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Abstract. It is well accepted that investors can be classified into groups
owing to distinct trading strategies, which forms the basic assumption of many
agent-based models for financial markets when agents are not zero-intelligent.
However, empirical tests of these assumptions are still very rare due to the lack of
order flow data. Here we adopt the order flow data of Chinese stocks to tackle this
problem by investigating the dynamics of inventory variations for individual and
institutional investors that contain rich information about the trading behavior
of investors and have a crucial influence on price fluctuations. We find that
the distributions of cross-correlation coefficient Ci j have power-law forms in
the bulk that are followed by exponential tails, and there are more positive
coefficients than negative ones. In addition, it is more likely that two individuals
or two institutions have a stronger inventory variation correlation than one
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individual and one institution. We find that the largest and the second largest
eigenvalues (λ1 and λ2) of the correlation matrix cannot be explained by random
matrix theory and the projections of investors’ inventory variations on the first
eigenvector u(λ1) are linearly correlated with stock returns, where individual
investors play a dominating role. The investors are classified into three categories
based on the cross-correlation coefficients CV R between inventory variations
and stock returns. A strong Granger causality is unveiled from stock returns to
inventory variations, which means that a large proportion of individuals hold
the reversing trading strategy and a small part of individuals hold the trending
strategy. Our empirical findings have scientific significance in the understanding
of investors’ trading behavior and in the construction of agent-based models for
emerging stock markets.
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1. Introduction

Stock markets are complex systems, whose elements are heterogenous individual and
institutional investors interacting with each other by stock exchanges [1–4]. Stock price
fluctuates due to investors’ trading activities, and the cross-sectional relation between investors’
stock inventory variations and stock returns has attracted much attention [5]. The large body
of literature falls into three groups: to study the relation between past returns and inventory
variations, to investigate the contemporaneous relation between inventory variations and stock
returns and to analyse the return predictability of inventory variations [6]. The main findings
are that institutions are trending investors adopting the momentum trading strategy [6–8], while
individuals are reversing investors who buy previous losers and sell previous winners [6, 8–11]
and stock returns lead inventory variations but not vice versa [5–8].

However, there is evidence showing different trading patterns. Lillo et al [5] investigated
the trading behavior of about 80 firms that were members of the Spanish Stock Exchange and
found that there were more reversing firms than trending firms. They also found that the largest
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eigenvalue of the correlation matrix of inventory variations cannot be explained by random
matrix theory (RMT) and its eigenvector contains information on stock price fluctuations. Both
buying and selling herding behavior has been observed for trending and reversing firms. In a
recent paper, an alternative identification approach of investor clusters has been proposed from
their real trading activity [12], which is based on the statistical validation of links in complex
networks [13–15].

In this work, we perform a similar analysis to that in [5] based on the trading records of
Chinese investors in the Shenzhen Stock Exchange. As officially documented by the Spanish
Stock Exchange, firms are local and foreign credit entities and investment firms which are
members of the stock exchange and are the only firms entitled to trade; that is, a firm is a
market member that usually acts as a brokerage house for individual and institutional investors7.
Therefore, in the Spanish case [5], the inventory variation over a given time interval is a sum
of the inventory variations of many individuals and institutions. Different from the Spanish
case, our data set contains both individual and institutional investors, which allows us to
observe interesting investor behavior. Our analysis starts from the perspective of random matrix
theory, which has been extensively used to investigate the cross-correlations of financial returns
in different stock markets [16–18]. However, very few studies have been conducted on the
Chinese stocks [19] and, to our knowledge, there is no research reported on the dynamics of
inventory variations of Chinese investors. Alternatively, there are studies on Chinese equities
at the transaction and trader level from the complex network perspective [20–23]. We note
that random matrix theory has very wide applications in physics from high-energy physics to
statistical physics; see [24] for a brief review and see the papers in this issue.

This paper is organized as follows. Section 2 describes the data and the method for
constructing the time series of investors’ inventory variations. Section 3 studies the statistical
properties of the elements, eigenvalues and eigenvectors of the correlation matrix of inventory
variations. Section 4 investigates the contemporaneous and lagged cross-correlation between
inventors’ inventory variations and stock returns to divide investors into three categories and
their herding behavior. Section 5 summarizes our findings.

2. The data

We analyze 39 stocks actively traded on the Shenzhen Stock Exchange in 2003. The database
contains all the information needed for the analysis in this work. For each transaction i of a given
stock, the data record the identities of the buyer and seller, the types (individual or institution)
of the two traders, the price pi and the size qi of the trade, and the time stamp. Therefore, the
trading history of each investor is known. For each stock, we identify active traders who had
more than 150 transactions, amounting to about three transactions per week. If the number of
active traders of a stock is less than 120, we exclude it from analysis. In this way, we have 15
stocks for analysis.

