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Abstract

An elliptical inclusion (covering both void and rigid inclusions) embedded in an
infinite and finite elastic plane subject to uniform and nonuniform (m-th order
polynomial) anti-plane loading conditions is analyzed. An analytical solution in
terms of the stress field for an infinite plane is developed through the method of
analytic function and conformal mapping. Closed-form complex potentials and
analytical expressions for Stress Concentration Factors (SCFs) are obtained. The
results show that (i.) the SCF value decreases with an increasing loading order,
so that the influence of the non-uniformity of the anti-plane loads on the SCF is
revealed to be beneficial from the failure point of view; (ii.) decrease in the SCF
value for an infinite plane is monotonic, which does not hold true for a finite plane.
The results for an infinite plane are confirmed and extended for finite planes by
exploiting the well-known heat–stress analogy and the finite element method. It
is worth mentioning that the comparison between the analytical solution for an
infinite plane and the numerical solution for finite plane is provided, showing that
the analytical solution of an infinite plane can be used as an accurate approximation
to the case of a finite plane. Moreover, the proposed heat–stress analogy can be
exploited to study the crack–inclusion interaction or multiply connected bodies.
The computational efficiency of the proposed methodology makes it an attractive
analysis tool for anti-plane problems with respect to the full scale three-dimensional
analysis.

Keywords: anti-plane elasticity, SCF, SIF, crack, heat–stress analogy, composites,
Laplace equation.

1 Introduction

The increasing demand of lightweight high-strength composite materials is undeniable in
a wide range of applied sciences such as structural, mechanical, aerospace, nuclear and
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chemical engineering. On the other hand, voids, cracks, defects and inclusions in struc-
tures are known to generate stress concentrations and they are detrimental to the overall
strength and durability of structure. For instance, composite materials are susceptible to
premature failure during their service time due to the stress concentration around voids
or fibers leading to the formation of cracks or micro-cracks. The evolution of these cracks
often leads to catastrophic failures [1, 2, 3]. Therefore, the determination of the stress
fields near a hole or an inclusion (in an elastic plane) is a key problem for the engineering
design of high-strength composite materials [4].

The problem of stress concentration around holes or inclusions under plane and anti-
plane loading has been under intense investigation [5, 6, 7, 8, 9, 10] but mostly analytical
solutions have been derived primarily for an infinite plane subject to uniform loading
conditions. An experimental proof of stress concentrations around circular holes has
been provided in [5, 11] and around polygonal inclusions in [12, 13] through photoelastic
experiments. In addition, real world experiments on mortar specimens containing cylin-
drical inclusions have been conducted in [14] showing that the stress concentrations lead
to crack openings around the inclusion.

Let us now restrict our attention to the problem of anti-plane elasticity which some-
times is considered to be a sort of a mathematical abstraction, yet the anti-plane problem
of an inclusion embedded in an infinite elastic plane is fundamental in fiber-reinforced
composites and crack problems [15]. Some simple real life examples of anti-plane prob-
lems are reported in detail in [16]. Most often, the anti-plane problem of an inclusion has
been investigated with respect to uniform boundary conditions [17, 18, 19, 20, 21, 22, 23].
Nevertheless, nonuniform loadings have also been taken into account by [24, 25, 26, 27,
28, 29, 30, 31, 32]. Recently, the problem of a circular void and a rigid inclusion em-
bedded in a bounded domain (annulus) subject to uniform and nonuniform anti-plane
shear has been solved analytically in [16]. Moreover, multiple inclusions embedded in an
infinite plane subject to uniform anti-plane shear have been analyzed in [33, 34, 35].

Though the problem of an elliptical hole in an infinite plane subject to uniform anti-
plane shear load has been thoroughly investigated in [36], herein we extend the solution for
nonuniform loading conditions (an infinite class of mth-order polynomials). Our solution
covers both void and rigid inclusions, together with a crack or a rigid line inclusion
(stiffener) obtained in the limit (when the minor axis of an ellipse tends to zero).

Despite the fact that nowadays different kinds of linear and nonlinear mechanical
and physical problems can be solved numerically by an increasing number of powerful
computer methods, closed-form solutions are still widely preferred over the numerical
solutions mainly for two reasons. Firstly, analytical solutions can be used as benchmarks
for validating the numerical results. Secondly, and more importantly, analytical solutions
often lead to meaningful physical insights into the problem under consideration which may
sometimes reveal some surprising and counter-intuitive features of the general solution.

Keeping in mind the above-mentioned facts, we first derive an analytical solution in
terms of a complex potential through the method of analytic function together with a
conformal mapping, and then we obtain the closed-form expression of Stress Concen-
tration Factor (SCF) for both void and rigid elliptical inclusions forming the core of an
infinite plane. While for a finite plane, a numerical solution is obtained by exploiting the
heat–stress analogy via the finite element method. A comparison between the analytical

2
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and numerical values of the SCFs for an elliptical inclusion and Stress Intensity Factors
(SIFs) for a line inclusion show that the analytical solution of an infinite plane can be
used as an accurate approximation to the case of a finite plane. Finally, the numerical
analysis is extended to the problem of a crack or a stiffener by calculating the corre-
sponding SIF values via the heat–stress analogy and finite element method by exploiting
the concept of J-integral. In particular, the proposed methodology can easily handle
the study of complex loading conditions and even interactions among inclusions and/or
cracks. At last, a three-dimensional validation completes the analysis.

