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Abstract

The present work is devoted to the modelling of strongly size-dependent bending, buckling
and vibration phenomena of 2D triangular lattices with the aid of a simplified first strain gradi-
ent elasticity continuum theory. As a start, the corresponding generalized Bernoulli–Euler and
Timoshenko sandwich beam models are derived. The effective elastic moduli corresponding to
the classical theory of elasticity are defined by means of a computational homogenization tech-
nique. The two additional length scale parameters involved in the models, in turn, are validated
by matching the lattice response in benchmark problems for static bending and free vibrations
calibrating the strain energy and inertia gradient parameters, respectively. It is demonstrated as
well that the higher-order material parameters do not depend on the problem type, boundary con-
ditions or the specific beam formulation. From the application point of view, it is first shown that
the bending rigidity, critical buckling load and eigenfrequencies strongly depend on the lattice mi-
crostructure and these dependencies are captured by the generalized Bernoulli–Euler beam model.
The relevance of the Timoshenko beam model is then addressed in the context of thick beams
and sandwich beams. Applications to auxetic strut lattices demonstrate a significant increase
in the stiffness of the metamaterial combined with a clear decrease in mass. Furthermore, with
the introduced generalized beam finite elements, essential savings in the computational costs in
computational structural analysis can be achieved. For engineering applications of architectured
materials or structures with a microstructure utilizing triangular lattices, generalized mechanical
properties are finally provided in a form of a design table for a wide range of mass densities.

Keywords: Strain gradient elasticity, Lattice structures, Bernoulli–Euler beam, Timoshenko
beam, Size dependency, Bending rigidity, Critical buckling load, Eigenfrequencies, Architectured ma-
terials, Sandwich structures, Auxetics, Reentrant honeycombs, Mechanical metamaterials

1 Introduction

Beams as structural elements have been widely used in scientific and industrial applications of various
fields. Nowadays, with fast developing manufacturing technologies, the application domain constantly
expands from covering the classical civil and mechanical engineering applications towards, e.g., micro-
and nanoelectromechanical systems (MEMS/NEMS), lattice structures at both macro- and, especially,
micro/nano-scales. One of the most crucial issues from the point of view of engineering sciences
is the prediction of the mechanical behaviour of such structures in an accurate and versatile way.
Accordingly, material modeling in its broad meaning plays a pivotal role for achieving this goal.

Cauchy continuum mechanics can be efficiently used for predicting the mechanical response of a
wide range of natural and (artificial) metamaterials. However, the increasing complexity of materials,
or structures (with highly noticeable, architectured microstructure), across the scales requires ad-
vanced modeling techniques. Generalized continuum theories have been shown to be able to account
for the microstructures at the continuum level and, hence, to provide much more reliable prediction of
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material behaviour (see the reviews and discussion in [1, 2, 3]). Even more, the fundamental principles
underlying the theories of generalized continua do not limit the characteristic sizes of microstructures.
As clarified in [4], term ”micro” refers to the characteristic scale of a substructure and hence reflects
the scales lower than those of the real object (without any limitations to the micrometer scale).

Two branches of generalized continuum theories can be distinguished: ”higher-order” theories in
which the number of degrees of freedom increases [5, 6, 7, 8, 9], and ”higher-grade/gradient” theories
in which the higher gradients of displacements (or strains) are included [10, 6, 11, 12]. The first
strain (second displacement) gradient and couple-stress theories (especially their modified versions
[13, 14]) are perhaps the simplest and, hence, the most utilized non-standard continuum models.
In the present work, we restrict ourselves to the strain gradient continuum theories. In detail, we
develop and apply gradient-elastic variants of Bernoulli–Euler and Timoshenko beam models and
show that they accurately and efficiently model structural beams having a lattice microstructure. In
literature, generalized beam model formulations within different (1) beam theories, e.g., Bernoulli–
Euler, Timoshenko and higher-order shear-deformable beam models, (2) beam structure types, e.g.,
sandwich and functionally graded beams, (3) non-classical continuum theory type, e.g., strain gradient
and couple-stress theories, have been actively developed during the past years [15, 16, 17, 18, 19, 20, 21,
22, 23, 24]. However, most of these contributions focus on model derivations and analytical solutions
for academic benchmark problems without enlarging the domain of practical applications, including
numerical methods enabling the analysis of complex systems beyond the simplest benchmarks. Some
exceptions can be found in [25, 26, 27], and this contribution is aimed to serve as another point of
view in this direction.