Following Lillo et al [5], we investigate the dynamics of the inventory variation of the most
active investors who executed more than 120 transactions for each stock. Although the trading
period of each day consists of call auction and continuous auction, their behavior is different
in many aspects and is usually studied separately [25, 26]. We stress that all the transactions in
both call auction and continuous auction are included in our investigation. The daily inventory

7 Private communication with R N Mantegna.
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Table 1. Basic statistics of the investigated stocks. The first column is the stock
code, which is the unique identity of each stock. The second and third columns
present investor-averaged total inventory variation 〈

∑
t v〉i and average absolute

variation 〈〈|v|〉t〉i . The fourth to eighth columns give the number of investors N ,
the number of trending investors N tr, the number of reversing investors N re, the
number of uncategorized investors N un and the slope of the factor versus stock
return k. The variables in the ninth to thirteenth columns are the same as those
in the five ‘all investors’ columns but for individual investors, and the last five
columns are for institutional investors. Each value in the last row gives the sum
of the numbers in the same column.

All investors Individuals Institutions

Code 〈
∑

t v〉i 〈〈|v|〉t 〉i N Ntr Nre Nun k Nind N tr
ind N re

ind N un
ind kind Nins N tr

ins N re
ins N un

ins kins

000001 −2.99 × 106 1.12 × 105 80 7 41 32 0.83 61 4 39 18 0.83 19 3 2 14 0.04
000002 1.01 × 106 1.46 × 105 80 6 29 45 0.49 42 2 26 14 0.52 38 4 3 31 0.06
000012 −1.64 × 106 7.88 × 104 81 5 20 56 0.19 78 5 20 53 0.18 3 0 0 3 0.06
000021 5.09 × 105 4.35 × 104 81 2 43 36 0.78 64 1 43 20 0.78 17 1 0 16 0.04
000063 1.46 × 107 2.46 × 105 80 9 20 51 0.13 20 2 13 5 0.71 60 7 7 46 0.05
000488 1.35 × 106 8.92 × 104 80 5 5 70 0.08 69 1 5 63 0.06 11 4 0 7 0.06
000550 4.20 × 106 7.53 × 104 81 2 37 42 0.18 45 0 35 10 0.18 36 2 2 32 0.06
000625 1.87 × 106 1.22 × 105 80 10 26 44 0.71 62 8 24 30 0.69 18 2 2 14 0.05
000800 2.53 × 106 2.56 × 105 80 6 19 55 0.30 31 1 17 13 0.31 49 5 2 42 0.06
000825 6.33 × 106 9.38 × 104 80 5 38 37 0.69 50 3 37 10 0.70 30 2 1 27 0.05
000839 8.13 × 105 6.67 × 104 80 2 40 38 0.84 60 2 38 20 0.84 20 0 2 18 0.04
000858 1.75 × 106 1.66 × 105 82 4 21 57 0.33 31 0 19 12 0.67 51 4 2 45 0.05
000898 6.26 × 106 1.20 × 105 83 6 32 45 0.79 46 0 31 15 0.80 37 6 1 30 0.04
200488 3.59 × 106 5.05 × 104 80 9 30 41 0.65 53 7 25 21 0.66 27 2 5 20 0.05
200625 6.27 × 106 1.26 × 105 83 9 14 60 0.50 46 5 9 32 0.58 37 4 5 28 0.05∑

– – 1211 87 415 709 – 758 41 381 336 – 453 46 34 373 –

variation of an investor i trading a given stock on day t is defined as follows:

vi(t) =

+∑
pi(t)qi(t) −

−∑
pi(t)qi(t), (1)

where
∑+ pi(t)qi(t) is the total buy quantity on trading day t and

∑
− pi(t)qi(t) is the total

sell quantity on the same day. The basic statistics of the 80 most active traders and the resultant
inventory variations are given in table 1. The time series of the daily inventory variations of
three investors trading stock 000001 are shown in figure 1.

3. Statistics of the correlation matrix between two time series of inventory variations

3.1. Distributions of cross-correlation coefficients

The empirical correlation matrix C is constructed from the time series of inventory variation
vi(t) of the investigated stock, defined as

Ci j =
〈(vi − 〈vi〉)(v j − 〈v j〉)〉

σiσ j
. (2)
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Figure 1. Typical time series of the daily inventory variations of three randomly
selected investors trading stock 000001.

Since the results for individual stocks are quantitatively similar, we put the cross-correlation
coefficients of the 15 stocks into one sample. We find that the mean value is 〈Ci j〉 = 0.02 for
the real data and 0 for the shuffled data. When the types of investors are taken into account,
the mean value of the cross-correlation coefficients is 〈Ci j〉 = 0.048 (shuffled: −0.001) for both
i and j being individuals, 〈Ci j〉 = 0.014 (shuffled: 0) for both i and j being institutions and
〈Ci j〉 = −0.008 (shuffled: −0.001) for i being individual and j being institution.

