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Abstract
In this paper, we show how the electromagnetic phenomena in moving mag-
netodielectric media can be emulated using artificial composite structures at rest.
In particular, we introduce nonreciprocal periodically loaded transmission lines,
which support waves obeying the same rules as plane electromagnetic waves in
moving media. Because the actual physical structure is at rest, in these trans-
mission lines there are no fundamental limitations on the velocity values, which
may take values larger than the speed of light or even complex values (con-
sidering complex amplitudes in the time-harmonic regime). An example circuit
of a unit cell of a ‘moving’ transmission line is presented and analyzed both
numerically and experimentally. The special case of a composite right-/left-
handed host line is also studied numerically. Besides the fundamental interest,
the study is relevant for potential applications in realizing engineered materials
for various transformations of electromagnetic fields.

Keywords: electromagnetics, moving media, metamaterial, transmission line,
nonreciprocity

1. Introduction

Electromagnetic fields in uniformly moving media can be studied, using the constitutive
relations in two reference frames, moving with respect to each other. If in one reference frame
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the medium appears to behave as an isotropic magneto-dielectric (permittivity ϵ′, permeability
μ′, and square refractive index ϵ μ′ = ′ ′n c2 2 with c being the speed of light in vacuum), then in
the reference frame which is moving with velocity v along the axis z ( =v zv 0), the constitutive
relations for the same medium take the form (e.g., [1, 2])

ϵ= + ×D E z H
V

c
(1)t t 0

μ= − ×B H z E
V

c
, (2)t t 0

where ϵ and μ are the effective permittivity and permeability of the medium, respectively, V is a
unitless velocity parameter, and z0 is the unit vector along z. Also, the index ‘t’ denotes the field
component transverse to the velocity direction z0: = −E z z EI( ) ·t 0 0 , where I is the unit
dyadic. The longitudinal field components are the same in both reference frames. The effective
material parameters in moving media (ϵ, μ, and V) relate to the parameters at rest (ϵ′ and μ′) and
the velocity of the moving frame or, alternatively, the velocity of the medium, depending on the
viewpoint (v) by
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These material relations have been used by many researchers to solve electromagnetic problems
where more than two relatively moving media are involved. Obviously, in these relations the
velocity value v is always smaller than the speed of light c. It is important to point out that in the
above analysis, the medium is assumed to be unbounded. If a finite slab of a moving medium is
considered, the Doppler shift due to the movement of the interface between the two media must
also be taken into account. The same is true for the case when a receiver and a transmitter are in
relative motion.

On the other hand, considering (1) and (2), one notices that these are the constitutive
relations of a bi-anisotropic medium [2, 3], which may potentially be realized as a composite
material at rest. These material relations with anti-symmetric coupling dyadics correspond to a
nonreciprocal class of bi-anisotropic media called, by analogy, moving media [3, 4], although
the medium does not move, and the coupling is provided (due to its microstructure containing
some nonreciprocal elements). It appears that materials obeying (1) and (2) have not been found
among natural materials, but there have been conceptual suggestions on how such materials can
be possibly realized using composites containing magnetized ferrite and metal inclusions [3, 5].
In the artificial-medium scenario, the values of the velocity parameter in the constitutive
relations are not restricted to real values smaller than the speed of light, so this opens exciting
opportunities to realize structures that emulate (fictitious) electromagnetic phenomena for media
moving with superluminal or even complex-valued velocities.

Recently, the concept of artificial moving media was discussed in [6], where it was shown
that an artificial moving medium transforms arbitrary electromagnetic fields, modulating them
with an exponential function of the coordinate z (the velocity direction). Real values of the
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‘effective’ velocity correspond to an exponent with an imaginary argument, while the imaginary
velocity corresponds to exponential decay or amplification of fields depending on the
propagation direction. In [7], it was shown analytically that a thin layer (a single layer of
hypothetical ‘moving molecules’) of an artificial moving medium can be tuned to work as an
ideal isolator. Thus, realization of materials with the properties of moving media has not only
fundamental theoretical interest but also would offer new application possibilities in, for
example, absorbers and devices for manipulating the field distribution.

Previously proposed structures having nonreciprocal bi-anisotropic responses have several
limitations. Suggested realizations of an artificial moving medium based on embedding
electrically small inclusions (consisting of a swastika-shaped metal element on top of a small
magnetized ferrite sphere into a dielectric [3, 5]) suffer from parasitic chirality of the inclusions.
Also, the suggested inclusions are resonant structures leading to a highly dispersive response.
General nonreciprocal metamaterials have been considered in [8], where a nonreciprocal active
metamaterial slab was realized. The slab was shown to be transparent to microwaves
propagating in one direction and opaque in the opposite direction within a fairly narrow
bandwidth. The bandwidth was limited in this case, again, due to the resonant nature of
the inclusions comprising the slab. Furthermore, the proposed metamaterial slab was shown
to exhibit a combination of moving and omega types of bi-anisotropic coupling instead of a
pure moving medium response. Therefore, no practical realization of a moving molecule is
known.