Higher-order material moduli of generalized continuum theories (typically considered to be micro-
structural length scale parameters) have been considered as an inconvenient addition implied by the
generalizations. Quite recently, however, there has been many attempts to address the role of these
material parameters and to quantify them. For instance, [15, 28, 29] consider static bending tests at
micrometer- and nanometer-scales, whereas the micro-inertia length scale parameter has been assessed
in [30] by experiments on torsional vibrations fo fine-grained materials, and atomistic representations
of elastic moduli tensors for different materials have been provided in [31]. Altogether, literature on
applications of non-classical continuum models to real materials, structures and systems is still very
limited; some examples can be found in [32, 33, 34, 35, 36, 37, 38, 39]. Regarding numerical methods
and numerical analysis for the models of generalized continuum mechanics, literature is limited as
well, although there are some successful endeavours including rigorous studies on solvability and
convergence (for recent overviews and examples, see [40, 41, 25, 42, 26, 43, 44, 45]).

In the present work, we address four fundamental issues arising around non-classical continuum
theories in the context of structural models and applications: (1) selection of an appropriate general-
ized theory type, (2) identification of the higher-order material parameters/moduli, (3) application to
real materials and structures independent of the length scale, (4) general-purpose numerical methods
versatile for problems with complex geometries. The main novelties and findings of the present work
are detailed as follows:
(i) We derive strain gradient Bernoulli–Euler and Timoshenko models for sandwich beams – by fol-
lowing the so-called engineering sandwich beam theory – involving one micro-structural and one
micro-inertia length scale parameter.
(ii) We demonstrate the size-dependent mechanical response of 2D triangular lattice structures in
bending and calibrate both the micro-structural and micro-inertia length scale parameters by utiliz-
ing the strain gradient Bernoulli–Euler beam model.
(iii) We approve that the length scale parameters are material moduli in the sense that they are
independent of the problem type (statics or dynamics), boundary condition types (including both
kinematic and static boundary conditions) and beam models (Bernoulli–Euler or Timoshenko models
for conventional or sandwich structures).
(iv) For auxetic metamaterials, exhibiting bending dominated deformations of the struts forming the
material architecture, we (1) propose a micro-architectured modification which leads to an essential
increase in structural stiffness with an essential decrease in mass, and (2) build a gradient-elastic beam
model and perform numerical simulations by proposing a modification for standard beam elements of
a commercial finite element software.

This article is organized as follows: In Section 2, we at first briefly recall the fundamentals of the
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first strain (second displacement) gradient elasticity theory for isotropic materials and then derive
the elasto-dynamic equations of the corresponding generalized Bernoulli–Euler and Timoshenko beam
models corresponding to the so-called engineering sandwich beam theory. Section 3 is devoted to com-
putational homogenization procedure applied to triangular lattices. In Section 4, we first analyse the
size-dependent mechanical response of a 2D triangular lattice by considering three problem settings:
static bending, static buckling and free vibrations. The generalized Bernoulli–Euler beam model is
then utilized for calibrating the two length scale parameters involved. In Section 5, we demonstrate
the relevance of the generalized Timoshenko beam model for both static and dynamic regimes. Sec-
tion 6 is devoted to applications of strain gradient beams to auxetics. Finally, Section 7 contains
discussions and conclusions.

2 Strain gradient elasticity for sandwich beams

In this section, the strain gradient elasticity theory is applied to sandwich beams. At first, we recall
the variational formulation of the strain gradient elasticity theory with first velocity gradient inertia.
Then, by utilizing the basic kinematical and stress assumptions for Bernoulli–Euler and Timoshenko
beam models, we derive the corresponding generalized strong forms of the beam bending problems,
i.e., the governing differential equations of elasto-dynamics with a set of boundary conditions. The
derived strong formulations are generalized to multi-layer beams.

2.1 Variational formulation of strain gradient elasticity

Hamilton’s principle for an independent displacement variation δu between fixed limits of displacement
u of body Ω ⊂ R3 at times t0 and t1 reads as [46]

δ

t1∫
t0

∫
Ω

(T −W )dΩdt+

t1∫
t0

δW1dt = 0, (2.1)

where δW1 stands for the variation of the work done by external forces. Strain and kinetic energy
densities W and T , respectively, are considered in the form [6]

W =
1

2
Cijklεijεkl +

1

2
Amijnkl∂mεij∂nεkl, (2.2)

T =
1

2
ρu̇iu̇i +

1

2
ρdij∂iu̇k∂j u̇k, (2.3)

where Cijkl and Amijnkl stand, respectively, for components of the classical and higher-order stiffness
tensors and dij are associated to the inertial length scale parameters.