Figure 2 plots the daily returns of stock 000001 and the sliding average values of the
correlation coefficients 〈Ci j〉 for comparison. We observe that large values 〈Ci j〉 appear during
periods of large price fluctuations by and large, which is reminiscent of a similar result for cross-
correlations of financial returns [18]. However, the short time period of our data sample does
not allow us to reach a decisive conclusion. There are also less volatile time periods with large
〈Ci j〉. The situation is quite similar for other stocks.

Figure 3(a) shows the empirical probability distributions of Ci j , which is calculated using
daily inventory variation. The four curves with different markers correspond to Ci j , Cind,ind,
Cind,ins and Cins,ins, respectively. It is found that most coefficients are small and the tails are
exponentials:

P(C) ∝

{
e−λ−C , −0.6 < C 6−0.1,

e−λ+C , 0.1 < C 6 0.6,
(3)

where λ+ = 8.8 ± 0.2 and λ− = 11.1 ± 0.3 for Ci j , λ+ = 8.9 ± 0.2 and λ− = 12.5 ± 0.4 for
Cind,ind, λ+ = 10.8 ± 0.4 and λ− = 10.5 ± 0.4 for Cind,ins and λ+ = 6.6 ± 0.5 and λ− = 8.7 ± 0.5
for Cins,ins, respectively. We find that there are more positive cross-correlation coefficients
(λ+ < λ−) when both investors are individuals or institutions. In contrast, the distribution is
symmetric (λ+ ≈ λ−) when one investor is an individual while the other is an institution. This
finding implies that herding behavior is more likely to occur among the same type of investors,
and individuals have larger probability to herd than institutions. We shuffle the original time
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Figure 2. Evolution of the five-day average cross-correlation coefficient 〈Ci j〉 for
inventory variations and the daily return R.
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Figure 3. Empirical distributions of the cross-correlation coefficients for all
15 stocks. (a) Log–linear plot of P(Ci j) for cross-correlations between any
two investors, any two individuals, any one individual and one institution, and
any two institutions, which shows exponential forms when 0.1 < |C |6 0.6. The
dashed line corresponds to the result of shuffled data. (b) Log–log plot of P(Ci j),
which shows power-law forms when 10−5 < |C |6 0.01. (c) Comparison of the
occurrence numbers of positive and negative cross-correlations. The ordinate
gives log10[1 + N (Ci j)] rather than log10[N (Ci j)] for better presentation.

series and perform the same analysis. The resulting distributions collapse onto a single curve,
which has an exponential form

P(C) = λshuf e−λshufC , (4)

where the parameter λshuf = 23.3 is determined using robust regression [27, 28]. It is not
surprising that real data have higher cross-correlations than shuffled data, which is confirmed
by λ± < λshuf. This exponential distribution is different from the Gaussian distribution for the
shuffled data of financial returns [18].

Figure 3(b) plots the distributions in double logarithmic coordinates where the negative
parts are reflected to the right with respect to Ci j = 0. Nice power laws are observed spanning
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over three orders of magnitude:

P(C) ∝

{
(−C)−γ−, −0.01 < C 6−10−5,

C−γ+, 10−5 < C 6 0.01,
(5)

where γ+ = 0.69 ± 0.01 and γ− = 0.69 ± 0.01 for Ci j , γ+ = 0.67 ± 0.02 and γ− = 0.62 ± 0.02
for Cind,ind, γ+ = 0.67 ± 0.02 and γ− = 0.70 ± 0.02 for Cind,ins and γ+ = 0.72 ± 0.02 and γ− =

0.73 ± 0.02 for Cins,ins, respectively. It is found that γ− ≈ γ+ and all the power-law exponents
are close to each other. An intriguing feature is that the distributions of Ci j , Cind,ind and
Cind,ins exhibit evident bimodal behavior, which is reminiscent of the distributions of waiting
times and inter-event times of human short message communication [29]. Certainly, the
underlying mechanisms are different and the factors causing the bimodal distribution of the
cross-correlations are unclear.

We have tried to fit the data with the stretched exponential distribution [30, 31]. However,
we do not observe significant improvement, especially in the tails. The worst fit is obtained for
the ‘ind–ind’ case.

It is natural that we are interested more in large cross-correlations. The preceding
discussions focus on cross-correlations not larger than 0.6. As shown in figure 3(a), there are
pairs of inventory variation time series that have very large cross-correlations that look like
outliers. For better visibility, we plot in figure 3(c) the numbers of occurrences of positive
and negative cross-correlations in ten nonoverlapping intervals for the four types of pairs. It is
shown that N (C > 0) > N (C < 0) in all intervals for C = Ci j , Cind,ind and Cind,ins. In contrast,
N (Cind,ins > 0) < N (Cind,ins < 0) when Cind,ins < 0.6 and N (Cind,ins > 0) > N (Cind,ins < 0) when
Cind,ins > 0.6. Hence, for larger cross-correlations (|C | > 0.6), there are many more occurrences
of positive cross-correlations than negative ones for all four types of pairs. This striking feature
can be attributed to two reasons. The first is that a large proportion of investors react to the
same external news in the same direction [5]: they buy following good news and sell following
bad news. The second is that investors imitate the trading behavior of others of the same type
and rarely imitate other investors of different types. The second reason is rational because
the friends of individual (or institutional) investors are more likely individual (or institutional)
investors.