Here, we consider possibilities of realizing artificial moving media using periodically
loaded transmission lines (TLs). First, we derive required conditions for moving media response
in an infinite cascade of TL unit cells as well as the relations connecting the ABCD
(transmission) parameters of a general periodic structure and the material parameters of moving
media. Second, a circuit topology utilizing a gyrator is considered to fulfill the required
conditions. Third, the introduced concept is validated experimentally. Finally, we study
numerically the special case of the proposed circuit topology where the host line is a so called
composite right-/left- handed TL. The concepts discussed here can, in principle, be applied to
any frequency range though practical realizations at high frequencies may prove difficult.
However, in this paper we limit the analysis to a low RF range, where experimental prototypes
are easier to realize. The connection between a moving magnetodielectric medium, an artificial
moving medium, and a suggested artificial TL moving medium is illustrated in figure 1. A
similar study for another special case of bi-anisotropic media, the omega media, was conducted
in [9].

v v = 0 v = 0

ε’ , μ’ ε, μ, V A B B
C DC D
A

Figure 1. Connection between moving magnetodielectric medium (left), artificial
moving medium (middle), and artificial TL moving medium (right).
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2. Propagation constants and wave impedance of moving media

In view of emulating moving media by periodically loaded transmission lines, we will consider
the constitutive equations (1)–(2) in frequency domain (the time-harmonic time dependence is
in the form ωi texp ( )). The propagation constants β± for axially (along z) propagating plane
waves in moving media can be easily derived, combining the Maxwell equations with the
material parameters (e.g., [2, 5]) It is given by

β = ± ±± k n V( ), (5)0

where k0 is the free-space wave number and ϵμ=n c is the refractive index of the medium.
The ± signs correspond to the opposite propagation directions. For moving media, depending
on whether the incident wave propagates along the direction of the velocity vector (+z0) or
against it (−z0), we get two different solutions for the propagation constant, as can be expected
for a nonreciprocal medium. It is critically important that both eigenwaves decay or grow along
the same fixed direction (positive or negative direction of the z axis, depending on the sign of V;
see [6]). The medium described by (1)–(2) is lossless if all the parameters ϵ, μ, and V are real
numbers (e.g., [3]). In this case, as it should be, the propagation constants are real numbers, and
the eigenwaves do not decay. For a purely imaginary velocity V, the plane waves in the medium
with the refractive index n are modulated by the exponential function of a real argument.
Polarization of the eigenwaves is linear, as in isotropic media. The wave impedance in such a
medium is given simply by

η
μ
ϵ

= , (6)

where ϵ and μ are the permittivity and permeability of the medium, meaning that the wave
impedance is independent of the velocity parameter V.

3. Required conditions for the TL unit cell

Now, we would like to equate the propagation constant and the characteristic impedance in the
general cascade of periodically arranged and connected unit cells to the propagation constant
and wave impedance in moving media, respectively. The unit cell of the cascade is
characterized by its ABCD (transmission) parameters. These are defined according to [10]

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥=

V
I

A B
C D

V
I

, (7)
1

1

2

2

where V1 and I1 are the input voltage and current, respectively, while V2 and I2 are the
corresponding quantities at the output. It is important to note that in this definition, it is assumed
that the currents I1 and I2 are flowing in the same direction, from port 1 to port 2. The dispersion
relation for an arbitrary periodic cascade of unit cells characterized by ABCD parameters can be
easily derived using the definition of ABCD parameters (7) and the Floquet theorem [10] and
has the form
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⎛
⎝
⎜⎜

⎞
⎠
⎟⎟β = −

+ ± + − −
±

i

d

A D A D AD BC
ln

( ) 4( )

2
, (8)

2

where ± signs, again, correspond to the opposite propagation directions and d is the period of
the cascade. The Bloch impedance can be considered as the characteristic impedance of
periodically loaded transmission lines. It is defined as the ratio of the voltage and current at the
terminals of the unit cell in an infinitely long cascade of such unit cells. It should be noted that
the value of the Bloch impedance depends on how the terminal points are chosen and is,
therefore, not unique for a given unit cell. The Bloch impedance for an arbitrary unit cell
characterized by its ABCD parameters can be derived, again, using the definition of the ABCD
parameters (7) and the Floquet theorem [10] and has, in the general case, the form

= ±
− β±

Z
B

A e
. (9)B i d

Here, the currents are defined to point into the direction of wave propagation (instead of always
in the same direction). This definition was chosen here, as it gives a single Bloch impedance
with a real and positive value for a conventional unloaded TL. The impedance of moving media
(6) is independent of the propagation direction, meaning that moving media are symmetric
when it comes to impedance. This means that the Bloch impedances of the artificial unit cell for
different propagation directions should also have the same value. By plugging (8) into (9), we
can see that, in this case, we must have A = D. Taking this into account, (8) simplifies to

β = − ±±
i

d
A BCln ( ). (10)

By plugging (10) into (9), the Bloch impedance simplifies to

=Z
B

C
, (11)B

which, as can be expected, is independent of the propagation direction.
By comparing the dispersion and wave impedance in moving media, (5) and (6), to the

dispersion and Bloch impedance in a general chain characterized by ABCD parameters, (10)
and (11), we can now solve the effective refractive index of the periodically loaded TL

⎛
⎝⎜

⎞
⎠⎟= − +

−
n

i

k d

A BC

A BC2
ln . (12)

0

Similarly, we can also solve the effective normalized velocity

= − −( )V
i

k d
A BC

2
ln . (13)

0

2

It is evident from (13) that in order to emulate non-zero velocity, the unit cell has to be
nonreciprocal, as for a reciprocal symmetric unit cell we have − = − =AD BC A BC 12 .
Furthermore, as the response becomes more nonreciprocal, that is, as −AD BC increases, the
normalized velocity V increases logarithmically. Knowing the effective wave impedance and
refractive index, the effective permittivity and permeability of the TL can also be easily
determined though, in this paper, we limit the analysis mostly to the refractive index and
velocity parameter.
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4. Proposed unit cell