The paper is organized as follows: In Section 2, we present the problem governing
equations and polynomial loading conditions in an anti-plane elasticity setting. In Section
3, we derive an analytical solution in terms of a closed-form complex potential and SCFs
for an elliptical inclusion embedded in an infinite plane subject to uniform and nonuniform
anti-plane shear loads. In Section 4, we focus on the numerical solution through the finite
element method for the two-dimensional model by exploiting the heat–stress analogy and
then extend the numerical analysis to a three-dimensional validation model. Finally, we
compare the numerical results with the analytical findings and show that the analytical
solution for an infinite plane can be safely used for a finite plane when the size of the
inclusion is less than or equal to five.

2 Anti-plane problem governing equations and poly-

nomial loading condition

Let us consider the case of anti-plane deformation in a Cartesian coordinate system
(x, y, z) with the displacement field taking the form

ux = uy = 0, uz = w(x, y). (1)

Consequently, the only non-zero shear stress components are given by constitutive equa-
tions through shear modulus µ and the gradient of the displacement field w as

τxz = µw,x, τyz = µw,y, (2)

where the differentiation with respect to variables x and y is denoted by comma. The
stress field (2) in the absence of body forces must satisfy the equilibrium and compatibility
equations

τxz,x + τyz,y = 0, τxz,y − τyz,x = 0, (3)

or in other words, the well-known Laplace equation and the Schwarz theorem for non-zero
displacement field w, as

∇2w = w,xx + w,yy = 0, w,xy = w,yx. (4)

At last, the modulus of the shear stress can be obtained as a positive eigenvalue of the
stress tensor in the form

τ =

√
(τxz)

2 + (τyz)
2. (5)

3
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Following [29, 30], an infinite class of nonuniform force boundary conditions for out-
of-plane problems is considered through the following polynomial series of m-th order
(m ∈ N) for remote shear stress components (τ iz with i = x, y)

τ (m)
xz (x, y) =

m∑

j=0

b
(m)
j xm−jyj, τ (m)

yz (x, y) =

m∑

j=0

c
(m)
j xm−jyj, (6)

where constants b
(m)
j and c

(m)
j (j = 1, ...,m) are related to the two loading coefficients

b
(m)
0 and c

(m)
0 through

b
(m)
j =

(−1)⌊j/2⌋m!

2j! (m− j)!

[
b
(m)
0

[
1 + (−1)j

]
+ c

(m)
0

[
1− (−1)j

]
]
,

c
(m)
j =

(−1)⌈j/2⌉m!

2j! (m− j)!

[
b
(m)
0

[
1− (−1)j

]
+ c

(m)
0

[
1 + (−1)j

]
]
,

(7)

where symbols ⌊·⌋ and ⌈·⌉ stand, respectively, for floor and ceiling functions, while symbol

! represents the factorial function. Moreover, b
(m)
0 and c

(m)
0 are two constants defining

the boundary condition for each order m of the polynomial and represent a measure of
the remote shear stress. For instance, the shear stress state along the x1-axis takes the
following form:

τ (m)
xz (x, 0) = b

(m)
0 xm, τ (m)

yz (x, 0) = c
(m)
0 xm. (8)

In case m = 0, loading constants b
(0)
0 and c

(0)
0 are usually called uniform anti-plane shear

or Mode III loading, see Figure 1 in [29]. Finally, one can obtain the modulus of the
shear stress (5) in polar coordinates, obtained from equation (14) in [29], which results
to be independent of the circumferential angle θ,

τ (m)(r) = rm
√[

b
(m)
0

]2
+
[
c
(m)
0

]2
. (9)

Equation (9) will be useful in the calculation of SCF along the boundary of an ellipse.
It is clear from equation (9) that the contour levels of the remote shear stress modulus
are concentric circles centered at the origin of the axes.

In the following, we analyze the extreme cases of an elliptical inclusion covering both
void (plus sign) and rigid (minus sign) inclusions distinguished by χ = ±1. In what
follows, the solution is obtained for the elliptical inclusion and its limiting cases. The
symbol embedded within angle brackets is used as an apex to distinguish the problems
and related physical quantities: elliptical inclusion 〈◦◦〉 with the limit case of circular
inclusion 〈◦〉 and the limit case of line inclusion 〈−〉, the case of crack 〈c〉 and the case of
stiffener 〈s〉. It is worth noting that in the following sections (3 and 4) we first analytically
solve the problem of an elliptical void or a rigid inclusion embedded in an infinite plane
subject to uniform and nonuniform anti-plane shear and then extend the solution by
exploiting finite element analysis and the heat–stress analogy to a finite plane. Finally,
by comparing the SCFs from both methods we show that the analytical solution for an
infinite plane can be used in the case of a finite plane with great accuracy.

4
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1

D = ¥

D
 =

¥

Figure 1: An elliptical inclusion embedded in an infinite plane, D = ∞, (namely the ẑ-plane)
is mapped conformally via function w(ζ) onto a circular inclusion of unit radius embedded in
an infinite plane (namely the ζ-plane).

3 Analytical solution for an elliptical inclusion em-

bedded in an infinite plane

The full-field solution for the Laplace equation governing the anti-plane elastic problem
is obtained through the complex potential technique together with a conformal mapping
[6, 31]. An infinite plane containing an inclusion of a generic shape (ẑ-plane) is mapped
onto an infinite plane containing a circular inclusion of a unit radius (ζ-plane), see Figure
1. The problem is formulated by introducing a complex potential f (m)(ẑ), function of the
complex variable ẑ = x+iy, with i denoting the imaginary unit. Due to the superposition
principle, the complex potential f (m)(ẑ) can be considered as a sum of an unperturbed

complex potential f
(m)
∞ (ẑ) (when the inclusion is absent), and a perturbed potential

f
(m)
p (ẑ) (perturbation induced by the inclusion). Finally, the complex potential f (m)(ẑ)
from the ẑ-plane can be transformed to the ζ-plane by using a mapping function ẑ = ω(ζ)
as

g(m)(ζ) = f (m)(ω(ζ)). (10)

For the sake of conciseness, some fundamental definitions are summarized in Table 1 for
both planes.