3.2. The eigenvalue spectrum

For the correlation matrix C of each stock, we can calculate its eigenvalues whose density fc(λ)

is defined as [16]

fc(λ) =
1

N

dn(λ)

dλ
, (6)

where n(λ) is the number of eigenvalues of C less than λ. If M is a T × N random matrix with
zero mean and unit variance, fc(λ) is self-averaging. In particular, in the limit N → ∞, T → ∞

and Q = T/N > 1 fixed, the probability density function fc(λ) of eigenvalues λ of the random
correlation matrix M can be described as [16, 18, 32]

fc(λ) =
Q

2πσ 2

√
(λmax − λ)(λ − λmin)

λ
, (7)
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Figure 4. Eigenvalue spectrum of the correlation matrix of inventory variation
of investors trading stock 000001 within 1 day time horizon in 2003. The solid
line is the spectral density obtained by shuffling independently the buyers and
the sellers in such a way as to maintain the same number of purchases and
sales for each investor as that in the real data. The dashed blue line shows
the spectral density predicted by random matrix theory using equation (7) with
Q = 237/80 = 2.96. The inset shows the largest eigenvalue λ1 (©) and the
second largest eigenvalue λ2 (�) of all 15 investigated data sets from 15 stocks.
The solid line indicates the upper thresholds by shuffling experiments, and the
dashed line presents the threshold predicted by random matrix theory.

with λ ∈ [λmin, λmax], where λmax
min is given by

λmax
min = σ 2(1 + 1/Q ± 2

√
1/Q), (8)

and σ 2 is equal to the variance of the elements of M [16, 32]. The variance σ 2 is equal to 1 in
our normalized data.

Figure 4 illustrates the probability distribution fc(λ) of the correlation matrix of inventory
variation of investors trading stock 000001. The solid line is the spectral density obtained
by shuffling independently the buyers and the sellers in such a way as to maintain the same
number of purchases and sales for each investor as that in the real data, while the dashed blue
line shows the spectral density predicted by random matrix theory using equation (7) with
Q = 237/80 = 2.96. We find the largest eigenvalue is well outside the bulk and the second
largest eigenvalue also escapes the bulk. The results for the other 14 stocks are quite similar. In
the inset of figure 4, we plot the largest eigenvalues λ1 and the second largest eigenvalues λ2

for all 15 stocks. We find that all the largest eigenvalues are well above the upper thresholds
determined from shuffling experiments and the thresholds λmax in equation (8) predicted by
random matrix theory. Moreover, all the second largest eigenvalues are above the two threshold
lines and some of them are well above the thresholds. These findings indicate that both the
largest and the second largest eigenvalues carry information about the investors, which is
different from the results of the Spanish stock market, where only the largest eigenvalue is
larger than the up thresholds while the second largest eigenvalue is within the bulk [5]. This
discrepancy can be attributed to the difference in the two markets and the fact that our analysis
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lines show the Gaussian distribution predicted by random matrix theory.

contains both individuals and institutions, while Lillo et al studied only firms. It probably
implies that an RMT analysis of the Spanish data is not capable of distinguishing firms’ classes.
In contrast, at least two classes of Chinese investors can be identified based on λ2. However, it
is hard to understand what the differences between the two classes of Chinese investors are.

3.3. Distribution of eigenvector components

If there is no information contained in an eigenvalue, the normalized components of its
associated eigenvector should conform to a Gaussian distribution [16–18]:

f (u) =
1

√
2π

exp

(
−

u2

2

)
. (9)

Since the empirical eigenvalue distribution fc(λ) deviates from the theoretic expression (6)
from random matrix theory with two large eigenvalues outside the bulk of the distribution, it
is expected that the associated eigenvectors also contain certain information.

For correlation matrices of financial returns, the components of an eigenvector with the
eigenvalue λ in the bulk of its distribution (λmin < λ < λmax) are distributed according to
equation (9) [16–18]. Panels (a) and (b) of figure 5 show the empirical distributions of the
eigenvector components u with the eigenvalues in the bulk for two typical stocks. Rather than
analyzing the vector for one eigenvector, we normalized the components of each eigenvector
and put all the eigenvectors together to gain better statistics, since each eigenvector has only 80
components. We find that the distributions of ten stocks are well consistent with the Gaussian,
while the other five stocks exhibit high peaks at the center around u = 0.
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For deviating eigenvalues λ1 and λ2, the distribution for each stock is very noisy and
deviates from Gaussian. We treat the components of the 15 eigenvectors as a sample to have
better statistics. The two distributions obtained are illustrated in figures 5(c) and (d). It is evident
that both deviate from the Gaussian distribution and the distribution for λ1 is more skewed. We
have plotted the components of each eigenvector and found that they are remarkably asymmetric
with respect to u = 0. The quantile–quantile plots in reference to a normal distribution further
confirm that the eigenvectors are not Gaussian. We do not show those figures here.

