and decays according to the
Anderson localization length obtained from [114].
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In the case of uncorrelated disorder, the long-distance density tail reproduces the
approximate prediction for the localization length well, as expected. Interestingly, there is an
enhancement of ξA as the initial interactions become stronger (a fit of the slope of the
exponential decay of the density yields ξ = ±14 1A for = −g 3), even though the particles are
non-interacting after the quench. The decay is thus weaker than the decay of the least localized
eigenstate of the system. A similar increase of the localization length has been predicted for
interacting systems without an interaction quench [72, 73], although it should be noted that in
our simulations, where the initial state has a large overlap between the two particles, the
enhancement may be artificially large [73].

In the case of correlated disorder, localization is much weaker. There is still a slight decay
of the density, where it might be expected that η x( ) approaches a constant value, corresponding
to delocalization (see section 4). This is an artifact of our numerical constraints; to reach this
constant regime we should be in the regime where the momentum ξ≫q 1 c. However, since
ξ = 2c these high-energy states cannot be fully resolved. This is also reflected in the least
localized state of the single-particle eigenspectrum; while the localization length diverges
exponentially for high-energy states [113], the discreteness of the system implies an energy
cutoff, which implies that the least localized state has a weak but finite exponential decay. For
both uncorrelated and correlated disorder, the strength of the density tail scales as ∝ g2 for weak
interactions, as expected. Note that in the weakly interacting limit ≪g| | 1, the result is
independent of the sign of g (see section 4). For strongly repulsive interactions ⩾g 1 our
iterative method to find the interacting ground state fails, possibly because of the near-
degeneracy of low-energy single-particle states that are nevertheless separated in real space
such that their spatial overlap is almost zero.

What is the timescale associated with delocalization? To answer this question, we compute
the time evolution explicitly using equation (7), see figure 8. We express time in dimensionless
units → t tW . In these units, the ‘switching on’-time associated with dephasing is ≈t 1, see
section 4. There is, however, still a small deviation from the density at long times compared to
equation (8), which was also found in [116].

It is also of interest to study the case where N ‘↑’-fermions interact with a single
‘↓ ‐’ impurity. For this purpose we use the variational approach of our earlier work [78] to
compute the long-time density η↓ x( ) of the impurity. Although the solution is not exact, we

Figure 8. Number density (note the log scale) of a particle in a disordered potential,
initially in the interacting ground state, interacting with a second particle with
interaction strength g. The plotted density is obtained by computing the density a time t
after an interaction quench to g = 0 (averaged over 250 runs). For comparison, symbols
show the result obtained from equation (8).
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obtain qualitative agreement with the exact solution for the two-particle case, see figure 9. One
might expect the effect of the initial interactions to increase as the number of majority
component particles N is increased; this is certainly the case in the mean-field approximation,
where the Hartree shift is proportional to the majority component density. However, the
variational calculation, for a moderate interaction strength = −g 1, shows a decrease in the tail
density. The presence of additional majority component particles restricts the possible
excitations of the majority component particles due to Pauli blocking. Furthermore, since the
first few excited single-particle states are likely to be, on average, strongly localized elsewhere
in space, they have negligible overlap with the impurity in the ground state and do not
contribute significantly to scattering events to highly excited states.

6. Conclusions

In conclusion, we consider a localized, interacting system where the interactions are turned off
instantaneously (quenched). We show that as long as some scattering states exist and the inter-
particle interactions have zero range, the quench leads to partial delocalization, and we
characterize this delocalization quantitatively for certain specific systems. Furthermore, we
show how the range of the interactions influences the coupling to highly excited states, as
expected from the high-momentum tail of the momentum distribution (1). An interaction
quench thus leads to transport through delocalized states in disordered systems, provided they
exist.

The resulting transport might be observed in an experiment with ultracold atoms akin to
[75], where the advantage of our proposed setup is that single-particle tunneling can be
neglected. Although we consider the one-dimensional case, we expect qualitatively similar
effects in higher dimensions. We assume in this work that the interaction quench is infinitely
fast, whereas the dynamics associated with higher energy states also becomes increasingly fast
as a function of energy. Nevertheless, we expect that the delocalization will be dominated by
the lowest scattering states, which have the highest occupation probability and with which the
slowest dynamics is associated, so that a sufficiently fast sweep should be feasible.

We stress that while we study specific realizations of interacting systems, we expect the
same mechanism to hold for a greater number of particles, since the momentum tail (1) holds in

Figure 9. Number density (note the log scale) of a particle in a disordered potential,
initially in the interacting ground state, interacting with N fermionic particles with
interaction strength = −g 1, a long time after an interaction quench to g = 0. A Gaussian
correlated disordered potential is used. Note that for the N = 10 and N = 50 runs we have
averaged over 100 runs.

16

New J. Phys. 16 (2014) 113051 E V H Doggen and J J Kinnunen



general for any number of particles. Also, it is noteworthy that partial delocalization depends
algebraically rather than exponentially on the size of the change in the interaction parameter (for
small changes). This means that for the quench-induced delocalization to be vanishingly small,
the non-adiabatic change in the interactions itself must be vanishingly small. Furthermore, the
precise shape of the external potential is irrelevant, as long as some bound and scattering states
exist, and the initial interacting wave packet is localized. Indeed, if one considers a system that
is repeatedly quenched, then our results suggest that eventually all particles will transfer to
scattering states. On the other hand, if the variation in the interaction strength is sufficiently
small or gradual, or if the lowest-energy delocalized state is of sufficiently high energy, then
delocalization of a significant number of particles through this process will occur on timescales
much larger than laboratory timescales.

It would be of interest to consider the case where the interaction parameter is quenched
from a fixed value to some other, arbitrary non-zero value. Is the delocalization mechanism in
this case the same, considering that one is quenching to a non-integrable system rather than to
an integrable one? It has been suggested that this is not the case [118, 119], but is not possible
to address this question with the method used in this work. Nevertheless, if we consider a
quench to a small value of the interaction strength, i.e. a quench from g to ′g , where ≫ ′g g and
′ ≪g 1, then the analysis of Yurovsky and Olshanii [120] suggests that for sufficiently small
timescales our analysis is still valid.

As a final remark, we stress that our results should not be used to draw conclusions about
the long-standing problem of interacting particles in a random potential. A common belief is
that in these systems, the inter-particle interactions will drive transport. However, this
mechanism is distinct from the transport induced by non-adiabatic variations in the interactions
between particles.
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