The unperturbed complex potential f
(m)
∞ (ẑ) for each orderm can be obtained by using

the self-balanced remote polynomial stress field equation (6) as follows

f (m)
∞ (ẑ) = T (m)ẑm+1, T (m) =

1

m+ 1

(
b
(m)
0 − i c

(m)
0

)
, (11)

which for the particular case of a uniform anti-plane shear loadingm = 0 returns equation
(20) in [20].

5
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Table 1: The correspondence among the physical quantities in both real (ẑ-plane) and auxiliary plane
(ζ-plane).

physical quantities ẑ-plane ζ-plane

complex potential f (m)(ẑ) = f
(m)
∞ (ẑ) + f

(m)
p (ẑ) g(m)(ζ) = g

(m)
∞ (ζ) + g

(m)
p (ζ)

displacement field w(m)(ẑ) =
1

µ
Re[f (m)(ẑ)] w(m)(ζ) =

1

µ
Re[g(m)(ζ)]

stress field τ
(m)
xz (ẑ)− iτ

(m)
yz (ẑ) = f (m)′(ẑ) τ

(m)
xz (ζ)− iτ

(m)
yz (ζ) =

g(m)′(ζ)

ω′(ζ)

shear force resultant

along an arc
⌢
BC

F ⌢

BC
(ẑ) = Im

[
f (m)(ẑC)− f (m)(ẑB)

]
F ⌢

BC
(ζ) = Im

[
g(m)(ζB)− g(m)(ζC)

]

3.1 Conformal mapping and closed-form complex potential

Exterior region of an elliptical inclusion is transformed onto the exterior region of the
unit circle by the mapping function [6]

ẑ〈◦◦〉 = ω〈◦◦〉(ζ) = eiα
(
1 + k

2
a

)[
ζ +

(
1− k

1 + k

)
1

ζ

]
, (12)

with

k =
b

a
∈ [0, 1], (13)

denoting the aspect ratio of an ellipse with semi-major axis a and semi-minor axis b
along x and y, respectively. Moreover, α denotes the angle of rotation of an ellipse in the
ẑ−plane, see Figure 1. The lower and upper bounds of parameter k represent a crack of
length 2a and a circle of radius a respectively.

By using definition (11) and the binomial theorem, it is possible to write the unper-
turbed complex potential as

g
(m)〈◦◦〉
∞ (ζ) = T (m)

(
1 + k

2
a

)m+1

eiα(m+1)

m+1∑

j=0

(m+ 1)!

j! (m+ 1− j)!

(
1− k

1 + k

)j

ζm+1−2j . (14)

Equation (14) is divided into a positive and a negative power series as

(15)

g
(m)〈◦◦〉
∞ (ζ) = T (m)

(
1 + k

2
a

)m+1

eiα(m+1)

[
Q∑

j=0

(m+ 1)!

j! (m+ 1− j)!

(
1− k

1 + k

)j

ζm+1−2j

+
m+1∑

j=Q+1

(m+ 1)!

j! (m+ 1− j)!

(
1− k

1 + k

)j
1

ζ2j−m−1)

]
,

6
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where Q ∈ N0 is given by a floor function as

Q =

⌊
m+ 1

2

⌋
= 0, 1, 1, 2, 2, 3, 3, · · · , for m = 0, 1, 2, 3, 4, 5, 6, · · · . (16)

It is worth noting that the numerical behavior of Q is fundamental in the SCF values.
Imposing the null traction or displacement boundary condition along the unit circle in
the conformal plane (ζ-plane) leads to a closed-form perturbed complex potential

g
(m)〈◦◦〉
p (ζ) =

(
1 + k

2
a

)m+1
[
χT (m)e−iα(m+1)

(
Q∑

j=0

(m+ 1)!

j! (m+ 1− j)!

(
1− k

1 + k

)j
1

ζm+1−2j

− (2Q)!

Q!Q!

(
1− k

1 + k

)Q

δ2Q,m+1

)

− T (m)eiα(m+1)

m+1∑

j=Q+1

(m+ 1)!

j! (m+ 1− j)!

(
1− k

1 + k

)j
1

ζ2j−m−1)

]
.

(17)

By using the superposition principle, the sum of the unperturbed (15) and perturbed
(17) complex potentials leads to the closed-form expression of the complex potential as

(18)

g(m)〈◦◦〉(ζ) =
(
1 + k

2
a

)m+1
[

Q∑

j=0

(m+ 1)!

j! (m+ 1− j)!

(
1− k

1 + k

)j
(
T (m)eiα(m+1)ζm+1−2j

+ χe−iα(m+1) T (m)

ζm+1−2j

)
− χT (m)e−iα(m+1) (2Q)!

Q!Q!

(
1− k

1 + k

)Q

δ2Q,m+1

]
.

For instance, for a non-rotated (α = 0) elliptical void (χ = 1) with aspect ratio (k = 1/3)
the complex potential (18) takes the following forms for uniform, linear and quadratic
(m = 0, 1, 2) anti-plane shear loads, respectively;

g(0)〈◦◦〉(ζ) = 2

3
a

(
T (0)ζ +

T (0)

ζ

)
,

g(1)〈◦◦〉(ζ) = 4

9
a2

(
T (1)

(
ζ2 + 1

)
+

T (1)

ζ2

)
,

g(2)〈◦◦〉(ζ) = 4

9
a3

(
T (2)ζ +

T (2)

ζ

)
+

8

27
a3

(
T (2)ζ3 +

T (2)

ζ3

)
.