3.4. Information in eigenvectors for deviating eigenvalues

We have shown that the largest and the second largest eigenvalues deviate from the RMT
prediction and the distributions of their eigenvector components are not Gaussian. It implies that
these eigenvectors carry some information. For u(λ2), it is not clear what kind of information
they carry. We find no evident dependence of the magnitude of ui(λ2) on the average absolution
inventory variation 〈|vi |〉, the total variation

∑
vi , or the maximal absolute variation max{|vi |}.

The same conclusion is obtained for ui(λ1), which differs from the conclusion that the
eigenvector components of the return correlation matrix depend on the market capitalization
in a logarithmic form [18]. For the correlation matrix of stock returns, the deviating eigenvalues
except λ1 contain information on industrial sectors [18] or stock categories [19]. It is natural to
conjecture that λ2 for inventory variations contains information on investor classification based
on their trading behavior. Unfortunately, we are not able to identify clear differences in the
trading behavior of investors, although we will show in the next section that the investors can be
categorized into three trading types. We find no relation between the trading strategy category
and the magnitude of the vector component u(λ2). We thus focus on extracting the information
from u(λ1).

For the correlation matrix whose elements are the correlation coefficients of price
fluctuations of two stocks, the eigenvector of the largest eigenvalue contains market
information [16, 17]. The market information indicates the collective behavior of stock
price movements [33], which can be unveiled by the projection of the time series on the
eigenvector [18]. We follow this approach and calculate the projection G(t) of the time series
Vi(t) = [vi(t) − 〈vi(t)〉]/σi on the eigenvector u(λ1) corresponding to the first eigenvalue [5]:

G(t) =

∑
i

Vi(t) × ui(λ1)(t). (10)

The projection G can be called the factor associated with the largest eigenvalue [5]. We plot
the factor G(t) against the normalized return R(t) for stock 000001 in figure 6(a). There is
a nice linear dependence between the two variables and a linear regression gives the slope
k = 0.83 ± 0.04. It indicates that these most active investors have a dominating influence on
the price fluctuations. This is not surprising because the majority of the investors had very few
trading activities.

Panels (b) and (c) of figure 6 illustrate the relation between the factor for individuals and
institutions and the return of the stock. Linear regression gives kind = 0.83 ± 0.04 and kins =

0.41 ± 0.06. Comparing panels (b) and (c) with (a), we find that the influence of individuals
matches excellently with the whole sample, which can be quantified by the facts that kind = k
and kind < k. The results are similar for other stocks. The resulting kind and kins are plotted in
figure 6 against k for all 15 stocks. For individual investors, we find that kind = k for 13 stocks
and kind > k for 2 stocks. In contrast, we find that kins < k except for one stock.
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Figure 6. Influence of the most active investors trading stock 000001 on the
price fluctuations for all the investigated investors (a), for individual investors
(b) and for institutional investors (c), where the slopes are k = 0.83 ± 0.04,
kind = 0.83 ± 0.04 and kins = 0.41 ± 0.06, respectively. Panel (d) plots kind and
kins against k, where each symbol corresponds to a stock.

An interesting question is to ask the lagged correlation between returns R and dominant
mode G. In particular, one would be interested in the potential predictability of G on the returns.
The factor G(t) has predictive power if it is significantly correlated with R(t + 1). This test
cannot be done using the data in figure 6 because the G(t) time series contains information on
the time period investigated. Indeed, the analysis performed above is in a descriptive manner, as
done in factor analysis in econometrics [34]. A crude analysis by plotting R(t + 1) against G(t)
does not uncover any significant correlations. A proper way is to determine the G(t) time series
in moving windows. However, we do not proceed due to the fact that we have only the data over
one year. Nevertheless, we argue that this can be done when longer data sets are available and
this idea can be adopted in other cases when the records are sufficiently long.