As we need the unit cell to be nonreciprocal, we must utilize some nonreciprocal circuit
component. On the other hand, the unit cell also has to be symmetric. Therefore, we suggest the
circuit topology shown in figure 2. The nonreciprocity of the circuit is due to a gyrator
connected to the TL through coupled inductors. A gyrator is a nonreciprocal two-port circuit
component providing °0 phase shift in one direction and °180 phase shift in the opposite
direction. The ideal gyrator is passive, linear, and lossless, though the practical realizations are
typically active, needing DC-biasing. Even though it is a lossless component, it is characterized
by so called gyration resistance R, which relates the voltage in port 1 (V1) to the current in port 2
(I2) and vice versa, so that the ABCD matrix of the gyrator has the form

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥=A B

C D
R

R
0

1 0
. (14)

gyrator

Clearly, this matrix corresponds to a nonreciprocal element, as we have − ≠AD BC 1. In the
proposed unit cell, the gyrator is used to change the direction of the current flowing from the
shunt inductor L2.

Let us first analyze the unit cell of figure 2 without the symmetric series inductors (L3),
shunt capacitors (C), and TL segments (with length d 2, characteristic impedance Z0, and
wavenumber βTL), which are obviously reciprocal and therefore have no effect on the effective
normalized velocity V. The ABCD parameters of the proposed unit cell can be derived using
simple circuit analysis. Considering the equivalent circuit for the coupled inductors (e.g., [11]),
we write V1 as a function of I1 and V2 and use the ABCD matrix for the gyrator (14) to write the
input/output voltage of the gyrator as a function of its output/input current. Finally, applying
Kirchhoffʼs current law at the node point, we write a set of equations that can be solved for the
ABCD parameters (i.e., V1 and I1 as a function of V2 and I2). The ABCD matrix for the unit cell
reads

⎡
⎣⎢

⎤
⎦⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

ω
ω

ω ω
ω

ω
ω ω

=
−

+
−

+

+ +

A B
C D

L L

R R i M

i M

R

i L R

R i M
i L

R R i M

R

R i M

1
( )

( )

. (15)
uc

2
1 2 1

2

As stated earlier, the unit cell should to be symmetric (i.e., A = D) in order to ensure a purely
moving-media response. By equating the A and D parameters of the proposed unit cell, we get
the condition = ±M L L1 2 . As the basic definition for mutual inductance is =M k L L1 2 ,
where k is the mutual coupling coefficient, we can see that the unit cell is perfectly symmetric
when the coupling between the inductors is perfect ( = ±k 1 where ± corresponds to opposite
coupling directions between the inductors). However, as long as we can satisfy the condition

Figure 2. Unit cell under study.
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ω≫ −R L L M( )2 2
1 2

2 , the unit cell can be considered approximately symmetric. The other
condition for a moving media TL is the nonreciprocity condition − ≠AD BC 1. Again, by
plugging the equations for the ABCD parameters into this relation, we get the condition

ω ω− = − + ≠AD BC R i M R i M( )/( ) 1. This is true always when we have mutual coupling
between the two inductors. As the TL segments and additional symmetrically placed loading
elements shown in figure 2 do not affect the nonreciprocity or symmetry of the circuit, we can
conclude that the suggested unit cell can work as a meta-molecule in an effective moving
medium.

Neglecting the series inductors, shunt capacitors, and TL segments, we can write the
effective normalized velocity for a cascade of such unit cells using the circuit element values as

⎜ ⎟⎛
⎝

⎞
⎠

ω
ω

= −
+

V
i

k d

R i M

R i M2
ln . (16)

0

Furthermore, we can write the effective refractive index as

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

=
−

+

ω ω

ω

ω

ω ω

ω

ω

+ + +

+ + +

( )

( )

n
i

k d2
ln . (17)

R

R i L R i L L

i L L

R i L L

R

R i L R i L L

i L L

R i L L
0

( )

( )

1 1 2

1 2

1 2

1 1 2

1 2

1 2

Notably, the refractive index is independent of the mutual inductance between the coupled
inductors, whereas the normalized velocity is not. This allows us to vary the normalized
velocity independently of the refractive index by changing the mutual coupling between
inductors. On the other hand, by adding symmetric series inductors and/or shunt capacitors (or,
alternatively, TL segments) to the unit cell as shown in figure 2, the refractive index can be
changed independently of the normalized velocity.

If we further assume that = =L L L1 2 , (17) simplifies to

⎜ ⎟⎛
⎝

⎞
⎠

ω
ω

= −
+

n
i

k d

R i L

R i L2
ln . (18)

0

Clearly, in this case the equation for the refractive index has a similar form to (16), with only
the mutual inductance replaced with the coil inductance. Furthermore, if we demand = ±M L,
i.e., perfect coupling between the inductors with ± corresponding to opposite coupling
directions between the inductors, we can see that in this special case we have, in fact, = ±n V .
Looking at (5), this means that for one direction the propagation constant is zero for all
frequencies, while for the opposite directions it is non-zero, with a value depending on R and L.
Unfortunately, such a special case is very difficult to realize for a few different reasons, as
becomes evident later.