(19)

Equation (18) simplifies according to the two physical limits of an ellipse, namely, a circle
and a line inclusion, as follows: k = 1 corresponds to a circular inclusion of radius a and
gives

(20)g(m)〈◦〉(ζ) = am+1

[
T (m)eiα(m+1)ζm+1 + χe−iα(m+1) T

(m)

ζm+1

]
.

7
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It is worth mentioning that the solution does not depend on angle α due to an infinite
number of axes of symmetry of the circle. Therefore, equation (21) semplifies to

(21)g(m)〈◦〉(ζ) = am+1

[
T (m)ζm+1 + χ

T (m)

ζm+1

]
,

which for uniform anti-plane shear case (m = 0) turns into the case investigated in
[20, 29, 22]. For k = 0, corresponding to a line inclusion, i.e., a crack or a stiffener of
length 2a, the complex potential takes the following form:

(22)

g(m)〈−〉(ζ) =
(a
2

)m+1
[

Q∑

j=0

(m+ 1)!

j! (m+ 1− j)!

(
T (m)eiα(m+1)ζm+1−2j

+ χe−iα(m+1) T (m)

ζm+1−2j

)
− χe−iα(m+1)T (m)

(2Q)!

Q!Q!
δ2Q,m+1

]
,

which for uniform anti-plane shear (m = 0) and null rotation (α = 0) turns to the case
studied in [20, 29].

An example of the full-field solution (18) for an elliptical inclusion having aspect ratio

k = 1/3 and being subject to uniform anti-plane shear (b
(0)
0 = 0 for a void or c

(0)
0 = 0 for

a rigid inclusion) is reported in Figure 2. The contour plots of the modulus of the shear
stress show that the position of maximum shear stress does not remain at the tip of the
ellipse but moves according to the angle of rotation (α) of the inclusion. Moreover, the
stress concentration decreases along with an increase in angle α, as expected. In par-
ticular, stress concentration values SCF ∼= {4, 3.83, 3.33, 2.59, 1.77, 1.33} are obtained for
angles with constant interval α = {0◦, 18◦, 36◦, 54◦, 72◦, 90◦}, respectively. The angle of
the maximum SCF in the first quadrant is given by θ ∼= {0◦, 17.3◦, 34.4◦, 51.1◦, 65.5◦, 0◦},
respectively.

3.2 Stress concentration factors

Closed-form expression for the stress concentration factors for an elliptical void, or an
elliptical rigid inclusion, embedded in an infinite plane is derived in this section for each
m through the well-known denition:

SCF(m)
∞ (θ, α) =

τ (m)(θ, α)

τ (m)(θ, α)
, (23)

where angles α and θ are defined in Figure 1. Moreover, subscript ∞ of SCF denotes
the analytical solution for an infinite plane. By using the equations provided in Table 1,
equation (5) and by knowing that

Q∑

j=0

(m+ 1− 2j)

j! (m+ 1− j)!

(
1− k

1 + k

)j

≥ 0, ∀m, (24)

8
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Figure 2: Full-field solution in terms of the modulus of shear stress as a contour plot for an
elliptical inclusion (k = 1/3), with different rotation angles α, embedded in an infinite plane

subject to uniform (m = 0) anti-plane shear (b
(0)
0 = 0 for a void or c

(0)
0 = 0 for a rigid inclusion).

it is possible to obtain the modulus of shear stress τ (m)〈◦◦〉(γ, α) in the conformal plane as

τ (m)〈◦◦〉(γ, α) = (m+ 1)! am(1 + k)m+1
∣∣∣F (m)

j (γ, α)
∣∣∣

(m+ 1) 2m+ 1

2

√
k2 + 1 + (k2 − 1) cos(2γ)

Q∑

j=0

(m+ 1− 2j)

j! (m+ 1− j)!

(
1− k

1 + k

)j

,

(25)

where symbol |·| represents the absolute value of the given function. Angle γ is defined

in Figure 1, while angular function F (m)
j (γ, α) is given by the following expression:

(26)

F (m)
j (γ, α) =

[ [
(b

(m)
0 (1− χ) + c

(m)
0 (χ+ 1)

]
cos((m+ 1− 2j)(γ + α))

−
[
(χ− 1)c

(m)
0 + b

(m)
0 (χ+ 1)

]
sin((m+ 1− 2j)(γ + α)))

]
.

The modulus of the shear stress in (25) can be transformed onto the elliptical contour
in the physical plane by exploiting the relationship between angle γ in the ζ-plane and

9
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angle θ in the ẑ-plane:

tan γ =
1

k
tan(θ − α), (27)

therefore angle γ is written as γ = arctan[k cos(θ−α), sin(θ−α)], where the trigonometric
function arctan[x, y] gives arcus tangent of y/x. It should be noted that for the particular
case of a circular inclusion (k = 1) the modulus of shear stress in the physical plane
simplifies to

(28)
τ (m)〈◦〉(θ) = am

∣∣∣
[
b
(m)
0 (1− χ) + c

(m)
0 (χ+ 1)

]
cos((m+ 1)θ)

−
[
(χ− 1)c

(m)
0 + b

(m)
0 (χ+ 1)

]
sin((m+ 1)θ)

∣∣∣ .