4. Inventory variation and stock return

4.1. Categorization of investors

Following Lillo et al [5], we divide the investors into three categories according to the cross-
correlation coefficient CVi R between the inventory variation Vi and the stock return R. The
investor i belongs to the trending or reversing category if its inventory variation is positively
or negatively correlated with the return. We use a wieldy significant threshold to categorize the
investors:

±2σ = ±2/
√

NT , (11)

where NT is the number of time records for each time series [5]. We also verify the robustness
of equation (11) by comparing the experimental results with the results of a null hypothesis
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Figure 7. Panels (a)–(c) show the scatter plots of CV R versus a proxy of the size
of the investor. For each stock, the proxy is the ratio of the value exchanged by
the investor (scaled by a factor of 104) to the capitalization of the stock. Each
marker refers to an investor trading a specific stock. The three kinds of markers
refer to investors whose inventory variations are positively correlated (©),
negatively correlated (�) or uncorrelated (M) with returns according to the block
bootstrap analysis. The two dashed lines indicate the 2σ threshold calculated
using equation (11). Panels (d)–(f) are contour plots of the correlation matrix
of daily inventory variation of investors trading the stock 000001. We have
sorted the investors into rows and columns according to their cross-correlation
coefficients of inventory variation with its price return CV R. The evolution of
CV R in the same order as in the matrix is shown in the bottom panel, where the
dashed lines bound the ±2σ significance intervals.

based on a block bootstrap of both R and V . In this regard, 1000 block bootstrap replicas
with a block length of 20 are performed. For each investor, we have checked whether the
estimated correlation with return exceeds the 0.977 25 quantile or is smaller than the 0.022 75
quantile of the correlation distribution obtained from bootstrap replicas. The results are shown
in figures 7(a)–(c). There are 1211 investors in the whole sample in figure 7(a), including 453
institutional investors in figure 7(b) and 758 individual investors in figure 7(c).

As shown in the last row of table 1, the numbers of the three kinds of investors (trending,
reversing and uncategorized) are 46, 34 and 373 for institutional investors and 41, 381 and 336
for individual investors, respectively. We find that most institutional investors are uncategorized
and there are more trending investors than reversing investors. These results are different from
the Spanish case, where only one-third investors are uncategorized and the number of reversing
firm investors is about thrice as much as the number of trending firm investors [5]. In contrast,
about half of the individuals are reversing investors and only 6% of the individuals are trending
investors. The observation that most investors are uncategorized is probably due to the fact that
the Chinese market was emerging and its investors are not experienced. Comparing individuals
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and institutions, we find a larger proportion of individuals exhibiting reversing behavior. This
indicates that these individuals buy when the price drops and sell when the price rises on the
same day. This finding is very interesting since it explains the worse performance in stock
markets [10, 11].

The empirical evidence for the significant cross-correlation between inventory variation
Vi(t) of trending and reversing investors and stock return R(t) leads us to adopt a linear model
for the dynamics of inventory variation as a first approximation [5]:

Vi(t) = γi R(t) + εi , (12)

where γi is proportional to the cross-correlation coefficient CVi ,R. It follows immediately that
the cross-correlation coefficient between the inventory variations of two investors is

Ci j = CVi ,Vi = γiγ j . (13)

If two investors belong to the same category, either trending (γi > 2σ and γ j > 2σ , significantly)
or reversing (γi < −2σ and γ j < −2σ , significantly), the value of Ci j is expected to be
significantly positive. In contrast, if two investors belong, respectively, to the trending and
reversing categories, the value of Ci j is expected to be significantly negative. To show the
performance of the model, we plot the contours of the correlation matrix of inventory variation
for all investors, for individuals and for institutions, where the investors are sorted according
to their cross-correlation coefficients CV R of the inventory variation with the price return.
Figure 7(d) shows that the left-top corner gives large positive Ci j values and the left-bottom
and right-top corners give large negative Ci j values, as expected. Figure 7(e) gives better results
for individual investors, validating the linear model (12). The results in figure 7(f) are worse for
institutional investors, which is due to the fact that most CV R values are small for institutions, as
illustrated in figure 7(c). However, figure 7(f) does not invalidate the linear model, since there
are only three trending institutions and two reversing institutions. Indeed, the situation is quite
similar for other individual stocks with very few investors of the same category, as shown in
table 1.

4.2. Causality

In section 4.1, we have shown that the inventory variation Vi(t) and the stock return R(t) have
significant positive or negative correlation for part of the investors. It is interesting to investigate
the lead–lag structure between these two variables. For the largest majority of reversing and
trending firms in the Spanish stock market, it is found that returns Granger cause inventory
variation but not vice versa at the day or intraday level, and the Granger causality disappears
over longer time intervals [5]. Here, we aim to study the same topic for both individual and
institutional investors.