In order to study the effect of the coupling coefficient k to the effective material
parameters, let us consider an example: namely, the unit cell shown in figure 2 with the
component values = =L L 1.151 2 μH, =L 03 H, C = 0 F, and =R 365 Ω. Furthermore, let us
assume that the period is 0.3m (electrically small in the studied frequency range) and ignore the
effect of the TL segments. First, let us look analytically at the case when we have an ideal
gyrator, and the coupling between the inductors changes. The refractive index and the
normalized velocity for five different coupling coefficients k are plotted in figure 3. In all the
cases, both the refractive index and the normalized velocity are almost constant in the studied
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frequency range. As was shown before, the refractive index is independent of k, while the
normalized velocity drops considerably when k is decreased. Even a relatively small decrease of
the coupling coefficient from k = 1 to k = 0.9 (still very strong coupling) causes the normalized
velocity to change from 3.14 to 2.83. With a physical coil, we expect the coupling to be about
k = 0.8. Also, if the coupling coefficient is negative, which corresponds to changing the
direction of coupling, the sign of the normalized velocity also changes, as can be seen from
(16). This also happens if the whole unit cell is inverted. The Bloch impedance in the ideal case
(k = 1) is the same for both propagation directions, as expected, and is equal to the gyration
resistance. However, this is not the case if we have imperfect coupling between the inductors
( <k 1). This is illustrated in figure 3(b), which shows the Bloch impedances for coupling
coefficients 1, 0.8, and 0.6. As the coupling between the inductors becomes weaker, the
magnitude of the imaginary part of the Bloch impedance increases. This imaginary part has
equal amplitude but different signs for different propagation directions. This propagation
direction dependent part of the Bloch impedance can be attributed to another type of
bianisotropic coupling, namely, reciprocal omega coupling [9]. However, in this case, even with
the poorest coupling k = 0.6, the amplitude of the imaginary part of the Bloch impedances is
very small compared to the real part, meaning that the unit cell can be considered practically
symmetric; that is, the omega coupling is very weak, especially at low frequencies.

In the earlier analysis, the effect of the TL segments, i.e., the host line, was neglected. In
practical unit cell implementations, we would always have some finite TL segments connecting
the loading elements (the coupled inductors—gyrator circuits) together. For periodical loading
with conventional reciprocal passive elements, the effect of the electrically small TL segments
is typically negligible, as the loading element itself produces a considerably larger phase shift
compared to the TL segments. However, in this case the loading element may provide a very
small (or ideally zero) phase shift in one direction, meaning that now the TL segments must be
taken into account. In fact, the material parameters of the host line limit the effective refractive
index so that we always have + − >n V n V, 1 for conventional right-handed host lines (in the
lossless case, i.e., ∈n V, ). This can be understood as follows. In the ideal case with perfect
coupling between the inductors when the TL segments are neglected, we have = ±n V ; that is,

Figure 3. (a) Refractive index and normalized velocity for different coupling
coefficients in the ideal gyrator case; (b) Bloch impedances for different coupling
coefficients in the ideal gyrator case.
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the induced phase shift for one propagation direction is 0. When we introduce the TL segments,
we introduce an extra phase shift β dTL , but the period remains the same. Even if the
nonreciprocal circuit provides no phase shift, we have a phase shift due to the TL segments
φ β= = ⩾± d k n d k dTL TL0 0 , where nTL is the effective refractive index of the TL. In other
words, the TL periodically loaded with the nonreciprocal circuit behaves in this case (for one
propagation direction) like an unloaded TL. Therefore, the effective refractive index is equal to
the effective refractive index of the TL, which is larger or equal to one. Thus, we have
β = ± ⩾± k n V k| | | ( ) |0 0, or ± ⩾n V 1.

Let us consider the earlier example with the component values =L 03 H, C = 0 F,
= =L L1 2 1.15 μH, k = 0.8, and =R 365 Ω—but now with 0.15m long TL segments (λ 20000

at 1MHz) having 50 Ω characteristic impedance and air-filling on each end of the unit cell. The
period of the unit cell is now assumed to be equal to the total length of the two TL segments;
that is, the physical length of the loading circuit is considered to be negligible compared to the
length of the TLs. The effective refractive index and normalized velocity in this case are
calculated using (12) and (13) when the coupling between the inductors is realistic (k = 0.8).
The refractive index and normalized velocity are practically constant in the studied frequency
range (0–10MHz) and have the values 5.86 and 2.5, respectively. Now, comparing these values
to the corresponding cases in figure 3(a), we can see that while the normalized velocity is the
same as before, i.e., it still has the form given in (16), the refractive index is clearly increased
due to the host line. This makes sense, as the TLs are reciprocal elements, while the parameter V
is a measure for the nonreciprocity of the medium. Therefore, the addition of TL segments
cannot affect V, as any effect the TLs have is reciprocal; that is, it is seen only in n. We always
have + − >n V n V, 1 for realistic unit cells with right-handed host TLs, meaning that the
(real) propagation constant cannot be smaller than the free space wavenumber. Thus the
propagation constant for one propagation direction approaches the free space wavenumber for
the air-filled host TL case when the coupling between the inductors approaches the ideal case
k = 1 and the characteristic impedance is equal to the gyration resistance. The Bloch impedance
can also be significantly affected by the inclusion of even electrically short TL segments. The
Bloch impedances in the studied case, when the TL segments are neglected and included, are
shown in figure 4. Clearly, the amplitudes for the real and imaginary parts of the Bloch
impedances for both directions decrease due to the addition of the TL segments. Nevertheless,

Figure 4. Bloch impedances for coupling coefficients k = 0.8 in the ideal gyrator case,
when the TL segments are neglected and included.
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the Bloch impedance is still practically the same for both propagation directions, meaning that
the unit cell can be considered practically symmetric. Decreasing the coupling coefficient was
observed, also in this case, to increase the amplitude of the imaginary part of the Bloch
impedances (similar to figure 3(b)), thus making the unit cell less symmetric.