By using the definition of the modulus of the principle shear stress in (9), it is possible to
obtain the unperturbed shear stress along the congruent ellipses contour in the ẑ-plane
as

τ (m)〈◦◦〉(θ, α) =
(

k a√
k2 cos2(θ − α) + sin2(θ − α)

)m√(
b
(m)
0

)2
+
(
c
(m)
0

)2
. (29)

Finally, by putting together equations (23), (25), (27) and (29) one can obtain the final
formula for the stress concentration in the physical plane. Due to the limited space, we
do not report the final general expression of the SCF but only one of the most significant
cases. For instance, when the inclusion rotation is disregarded (α = 0) the SCF at the
tip (θ = 0) of the ellipse takes the form

SCF
(m)〈◦◦〉
∞ (0, 0) =

(m+ 1)! (k + 1)m+1

(m+ 1)k 2m+1

∣∣∣(1 + χ)c
(m)
0 + (1− χ)b

(m)
0

∣∣∣
√(

b
(m)
0

)2
+
(
c
(m)
0

)2

Q∑

j=0

(m+ 1− 2j)

j! (m+ 1− j)!

(
1− k

1 + k

)j

.

(30)
It should be noted that for the case of a hole (χ = 1) with the corresponding loading

condition (b
(m)
0 = 0) or for the case of a rigid inclusion (χ = −1) with the corresponding

loading condition (c
(m)
0 = 0) equation (30) simplifies to

SCF
(m)〈◦◦〉
∞ (0, 0) =

(m+ 1)! (k + 1)m+1

(m+ 1)k 2m

Q∑

j=0

(m+ 1− 2j)

j! (m+ 1− j)!

(
1− k

1 + k

)j

, (31)

which for the case of uniform anti-plane shear loading (m = 0) returns equation (50)
drived in [22]. In addition, it is worth mentioning that at the limit m → ∞ for a fixed
k 6= 0, equation (31) returns SCF= 2.

Analytical formulae obtained from equation (30) are reported in Table 2 for different
loading orders m = 0, 1, 2, ..., 10. It should be noted that the SCF values for void and
rigid inclusions are the same but the loadings are switched. This feature is due to the
analogy between void and rigid inclusions explained in detail in [29]. While the overall
behavior of the SCFs is depicted in Figure 3 showing that when k → 1 (a circular hole)

10
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the SCF value tends to value 2 as in [16, 20, 29, 22]. On the other hand, when k → 0 (a
crack) then the value of SCF explodes to infinity, so that the definition of stress intensity
factor is needed. It is worth mentioning that in Table 2 and Figure 3 one can notice that
unlike the uniform case each pair of order m produces the same SCF value. This peculiar
behavior stems from the floor function of parameter Q in equation (16).

Table 2: Analytical formulae for the SCFs covering both void and rigid inclusions (for void (χ = 1)

with b
(m)
0 = 0, for rigid (χ = −1) with c

(m)
0 = 0). In particular, the inclusion rotation is ignored, i.e.,

α = 0, and the body is subject to a uniform or nonuniform anti-plane loading with m = 0, 1, 2, ..., 10).

m SCF
(m)〈◦◦〉
∞ (0, 0)

0 [22] k+1
k

1&2 k+1
k

[
k+1
2

]

3&4 k+1
k

[
(k+1)2(3−k)

8

]

5&6 k+1
k

[
(k+1)3(k2−4k+5)

16

]

7&8 k+1
k

[
(k+1)4(5k3−25k2+47k−35)

128

]

9&10 k+1
k

[
(k+1)5(7k4−42k3+102k2−122k+63)

256

]

3.3 Stress intensity factors

According to [30, 32], the stress intensity factors for the symmetric and antisymmetric
anti-plane problems are defined, respectively, as

K
〈s〉
III = lim

ρ→0

√
2πρ τρ3(ρ, 0), K

〈c〉
III = lim

ρ→0

√
2πρ τϑ3(ρ, 0), (32)

where 〈s〉 and 〈c〉 refer to a stiffener and crack, respectively. While ρ represents the radial
distance form the crack tip. Let us consider a line inclusion (k = 0) of length 2a with
null rotation (α = 0). The asymptotic stress field and the inverse mapping procedure
given in [30] yield the following analytical formula for the stress intensity factors for each
loading order m:



K

(m)〈s〉
III∞

K
(m)〈c〉
III∞


 =

√
πa

2m(m+ 1)

Q∑

j=0

(m+ 1)! (m+ 1− 2j)

j! (m+ 1− j)!




τ
(m)
xz (a, 0)

τ
(m)
yz (a, 0)


 . (33)

It is worth mentioning that when a stiffener is subject to antisymmetric and a crack is
subject to symmetric loading no singularity is activated in both cases meaning that both

11
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D = ¥

Figure 3: Overall graphical behavior of the analytical SCF values (Table 2) for the extreme
cases of an elliptical inclusion. In particular, the inclusion rotation is ignored, i.e., α = 0, and
the body is subject to a uniform or nonuniform anti-plane loading with m = 0, 1, 2, ..., 10).

SIFs are identically zero. For a more detailed explanation, please see Section 2.2 of [29].
Moreover, it should be noted that subscript ∞ of KIII denotes the analytical solution for
an infinite plane.

4 Comparison between analytical and numerical re-

sults and three-dimensional model validation

4.1 Two-dimensional model and heat–stress analogy

The governing equations in anti-plane elasticity and two-dimensional thermal conduc-
tion [40] are mathematically identical, see Table 2 in [16]. Therefore, stress analysis is
conducted by solving a 2D heat conduction problem within the finite element method
(FEM) software Comsol Multiphysics c© (version 4.2a). The results for an infinite plane
are confirmed by taking a plane 10 times bigger than the inclusion. The stress analysis
is finally extended to the crack or stiffener problem through the concept of J-integral.