We first investigate the autocorrelation function CV (t)V (t+τ) of the inventory variation time
series sampled in 15 min time intervals. Figure 8(a) shows the three autocorrelation functions for
all the trending, reversing and uncategorized investors. Each autocorrelation function is obtained
by averaging the autocorrelation functions of the investors in the same category to have better
statistics. It is found that the inventory variation is long-term correlated and the correlation is
significant over dozens of minutes and the correlation is stronger for trending investors than
reversing investors, which can be partly explained by the order splitting behavior of large
investors [5, 35–38]. We also find that uncategorized investors have stronger autocorrelations
than trending and reversing investors, which is different from the Spanish case [5]. However, it
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Figure 8. The first column (a, d, g, j) shows the results for all investors.
The second column (b, e, h, k) shows the results for all individual investors.
The third column (c, f, i, l) shows the results for all institutional investors.
(a–c) Averaged autocorrelation functions CV (t)V (t+τ) of the 15 min inventory
variation V for trending, reversing and uncategorized investors. The dashed
lines give the 5% significance level. (d)–(f) Averaged lagged cross-correlation
functions CV (t)R(t+τ) of the 15 min inventory variation for trending, reversing and
uncategorized investors. The dashed lines bound the ±2σ significance interval.
(g)–(i) Conditional expected value of the indicator I (x → y) of the rejection
of the null hypothesis of non-Granger causality between x and y with 95%
confidence as a function of time horizons 1T . The dashed lines show the 5%
significance level. (j)–(l) Conditional expected value of the indicator I (x → y)

as a function of the simultaneous cross-correlation C[Vi(t), R(t)]. The black
symbols refer to the Granger test on shuffled data and the dashed lines bound
±2σ significance interval.
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is not clear why uncategorized investors have stronger autocorrelations than trending investors.
Figures 8(b) and (c) illustrate the results for individuals and institutions. We observe that
institutions have stronger long memory than individuals. This implies that institutions are more
persistent in adopting their trading strategies while individuals are more likely to change their
strategies.

Panels (d)–(f) of figure 8 illustrate the averaged lagged cross-correlation functions
CV (t)R(t+τ) between inventory variations and returns. The results in the three panels are
qualitatively the same. For uncategorized investors, no significant cross-correlations are found
between inventory variations and returns, which is trivial due to the ‘definition’ of this category,
as shown in figures 7(a)–(c). For trending and reversing investors, it is evident that the
returns lead the inventory variations by dozens of minutes (τ < 0), where the cross-correlation
CV (t)R(t+τ) is significantly nonzero. When the price drops, trending investors will sell stock
shares to reduce their inventory in a few minutes, while reversing investors will buy shares to
increase their inventory. When the price rises, trending investors will buy shares to increase their
inventory in a few minutes, while reversing investors will sell shares to reduce their inventory.
In the meanwhile, we also observe nonzero cross-correlations for τ > 0 in shorter time periods,
which means that the inventory variations lead returns.

To further explore the lead–lag structure between inventory variations and returns, we
perform Granger causality analysis. We define an indicator I (X → Y ), whose value is 1 if X
Granger causes Y and 0 otherwise [5]. In our analysis, the time resolution of the two time
series is 15 min. The values of I (V → R) and I (R → V ) for all investors are determined
at different time scales 1T . The average indicator values E[I (V → R)] and E[I (R → V )]
are plotted in figures 8(g)–(i) with respect to 1T for all investors, individual investors and
institutional investors. Both I (V → R) and I (R → V ) are decreasing functions of 1T . We
note that E[I (X → Y )] is the percentage of investors with I (X → Y ) = 1. Figure 8 shows that
there are more investors with I (R → V ) = 1 than investors with I (V → R) = 1. On average,
bidirectional Granger causality is observed at the intraday time scales and the Granger causality
disappears at the weekly level or longer. Moreover, individual investors are more probable to be
influenced by the intraday price fluctuations than institutions, because the I (R → V ) values of
individuals are greater than those of institutions at the same time scale level.

We then investigate the impact of investor category on the causality indicator. The
results for 1T = 4 (i.e. 1 h) are depicted in figures 8(j)–(l). The middle parts bounded
by two vertical lines at CV R = ±σ correspond to uncategorized investors. The left parts
(CV R < −σ ) correspond to reversing investors and the right parts CV R > ±σ correspond to
trending investors. It is found that an investor adjusts his inventory following price fluctuations
with very large probabilities when his |CV R| value is large. This conclusion holds for both
individual and institutional investors. The strong Granger causality from inventory variations
to returns and the weak but significant causality from returns to inventory variations cannot
be attributed to the non-Gaussianity in the distributions of the variables, as verified by
bootstrapping analysis. The effect that inventory variations Granger cause return is stronger
for institutional investors. Qualitatively similar results are obtained for other 1T values. The
observation that inventory variations seem to also Granger cause returns for both trending and
reversing firms is not surprising. It reflects that executed orders causing inventory variations
have temporary or permanent price impacts [39–41]. We note that the Granger causality from
inventory variation to return is much weaker for the Spanish market [5]. This can be explained
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Table 2. The number of herding days for different groups of investors. The total
number of trading days is 237. The superscripts ‘+’ and ‘−’ indicate buy herding
and sell herding, respectively. The subscripts ‘d’ and ‘s’ indicate individuals and
institutions, respectively. The time horizon is one day.