Obviously, the amplitude of the coupling coefficient k cannot exceed unity for
conventional coupled inductors. Having >k| | 1 would imply that power is somehow pumped
into the system. However, if we would allow this, an interesting special case would arise. Now,
we would no longer be limited by the condition + − >n V n V, 1, and the propagation
constants could, in fact, have the same sign. This would, in turn, mean that the phase of the
wave could only propagate in one direction (as phase velocities ω β= ±v /p have the same sign).
Moreover, since n and V are practically dispersionless, the group velocities ( ω β= ∂ ∂ ±v /g ) would
also have the same sign. In other words, propagation would only be allowed in one direction via
two forward wave modes of different propagation constants. The question of how to realize
such actively coupled coils is out of the scope of this study.

Previously, we found that the studied unit cell is limited by the condition ± >n V 1, i.e.,
< −V n| | 1, due to its passive nature and the phase shift caused by the the host line. Here, we

will discuss how this limitation compares to the case of physically moving magnetodielectric
media characterized by (3) and (4). When a magnetodielectric medium (with ′ >n 1) is put into
motion, V becomes non-zero. The parameter V| | increases as the velocity of the medium
increases (depending on the direction of movement >V 0 or <V 0), but so does the effective
refractive index n. As the velocity of the medium approaches the speed of light in the
corresponding stationary medium (i.e., → ′v c n ), the normalized velocity V| | approaches the
effective refractive index n while, simultaneously, both of the parameters approach infinity.
Therefore, V| | is always smaller than the effective refractive index of the medium n; that is, the
parameters n and V are limited by the condition <V n| | when we have < ′v c n . However, if
we allow the velocity to be between the speed of light in the stationary medium and the speed of
light in vacuum (so called Čerenkov zone [2]), the sign of both n and V flips, and we have
always >V n| | | |. Comparing these two conditions to the condition for the TL unit cell
( < −V n| | 1), we can see that the effective velocity of the TL realization is always smaller than
the speed of light in the corresponding stationary medium ( < ′v c n ). Only if we allow the
inductor coupling coefficient to be greater than unity (that is, pumping energy into the system)
can we go beyond this limit. However, it should be noted that in the case of a physically moving
magnetodielectric medium, parameters n and V cannot be controlled independently as in the TL
realization, and when V has a value close to n, both of these values are always very high.

One key difference between a physically moving medium and an artificial moving medium
has not yet been addressed. As was mentioned in the Introduction, a wave propagating from a
stationary medium to a moving medium experiences a Doppler shift due to the movement of the
interface between the two media. The same is true for a wave reflected from such an interface.
However, in the artificial moving medium unit cell, no such effect can occur due to the linear
nature of the circuit elements comprising it (i.e., the generation of new frequency components,
not present in the spectrum of the excitation signal, is not possible in linear systems). Therefore,
our model when considering a finite slab corresponds, in fact, to a medium which is moving,
but its boundaries remain stationary, similar to the movement of a conveyor belt (the other side
of which is hidden from view). Obviously, this is also the case for any artificial realization of
moving media lacking nonlinear elements or materials (e.g., [3, 5, 8]).
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5. Experimental results

Our goal was to manufacture and experimentally study the unit cell analyzed analytically and
numerically above (figure 2) with the component values L3 = 0H, C = 0 F, =L L1 2 = 1.15 μH,
and R = 365 Ω, with 0.15m long TL segments with the 50 Ω characteristic impedance and air-
filling on each end of the unit cell ( =d 0.3m). For this proof-of-concept study, the operational
frequency was limited to approximately 1MHz, as the chosen gyrator circuit was observed in
simulations to provide the needed phase shift only below approximately 1MHz.

In order to realize the unit cell of figure 2 with the aforementioned component values, we
first had to choose the gyrator. A myriad of different circuits can be used for realizing a gyrator
[15]. We have chosen to use the circuit shown in figure 5, which is based on two operational
amplifiers (AD823). The coupled inductors in the unit cell were realized as two coils wound on
top of each other (separated by a piece of tape), with nine turns each around a 12mm plastic
core. The diameter of the used copper wire was 0.5mm. The values of the inductors and the
strength of the coupling between them were measured to be approximately L1 = 0.97 μH,
L2 = 0.805 μH, and k = 0.835 in the frequency range 300 kHz–1MHz. The ohmic losses in the
inductors were measured to be approximately 0.18 Ω and 0.06 Ω for inductors L1 and L2,
respectively. As the goal is simply to demonstrate the concept, the slight discrepancy between
the actual measured values and the intended values is of little importance. For practical reasons,
the 0.15m long TL segments (air-filled) were replaced with 0.1m long pieces of 50Ω coaxial
cable RG-58/U (ϵr = 1.3). The DC bias voltage was ±6 V. The manufactured unit cell is shown
in figure 6.

The S-parameters (e.g., [10]) for the unit cell were measured using a Rohde & Schwarz
ZVA8 vector network analyzer (VNA). By converting these into ABCD parameters, the
dispersion, Bloch impedances, and material parameters for an infinite cascade of such unit cells
can be extracted using the equations derived earlier. These results were compared to the
numerical results based on S-parameters simulated using Agilent Technologies’ Advanced
Design System (ADS). In the numerical model, the operational amplifier is modeled using a
Simulation Program with Integrated Circuit Emphasis (SPICE) model provided by the

Figure 5. Chosen gyrator realization (op amp biasing and DC decoupling capacitors are
left out for clarity).
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manufacturer, and the inductors have values corresponding to the manufactured coils with
realistic losses (L1 = 0.97 μH, L2 = 0.805 μH, k = 0.835, RL1 = 0.18 Ω, and RL2 = 0.06 Ω).