To solve the problem, we select the heat transfer module within the software with
stationary study and two-dimensional space. We choose the built-in basic elastic material
with Young’s modulus E and shear modulusG (equivalent to µ) as the material properties
of the physical space. For the case of a void, a null traction vector boundary condition
along the ellipse contour is imposed, which is fulfilled by selecting the open boundary
option available in the model. Whereas for the rigid inclusion problem, a zero temperature
(null displacement) boundary condition along the ellipse contour is imposed.

The whole domain is meshed by using the user-controlled mesh option with custom-
free triangular element size at two levels. At the first level, the domain is meshed with the

12
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maximum element size of 0.05 D (with D being the side length of the square enclosure).
At the second level, the boundaries of the elliptical hole are meshed with the maximum
element size of 0.01 D. At last, convergence is checked for the accuracy of the geometry
and the solution field.

The comparison between the analytical solution obtained for an elliptical or a line
inclusion embedded in an infinite plane and the numerical results for the corresponding
finite plane using FEM is made through the concept of percent error %error defined as

%error =

∣∣∣∣
Vnumerical − Vanalytic

Vnumerical

∣∣∣∣× 100, (34)

where V stands for any analytical or numerical scalar value.
In Table 3, we present the numerical SCF values for an elliptical inclusion embedded

in a square-shaped finite domain and a comparison between the numerical and analytical
values is reported according to (34). When the error is less than 3 percent, it is highlighted
in bold. The study is carried out for various aspect ratios D/(2a) and k with uniform

and nonuniform anti-plane plane conditions (b
(0)
0 = 0 for a void and c

(0)
0 = 0 for a rigid

inclusion) and for different loading orders m = 0, 1, 2.

4.2 SCFs: infinite plane vs finite plane

For an elliptical inclusion (with different aspect ratios k = 1, 1/3, 1/5, 1/10) embedded in
a square-shaped finite domain (with varying dimensions D/(2a) = 1.5, 2, 3, 4, 5) subject

to uniform and nonuniform anti-plane plane loading (b
(0)
0 = 0 for a void and c

(0)
0 = 0 for

a rigid inclusion) under different loading orders m = 0, 1, 2, 3, 4, the overall behavior of
the dimensionless SCF values is depicted in Figure 4. In Table 3, in turn, we present a
comparison between the analytical SCF values for an infinite domain and the numerical
values for a finite domain, through the concept of percent error given in equation (34).
The results lead to the following observations:

• The case of uniform loading (m = 0) produces the most severe stress concentrations.

• Only for the circular inclusion, the SCF values decrease monotonically along with
an increase in the loading order m.

• For an elliptical inclusion, instead of monotonically increasing, the SCF values
oscillate according to the even and odd loading orders: SCF

(0)
D > SCF

(2)
D > SCF

(4)
D >

SCF
(1)
D > SCF

(3)
D .

• Surprisingly, for aspect ratio as small as D/(2a) = 5, the error is already approxi-
mately equal or less than 3 %, see Table 3 (entries highlighted in bold) and Figure
5. Therefore, the analytical solution of an infinite plane can be used as an accurate
approximation to the case of a finite plane already for lower aspect ratios than
D/(2a) ≥ 10 generally considered as a realistic engineering limit for the infinite
plane hypothesis.

13
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• The analytical prediction for the existence of two stress annihilation points at θ =
π/2, 3/2π is confirmed numerically for an elliptical void with aspect ratio k = 1/3
embedded in a finite square plane (with D/(2a) = 5) subject to uniform (m = 0)

anti-plane shear (c
(0)
0 ), see Figure 5.

It is worth mentioning that the above-listed results can be considered to be relevant
for the engineering design processes of the fast running world, as ready-made analytical
formulae are preferred to time-consuming and computationally costly numerical analysis.

Table 3: Numerical SCF values (subscript D indicates the numerical solution for finite domains) for
an elliptical inclusion embedded in a square-shaped finite plane, with varying aspect ratios D/2a and

k, subject to uniform and nonuniform anti-plane plane shear (b
(0)
0 = 0 for a void or c

(0)
0 = 0 for a rigid

inclusion) with loading orders m = 0, 1, 2. (Bold highlights that the percent error is less than 3%.)

cross-section D/(2a) SCF
(0)〈◦◦〉
D (0, 0) %error SCF

(1)〈◦◦〉
D (0, 0) %error SCF

(2)〈◦◦〉
D (0, 0) %error

D

1.5 3.48362 42.6 2.45472 18.5 2.18321 8.3

2 2.59180 22.9 2.11990 5.7 2.18199 1.6

3 2.21817 9.8 2.02228 1.1 2.03269 0.2

4 2.11552 5.5 2.00702 0.3 2.00106 0.1

5 2.07198 3.5 2.00290 0.1 2.00047 0.0

D

1.5 5.74030 30.3 2.81249 5.1 3.08833 13.7

2 4.73766 15.6 2.70651 1.4 2.83744 6.0

3 4.28149 6.6 2.67478 0.3 2.73107 2.3

4 4.15141 3.6 2.66977 0.1 2.70167 1.3

5 4.09512 2.3 2.66841 0.0 2.68906 0.8

D

1.5 8.24163 27.2 3.74732 3.9 4.16855 13.6

2 6.97222 13.9 3.64032 1.1 3.83994 6.2

3 6.37496 5.9 3.60810 0.2 3.69234 2.5

4 6.20160 3.3 3.60291 0.1 3.65025 1.4

5 6.12624 2.1 3.60155 0.0 3.63208 0.9

D

1.5 14.62243 24.8 6.24673 3.1 6.98105 13.3

2 12.60267 12.7 6.10232 0.9 6.45220 6.2

3 11.62290 5.4 6.05814 0.1 6.20432 2.5

4 11.33498 2.9 6.05120 0.0 6.13255 1.3

5 11.20904 1.9 6.04929 0.0 6.10126 0.8

4.3 SIFs: infinite plane vs finite plane

The concept of J-integral [39] has been thoroughly exploited in what follows for the crack
problem in order to calculate the stress intensity factor for the specific given boundary
value problem. J-integral for a plane problem is defined as