Reversing Trending Uncategorized

Code n+
d n−

d n+
s n−

s n+
d n−

d n+
s n−

s n+
d n−

d n+
s n−

s

000001 60 63 0 0 0 0 0 0 6 8 0 0
000002 23 19 0 0 0 0 0 0 3 6 0 0
000012 26 37 0 0 0 0 0 0 2 1 0 0
000021 54 62 0 0 0 0 0 0 4 3 1 0
000063 34 34 2 1 0 0 0 0 0 0 1 1
000488 0 0 0 0 0 0 0 0 2 1 0 0
000550 17 34 0 0 0 0 0 0 0 0 2 1
000625 21 15 0 0 3 7 0 0 5 2 0 0
000800 29 25 0 0 0 0 0 0 7 7 0 0
000825 34 31 0 0 0 0 0 0 0 0 0 0
000839 61 58 0 0 0 0 0 0 7 7 0 0
000858 38 36 0 0 0 0 0 0 0 1 0 0
000898 55 40 0 0 0 0 0 0 3 4 0 0
200488 31 24 0 0 0 0 0 0 2 7 0 3
200625 6 6 0 0 0 0 0 0 3 6 0 3

by the fact that the Chinese stock market was most inefficient as a young emerging market and
the investors were less skilled and more irrational.

4.3. Herding behavior

Herding and positive feedbacks are essential for the boom of bubbles [42, 43]. These topics
have been studied extensively to understand the price formation process [44–47]. Herding is a
phenomenon where a group of investors are trading in the same direction over a period of time.
Here, we try to investigate possible herding behavior in different groups of investors.

We study possible buy and sell herding behavior among groups of the same investors.
Investors are classified into different groups based on their types (individual or institution) and
their categories (reversing, trending or uncategorized). We define a herding index as follows [5]:

h =
N +

N + + N−
, (14)

where N + is the number of buying investors and N− is the number of selling investors in the
same group over a given time horizon. When the herding index h is smaller than 5% under
a binomial null hypothesis, we assess that herding is present. In our analysis, we fix the time
horizon to one day and determine the number of days that herding was present for different
groups of investors. The results are depicted in table 2.

According to table 2, there are no buying and selling herding days observed for trending
institutions. For trending individuals and reversing institutions, herding is observed in only one

New Journal of Physics 14 (2012) 093025 (http://www.njp.org/)

http://www.njp.org/


17

stock on very few days. For categorized investors, we see slightly more herding days in a few
stocks. For reversing investors, the number of herding days is greater than that for other investors
and we observe comparable buying and selling herding days. Our findings are consistent with
those for the Spanish stock market, especially in the sense that reversing investors are more
likely to herd [5]. Our analysis also allows us to conclude that individuals are more likely to
herd than institutions in 2003.

5. Summary

In summary, we have studied the dynamics of investors’ inventory variations. Our data set
contains 15 stocks actively traded on the Shenzhen Stock Exchange in 2003 and the investors
can be identified as either individuals or institutions.

We studied the cross-correlation matrix Ci j of inventory variations of the most active
individual and institutional investors. It is found that the distribution of cross-correlation
coefficient Ci j is asymmetric and has a power-law form in the bulk and exponential tails. The
inventory variations exhibit stronger correlation when both investors are either individuals or
institutions, which indicates that the trading behavior is more similar within investors of the
same type. The eigenvalue spectrum shows that the largest and the second largest eigenvalues
of the correlation matrix cannot be explained by the random matrix theory and the components
of the first eigenvector u(λ1) carry information about stock price fluctuation. In this respect, the
behavior differs for individual and institutional investors.

Based on the contemporaneous cross-correlation coefficients CV R between inventory
variations and stock returns, we classified investors into three categories: trending investors
who buy (sell) when stock price rises (falls), reversing investors who sell (buy) when stock price
rises (falls), and uncategorized investors. We also observed that stock returns predict inventory
variations. It is interesting to find that about 56% of individuals hold trending or reversing
strategies and only 18% of institutions hold strategies. Moreover, there are far more reversing
individuals (50%) than trending individuals (6%). In contrast, there are slightly more trending
institutions (10%) than reversing institutions (8%). Hence, Chinese individual investors are
prone to selling winning stocks and buying losing stocks, which provides supporting evidence
that trading is hazardous to the wealth of individuals [9, 10].

In this work, we have focused on the zero-lag cross-correlations among inventory
variations. It is possible to perform further investigations. One possibility is to study the
correlation matrix constructed from time-lagged cross-correlations of the inventory variations
as in [48–50]. In the Granger causality analysis, the lagged cross-correlations between inventory
variation and return have already been considered. For inventory variation and return and
their magnitudes, when longer time series become available, we can perform detrended cross-
correlation analysis [51] and multifractal cross-correlation analysis [52, 53] and determine
their statistical significance [54]. Another possibility is to research the absolute values of the
inventory variations, which is a natural idea as the pair of return and volatility.
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