The effective refractive index n, the effective normalized velocity V, and the dispersion
diagram of the media (having the unit cell shown in figure 6 calculated based on measurements
and ADS simulations) are presented in figures 7(a)–(c). Clearly, the unit cell operates as a
moving media TL, as V has a non-zero value, and the amplitudes of the propagation constants
are different for different propagation directions. However, the non-ideal gyrator with imperfect
phase-shifting, losses, imperfect matching, and non-zero A and D parameters for the gyrator
(which allow part of the signal to pass through the gyrator without the intended nonreciprocal
phase shift) considerably limits the performance of the circuit, roughly doubling the refractive
index compared to the ideal case with a perfect gyrator and lossless elements, which was
analyzed in section 4. The normalized velocity remains almost the same. As the propagation
constant is proportional to the sum or subtraction between n and V, depending on the
propagation direction, the unit cell is, therefore, effectively less nonreciprocal than expected.
Also, some small differences can be seen between the simulated and measured results. The
primary reason for this discrepancy lies in the high measurement uncertainty of the VNA at very
low frequencies. Furthermore, the gyrator circuit as well as the coils have some small intrinsic
losses, which can be seen as the imaginary parts of the refractive index and the normalized
velocity.

The Bloch impedances for different propagation directions are shown in figure 7(d).
Again, the measured results differ slightly from the simulation results for the aforementioned
reasons. Though the unit cell with a perfect gyrator and perfect coupling between inductors is
symmetric, the manufactured unit cell is slightly asymmetric due to the non-ideal symmetry in
the component losses and imperfect coupling. This can be seen in the Bloch impedances for
different propagation directions. While the real parts of the Bloch impedances are practically the
same for different propagation directions, the difference is more considerable in the imaginary
parts. However, as the real parts are much larger than the imaginary parts, the omega coupling
effect is still quite small. This small asymmetry was taken into account when plotting the
dispersion curves by using the more general form for the dispersion equation (10). Moreover,
the Bloch impedances are notably much smaller than the ones calculated for the ideal unit cell
(figure 4). This is, again, mostly due to the discrepancy between the ideal gyrator model and the
circuit implementation.

Earlier, we extracted the material parameters of the unit cell (n and V) as defined by the
constitutive relations given in (1) and (2), that is, the material parameters for the special class of
nonreciprocal media called moving media. On the other hand, these parameters are connected to

Figure 6. Manufactured unit cell.
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the material parameters of real magnetodielectric media in motion through (3) and (4). Here, we
will study which kind of physically moving magnetodielectric medium would correspond to our
artificial unit cell. As we have, according to figures 7(a) and 7(b), <V n| | at all frequencies, we
can expect the velocity of the corresponding physically moving magnetodielectric medium to
be smaller than the speed of light in the corresponding stationary medium. Knowing the
effective refractive index n and velocity parameter V, (3) and (4) can be solved numerically for
the refractive index of the medium ′n as well as the speed of the medium v. Naturally,
permittivities and permeabilities (ϵ, μ, ϵ′, and μ′) also could be easily derived, but here we,
again, limit our analysis to the refractive indices. The resulting refractive index and velocity for
the measured unit cell of figure 6 are shown in figure 8. Noticeably, the refractive index is
almost equal to the effective refractive index plotted in figure 7(a) (though slightly lower). This
tells us that the effect of special relativity is fairly small; i.e., the term − − ′(1 )/(1 )v

c

n v

c

2

2

2 2

2
is

fairly close to unity. This assumption is confirmed by looking at the speed of the medium,
which is always about two orders of magnitude smaller than the speed of light in vacuum and
one order of magnitude smaller than the speed of light in the stationary magnetodielectric
media. Notably, the velocity of the medium v also has a considerable imaginary part which,
though non-physical in the context of realizing real moving magnetodielectric media, opens the

Figure 7. Measurement and simulation results for the unit cell shown in figure 6: (a)
effective refractive index n, (b) normalized velocity parameter V, (c) dispersion in an
infinite cascade of unit cells, and (d) Bloch impedance.
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door for realizing exotic media not found in nature. As described in [6], this imaginary part
induces losses for waves propagating in one propagation direction while providing gain for
waves propagating in the opposite direction. The energy for this amplification comes, in this
case, from the operational amplifiers of the gyrator or, to be precise, from the DC power supply
providing a biasing voltage for them. However, the reciprocal losses in the medium are larger
than this nonreciprocal loss/gain, meaning that the medium altogether acts as a lossy medium
for both propagation directions, albeit with the amount of losses being different for different
propagation directions, as can also be seen in figure 7(c).

6. Moving medium with composite right-/left- handed host line

Earlier, it was assumed that the permittivity and permeability of the medium were both positive;
i.e., the host line was a conventional right-handed transmission line. In that case, the refractive
index of the host line limited the dispersion so that we always had + − >n V n V, 1 leading to
the limits β >+ k0 and β < −− k0, according to (5). It is well known that an ideal left-handed
transmission line (characterized by an equivalent circuit consisting of a series capacitor and a
shunt inductor) has a negative refractive index [13]. Therefore, in order to go beyond the
aforementioned limits, we will, here, consider the case where the host line is left-handed (LH)
or composite right-/left- handed (CRLH), to be precise. A physical TL with series capacitor and
shunt inductor loading always corresponds to a composite right-/left- handed transmission line
(CRLH TL), meaning that in addition to the series capacitance and shunt inductance, there also
exists parasitic effective series inductance and shunt capacitance due to the host line. Such TLs
can support both forward and backward waves as opposed to pure right- or left-handed TLs,
which can support only forward or backward waves, respectively. Backward waves have the
unique property of having opposite phase and energy velocities. However, the response of a
CRLH TL is always reciprocal, meaning that the same propagation mode is supported for both
propagation directions at a given frequency. In [12], the concept of nonreciprocal CRLH TLs
was discussed. It was shown that such TLs have the ability to support forward waves for one
(power) propagation direction and backward waves for the opposite direction at the same
frequency. However, in that paper, nonreciprocity was achieved by employing a ferrite