J =

∮

C

(
Wdy −T · ∂u

∂x
ds

)
, (35)
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m=0
m=2

m=4

m=1

m=3

m=0

m=2

m=4

m=1

m=3

m=0

m=2

m=1

m=4

m=3

m=0m=4

m=2

m=1

m=3

D D

D D

Figure 4: Dimensionless SCF values for both void and rigid elliptical inclusions. In particular,
the inclusion with rotation is ignored, i.e., α = 0 and the body is subject to uniform and
nonuniform anti-plane shear with m = 0, 1, 2, ..., 10. Unlike in the uniform case, each pair of
m produces the same SCF value due to equations (16) and (30). The SCF value 2 is obtained
for a circular void (k = 1) subject to any loading order, as shown in [30]. When k → 0, a line
inclusion is obtained and the value of SCF tends to infinity.

where C denotes any counterclockwise contour surrounding the crack tip, s stands for
the curvilinear coordinate along the contour C, W denotes the strain-energy density, T
represents a traction vector defined according to the outward normal to the contour,
and u denotes the displacement vector. However, if we restrict our attention to the
anti-plane problem under consideration the classical definition of mode-III J-integral for
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Analytical
solution

Figure 5: Analytical predictions of maximum SCF values 4 at the tip of an ellipse (θ = 0)
with the 2 peculiar stress annihilation points at θ = π/2, 3/2π are confirmed numerically for
an elliptical void with aspect ratio k = 1/3 embedded in a finite square plane having length
D/(2a) = 5 (similar result is also obtained for torsion problem in [37]) when subject to uniform

(m = 0) anti-plane shear (c
(0)
0 ).

out-of-plane states leads to the following integral expression:

JIII =

∮

C

[(
τ 2xz + τ 2yz

2µ

)
nx − (τxznx + τyzny)

∂w(x, y)

∂x

]
ds. (36)

Here nx and ny denote the Cartesian components of the outward unit normal to contour C
along the x- and y-directions, respectively. It is worth mentioning that term ∂w(x, y)/∂x
is equivalent to τxz/µ as per equation (2), therefore

JIII =
1

2µ

∮

C

[(
τ 2yz − τ 2xz

)
nx − 2 (τyzτxz)ny

]
ds. (37)

Considering the asymptotic behavior of the kinematic and stress fields, equation (36)
reduces to the following relation connecting the J-integral to the well known SIF [38]:

KIII =
√

2µJIII. (38)

Equation (38) represents a key tool in the evaluation of the SIF and is used in combination
with finite element analysis in the next subsection in order to confirm the theoretical SIF
values of (33) for an infinite plane, considered valid for a finite plane as well (under
certain assumptions). For the sake of clarity and completeness, in Appendix we have

16



Accepted in Theoretical and Applied Fracture Mechanics , 25 July (2018)

m=0

m=2

m=4

m=1

m=3

D

Figure 6: Dimensionless values of SIFs for both a crack and a stiffener are presented, in
particular when the line inclusion (distinguished by the symbol 〈−〉) has null rotation (α = 0).
The system is subject to uniform and nonuniform (m = 0, 1, 2, 3, 4) anti-plane loading conditions

(b
(0)
0 = 0 for a void or c

(0)
0 = 0 for a rigid inclusion).

given the derivation of the stress intensity factor for a crack of length 2a embedded in
an infinite elastic plane subject to uniform loading.

For the numerical evaluation of the stress intensity factor for finite domains, we
have considered a square contour surrounding a crack tip defined by the corresponding
normals, see Figure 6, at the definition level of the model within the heat transfer module.
Moreover, at the same level, integration operator (37) is defined. In the post-processing
part, a global evaluation of the SIF from the derived values is recovered. The SIF values
for a crack or a stiffener (k = 0) embedded in a square-shaped finite domain (with
aspect ratios D/(2a) = 1.25, 1.5, 2, 3, 4, 5) subject to uniform and nonuniform anti-plane

plane shear (b
(0)
0 = 0 for a void or c

(0)
0 = 0 for a rigid inclusion) with loading orders

m = 0, 1, 2, 3, 4 is analyzed and, accordingly, the overall behavior of the dimensionless
SIF values for the finite domain is graphically depicted in Figure 6. In Table 4, we present
a comparison between the analytical SIF values for an infinite domain and the numerical
values for a finite domain, through the concept of percent error given in equation (34).
The results show the following:

• Similarly to the case of an elliptical inclusion, the SIF values for a line inclusion
oscillate as a function of even and odd loading orders.

• Slightly differently to the case of an elliptical inclusion, already for aspect ratio
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Table 4: Numerical SIF values for a line inclusion (distinguished by the symbol 〈−〉) embedded in a
square-shaped finite plane, with varying aspect ratios D/(2a) subject to uniform and nonuniform anti-

plane plane condition (b
(0)
0 = 0 for a void or c

(0)
0 = 0 for a rigid inclusion) with different loading order

m = 0, 1, 2 are presented. (Bold font highlights that the percent error is less than 3%.)

cross-section D/(2a) K
(0)〈−〉
IIID %error K

(1)〈−〉
IIID %error K

(2)〈−〉
IIID %error

D

1.25 1.56562 36.1 0.53553 6.6 0.64986 23.1

1.5 1.28568 22.2 0.51316 2.6 0.57404 12.9

2 1.12923 11.4 0.50359 0.7 0.53294 6.2

3 1.05064 4.8 0.50067 0.1 0.51287 5.0

4 1.02718 2.6 0.50019 0.0 0.50695 2.7

5 1.01685 1.7 0.50007 0.0 0.50435 0.9

D/(2a) = 4 the error is less than 3 % (highlighted in bold in Table 4). Therefore,
the analytical solution for an infinite plane can be safely used as an approximation
for finite domains with aspect ratios D/(2a) ≥ 4.