Figure 8. Refractive index ′n (a) and velocity v (b) of the moving magnetodielectric
medium, which is emulated by the artificial unit cell shown in figure 6.
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substrate with a biasing magnetic field. In other words, the nonreciprocity was due to the
nonreciprocal permeability dyadic of the medium as opposed to any bi-anisotropic response. In
contrast to the moving medium, in this case the (Bloch) impedance is different for different
propagation directions, as a ferrite-loaded TL is an asymmetric element.

Let us consider the unit cell analyzed earlier with one modification: instead of having a
series inductor and a shunt capacitor placed symmetrically on both sides of the core inductor-
gyrator circuit as seen in figure 2, we have a series capacitor and a shunt inductor as seen in
figure 9. The gyrator is considered to be ideal with gyration resistance of 100Ω. As before, we
have =L L1 2 = 1.15 μH and k = 0.8, and the air-filled TL segments are 0.15m long with 100 Ω
characteristic impedance. The additional components have the values C = 100 nF and L3 = 800
μH. Again, the total response of the unit cell (i.e., total ABCD matrix) can be easily calculated
analytically using known ABCD matrices for individual circuit elements. Knowing the ABCD
parameters for the whole cascade, we can calculate the dispersion, Bloch impedance, refractive
index, normalized velocity V, permittivity, and permeability for the given unit cell using
equations derived earlier.

The dispersion diagram of the proposed unit cell is shown in figure 10(a). At low
frequencies, only a backward wave can propagate in the structure with the propagation constant
having different values for opposite propagation directions. However, at frequency 509 kHz the
propagation constant corresponding to the positive (energy) propagation direction changes sign,
meaning that the phase velocity also changes sign. Therefore, at frequencies 509 kHz–638 kHz
as well as 711 kHz–1MHz, only a forward wave solution is possible for a wave propagating in
the positive direction, while for the opposite direction only a backward wave can propagate at
the same frequencies. At frequencies 638 kHz–711 kHz, there exists a stopband (independent of
the propagation direction); i.e., the CRLH TL is not balanced in this case. By changing the
values of the series capacitors and/or shunt inductors (e.g., changing C from 100 nF to 80 nF ),
the balanced condition could be achieved and thus the stopband eliminated. While the phase
velocity of the other solution changes sign at 509 kHz, the group velocity has a different sign for
the two solutions at all frequencies, unlike in the aforementioned case where the host line was a
common right-handed TL, but the coupling coefficient between the inductors was allowed to
exceed unity (implying activity). This is due to the dispersion of n, which is an unavoidable
property of all passive media with a negative refractive index. Having a dispersionless and
negative refractive index for a TL unit cell is only possible if active non-Foster elements
(negative capacitors/inductors) are used [14].

It should be noted that, here, backward propagation does not imply that the effective
refractive index, permittivity, and permeability are negative (as in a typical reciprocal CRLH
media) due to the effect of the velocity parameter V. This is demonstrated in figures 10(b) and
10(c), where the effective refractive index and velocity parameter as well as effective
permittivity and permeability are plotted, respectively. While at the lowest studied frequencies
the refractive index as well as both permittivity and permeability are negative, at frequencies

Figure 9. Unit cell with CRLH host line.
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higher than 700 kHz, all of them have positive values. However, despite this, the forward wave
exists for only one of the propagation directions due to non-zero velocity parameter V, as can be
seen from the dispersion diagram of figure 10(a). It should be noted that, as before, V depends
on the gyration resistance, the strength of the coupling between the inductors, and the period of
the structure, but not on the properties of the host TL. By changing the strength of the coupling
(i.e., coupling coefficient k), V can be changed independently of the other material parameters.
Notably, when only one of the material parameters (permittivity or permeability) is negative, we
naturally get an imaginary refractive index which leads to a non-zero imaginary part of the
propagation constant (i.e., a stopband). Nevertheless, the real part of the propagation constant is
non-zero as is also its slope, again due to the velocity parameter V. In the case of a physically
moving magnetodielectric medium with n′ > 1 or n′ <−1, we are, according to (3) and (4),
limited by the condition <V n| | | | when the velocity of the medium is smaller than the speed of
light in the stationary medium and >V n| | | | when it is larger than that. Clearly, the first
condition is satisfied only at the lowest analyzed frequencies, meaning that extremely high
velocities of a real magnetodielectric medium are needed in order to replicate the response at
higher frequencies.

Figure 10. Simulation results for for the unit cell shown in figure 9: (a) dispersion in an
infinite cascade of unit cells, (b) effective refractive index n and normalized velocity
parameter V, (c) effective permittivity and permeability, and (d) Bloch impedance.
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The Bloch impedance in this case is the same for both propagation directions and is shown
in figure 10(d). The real part of the Bloch impedance is zero in the stopband and fairly constant
in the two passbands (though having a resonance peak between the stopband and the second
passband), while the imaginary part is zero in the passband and non-zero and increasing in the
stopband. If the CRLH TL were balanced, the Bloch impedance would be almost constant, as
the stopband would disappear.