4.4 Three-dimensional model validation

Finally, we perform a three-dimensional stress analysis in order to illustrate the problem
setting and for validating the (two-dimensional) plane model. We investigate an elliptical
void with aspect ratio k = 1/3 embedded in a square enclosure (with side length D = 3a)
subject to uniform anti-plane shear, see Figure 7. Due to symmetry, only one quarter
of the domain is analyzed. The length of the square prism with a collinear elliptical
void is set to about 7D leading to a stress field close to the corresponding stress field
of the plane model. The plane on which the stress field is analyzed is placed in the
middle of the longitudinal axis of the square prism. The three-dimensional model is
meshed as follows: at first, the cross section is meshed with free-shaped quadrilateral
finite elements together with local mesh refinements near the elliptical contour, then the
mesh is swept along the longitudinal axis of the square prism (resulting in a hexahedral
mesh, altogether 19400 finite elements). Moreover, we have checked the convergence
of the finite element approximation through the comparison of the resulting SCF value
aiming at a discretization error less than 0.01 %. A unit surface load is applied at the top
horizontal edge of the model and it is defined as force per unit area, while the bottom
horizontal edge is fixed. In addition, a symmetry boundary condition is applied to the
left vertical edge. In Figure 7, the dimensionless shear stresses of the body are plotted on
the elliptical contour for a cut plane placed in the middle of the longitudinal axis. The
SCF value for the three-dimensional model equals to 5.7629, whereas the SCF value of
the two-dimensional model equals to 5.7403, giving a deviation, i.e., a modelling error,
of about 0.39%. At last, the distributions of all the components of the stress tensor are
plotted in the Figure 7 showing that all the null stress components of the anti-plane shear
problem disappear in the three-dimensional model as well (being of order 10−13).
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D
=
3
a

a
a/3

5.7629

Figure 7: A quarter of a square prism with a collinear elliptical void subject to uniform anti-plane
shear (m = 0): dimensionless shear stress field (top right), cut plane (bottom right) and dimensionless
stress curves (left) on the arc length p of the elliptical contour of the cut plane.

5 Conclusions

An infinite linearly elastic plane containing an elliptical inclusion subject to an infinite
class of nonuniform polynomial anti-plane shear loadings have been analyzed first ana-
lytically and then numerically. First, closed-form expressions for the complex potential
and the stress concentration factor have been derived for an elliptical inclusion. The
solution covers both void and rigid elliptical inclusions forming the core of the infinite
plane. Second, the analytical solution in terms of stress fields has been confirmed and
extended to bounded enclosures via the heat–stress analogy by using finite element anal-
ysis. A comparison between the numerical and analytical results shows that, beyond the
hypothesis of an infinite plane, the analytical solution for an elliptical or a line inclusion
can be used with great accuracy for the design purposes of finite planes with aspect ratios
close to five. The stress intensity factor of the limiting case of an ellipse, i.e., a crack or
a stiffener, have also been reported for various aspect ratios.
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APPENDIX - SIF for a crack in an infinite elastic plane subject to uniform

anti-plane shear

We shortly give the derivation of the stress intensity factor for a crack of length 2a
embedded in an infinite plane subject to uniform (m = 0) loading (b

(0)
0 = 0) through

equation (36). We start by exploiting the celebrated conformal mapping, ẑ = ω(ζ), and
inverse mapping for a crack given as

ẑ〈c〉 =
a

2

(
ζ +

1

ζ

)
, ζ =

ẑ〈c〉 −
√
a+ ẑ〈c〉

√
ẑ〈c〉 − a

a
. (I.1)
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By using the general complex potential (22) and equations (I.1), we obtain the complex
potentials in the ζ-plane and in the ẑ-plane as

g〈c〉(ζ) = i
a c

(0)
0

2

(
1

ζ
− ζ

)
, f 〈c〉(ẑ〈c〉) = ic

(0)
0

√
ẑ〈c〉 − a

√
a+ ẑ〈c〉. (I.2)

The derivative of the complex potential (I.2)2 yields the complex stress field in the
physical plane as

τ 〈c〉xz + iτ 〈c〉yz =
ic

(0)
0 ẑ〈c〉√

ẑ〈c〉 − a
√
a+ ẑ〈c〉

. (I.3)

From the complex potential (I.2)2, we obtain the displacement field as well

w〈c〉 = − 1

µ
Im
[
c
(0)
0

√
ẑ〈c〉 − a

√
a+ ẑ〈c〉

]
. (I.4)

It should be noted that by evaluating numerically integral (36) in a counterclockwise
sense, by starting along the circular contour from the lower flat crack surface −π and
continuing along the path C to the upper flat surface π, one obtains the desired result.
In particular, the circular contour C is defined by diameter d < 4a and it is centered at
the crack tip with coordinates x = a + d/2 cosϑ and x = d/2 sinϑ. The components of
the normal vector to the circular contour are expressed by nx = cosϑ and ny = sinϑ.
The integration leads to the well-known value for the SIF

K
〈c〉
III = c

(0)
0

√
aπ. (I.5)
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