Finally, the refractive index of the real magnetodielectric medium in motion corresponding
to the artificial unit cell shown in figure 9 and the corresponding velocity of the medium are
shown in figures 11(a) and 11(b), respectively. These were acquired, as before, by solving (3) and
(4) for ′n and v c numerically. The behavior for the unit cell with the CRLH host line is quite
exotic. At the lowest examined frequencies, the refractive index is negative and increasing while
the velocity is positive and increasing. As the refractive index approaches zero, the velocity
approaches the speed of light in vacuum. Finally, at 510MHz the velocity has a resonance! This is
the point where we have = −n V and thus β =+ 0 1/m. For the rest of the analyzed frequencies,
the velocity is negative; i.e., the direction of movement changes. These higher frequencies
(excluding the stopband) correspond to the Čerenkov zone where the velocity of the medium
exceeds the speed of light in the corresponding stationary medium (c/n′). However, the real part
of the velocity still never exceeds the speed of light in vacuum. The refractive index has a negative
sign not only at 300MHz–510MHz, where only backward waves are supported, but also at
715MHz–1000MHz, where both backward and forward waves are supported. On the other hand,
the sign of ′n is positive at 510MHz–635MHz, where both backward and forward waves also are
supported. In the stopband (510–715MHz), ′n is purely imaginary. Also, the slope of the real part
of the refractive index is always positive as expected for passive media.

In the previous example, the physical velocity of the medium v was always smaller than
the speed of light in vacuum. However, this is not always the case. Looking at (3) and (4) and
demanding >v c 0, we can see that this means, in view of the effective parameters n and V,
that that we must simply have <n V| |, | | 1 (assuming ′ > ′ < −n n1 or 1). This can be achieved,
for example, by taking the unit cell analyzed previously in this section and reducing the value of
the inductors L1 and L2 from 1.15 μH to 4.15 nH. The material parameters for this case are
shown in figure 12. Clearly, the velocity exceeds the speed of light in vacuum on both sides of

Figure 11. Refractive index ′n (a) and velocity v (b) of the moving magnetodielectric
medium, which is emulated by the artificial unit cell shown in figure 9.
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the stopband, appearing approximately at 1.85MHz–2.17MHz. However, the effective
refractive index is notably highly dispersive here, which means that, as for the previous
example, the phase of the wave propagates only in one direction at some frequencies, but the
energy can still propagate in both directions at all frequencies.

7. Discussion

We have presented a realization of an artificial moving medium, that is, a nonreciprocal medium
at rest that effectively mimics the response of a magnetodielectric medium in motion. It should
be noted that though nonreciprocal media (both volumetric and transmission-line-based) have
been demonstrated before, this is to the best of our knowledge the first time that a medium with
a purely moving medium type of coupling has been demonstrated. The design is based on
transmission lines periodically loaded with symmetric, nonreciprocal circuits utilizing a gyrator.
The proposed unit cell has been analyzed analytically, numerically, and experimentally and has
been shown to behave effectively as a moving medium in a wide frequency range. Though there
is some omega coupling present in the proposed unit cell, as evidenced by the Bloch impedance
changing slightly with the propagation direction, it is very weak. In other suggested realizations
([3, 5, 8]), the effect of other bianisotropic coupling phenomena (chiral coupling, omega
coupling) is much more prominent. It was shown that the velocity parameter V can be varied
without affecting the effective refractive index of the medium by simply changing the coupling
between two inductors. The experimental results suggest that realizing complex velocity is also
possible using the proposed unit cell, opening a door for realizing novel nonreciprocal devices
not possible even by utilizing actually moving media. In the studied case, the effective velocity
of the medium was considerably smaller than the speed of light in the corresponding stationary
medium. This is always the case for the proposed unit cell, as the loading circuit is passive
(though realizations of gyrators are typically active). However, with a truly active loading
circuit, the speed of the medium is not limited, and velocities larger than the speed of light in the
corresponding stationary medium (and possibly even the speed of light in vacuum) could be

Figure 12. Effective material parameters n and V (a) and the physical material
parameters ′n and v (b) of the moving magnetodielectric medium, which is emulated by
the artificial unit cell shown in figure 9 in the case where the circuit parameters are
chosen so that physical velocity can exceed the speed of light in vacuum.
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achieved. In such media, energy could propagate only in one direction. As always with active
circuits, stability conditions for the circuit must, in that case, be taken into account, which
complicates the design. While the prototype shown here was designed for low radio
frequencies, the concept can be extended to any frequency range, though practical realization of
the unit cell is more difficult at higher frequencies. The state-of-the-art high-speed operational
amplifiers can have bandwidths up to a few gigahertz, though a novel solution would be needed
in order to realize mutually coupled inductors accurately at such high frequencies. Finally, it
was shown that using a CRLH host line instead of conventional right-handed host line in the
proposed unit cell allows us to tune the value of the effective refractive index more freely
without affecting the velocity parameter V. This also allows the realized TL medium to have the
unique property of supporting both forward and backward wave propagation at the same
frequency, depending on the propagation direction. Such a property could be advantageous in,
for example, design of leaky-wave antennas. Furthermore, it was shown that physically moving
a magnetodielectric medium corresponding to this artificial unit cell has very exotic refractive
index and velocity values not easily realizable with any physically moving magnetodielectric
media. Medium velocities exceeding even the speed of light in vacuum can in this case be
achieved. However, the material parameters are always highly dispersive for such unit cells due
to the negative effective refractive index, meaning that the energy can still always propagate in
both positive and negative propagation directions. Again, only by making the unit cell active
can we overcome this limitation.
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