It is assumed that the material is centrosymmetric with linearly elastic behaviour. Small deforma-
tion assumptions are adopted leading to the kinematical relation expressed in the form of engineering
strains

εij =
1

2
(∂iuj + ∂jui). (2.4)

The variation of the total kinetic energy (for guidance, see [46], for instance) is derived in the form

δ

t1∫
t0

∫
Ω

TdΩdt = −
t1∫
t0

∫
Ω

(ṗiδui + q̇ijδ∂iuj)dΩdt, (2.5)

where p, standing for the ordinary momentum vector, and q, denoting the higher-order momentum
tensor, are defined as the derivatives of the kinetic energy density with respect to the corresponding
work conjugates, i.e., u̇ and ∇u̇, as

pi =
∂T

∂u̇i
= ρu̇i, qij =

∂T

∂(∂iu̇j)
= ρdik∂ku̇j . (2.6)
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The variation of the total strain energy takes the form

δ

t1∫
t0

∫
Ω

WdΩdt =

t1∫
t0

∫
Ω

(τijδεij + µijkδ∂iεjk)dΩdt, (2.7)

where the Cauchy (or Cauchy-like) stress tensor τ , the work conjugate of the ordinary strain tensor
ε, and the double stress tensor µ, the work conjugate of the strain gradient tensor ∇ε, respectively,
are defined as

τij =
∂W

∂εij
= Cijklεkl, µijk =

∂W

∂(∂iεjk)
= Aijklmn∂lεmn. (2.8)

For isotropic materials, the conventional fourth-rank tensor of elastic constants becomes

Cijkl = µ(δikδjl + δilδjk) + λδijδkl, (2.9)

where µ and λ denote the Lamé parameters and δij is a Kronecker symbol. In case of weak non-locality
for isotropic materials [47], the sixth-rank constitutive tensor degenerates into

Amijnkl = g2δmnCijkl, (2.10)

leading to the so-called simplified strain gradient elasticity model [13, 48] with g denoting an intrinsic
structural length scale parameter with unit of length. For the second-rank micro inertia tensor, we
adopt the following simplification:

dij = γ2δij , (2.11)

where γ stands for an intrinsic inertial length scale parameter with unit of length.
For constant µ, λ and ρ, constitutive relations (2.6) and (2.8) take the simplified forms

τij = 2µεij + λεkkδij , µijk = g2∂iτjk, pi = ρu̇i, qij = γ2∂ipj . (2.12)

2.2 Generalized Bernoulli–Euler model for sandwich beams

Let us consider a long prismatic body and recall the derivation of Bernoulli–Euler beam bending model
in the framework of the strain gradient elasticity theory (cf. [25]). For plane bending, the kinematic
assumptions read as

ux = −yw′(x, t), uy = w(x, t), uz = 0. (2.13)

By following the basic assumptions regarding the beam model [49], constitutive relations (2.12)
take the reduced form (see the details in Appendix A)

τxx = Eεxx, µxxx = g2E∂xεxx, µyxx = g2E∂yεxx, (2.14)

where E denotes Young’s modulus. For the five-parameter isotropic strain gradient model, the higher-
order beam assumptions are highlighted in Appendix A.

By substituting assumptions (2.13) into (2.5) with (2.12), and into (2.7) with (2.4) and (2.14), one
can derive the variations of the kinetic and strain energies, respectively, in the form

δ

t1∫
t0

∫
Ω

TdΩdt = −
t1∫
t0

L∫
0

∫
A

ρ(ẅδw + (y2 + 2γ2)ẅ′δw′ + y2γ2ẅ′′δw′′)dV dt, (2.15)

δ

t1∫
t0

∫
Ω

WdΩdt =

t1∫
t0

L∫
0

∫
A

E((y2 + g2)w′′δw′′ + y2g2w′′′δw′′′)dV dt, (2.16)

where dV = dAdx and A stands for the cross-sectional area. It is assumed that the material parameters
as functions of spatial coordinates are symmetric with respect to the xz-plane. Thereby, terms linear
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with respect to the y-coordinate vanish upon integration. The variation of the work done by external
forces can be expressed as

t1∫
t0

δW1dt =

t1∫
t0

( L∫
0

qδwdx+Q1δw|L0 +M1δw
′|L0 +M2δw

′′|L0

)
dt. (2.17)

We note that in case of axial loadings, the x-component of the displacement field is enriched by
the corresponding variable u as ux = u − yw′. However, as within classical elasticity theory, the
higher-order differential equations with respect to u and w remain uncoupled.

Let us next consider the beam structure composed of three layers – two facesheets and a core
– which is called a sandwich structure as depicted in Fig. 1. Thus, it is assumed that all material
parameters are piecewise constant functions across the thickness as shown in Fig. 1c for Young’s
modulus. By substituting (2.15)–(2.17) into (2.1), one can derive the differential equation in the form

−(EI + EAg2)w(4) + EIg2w(6) + q = ρAẅ − (ρI + 2ρAγ2)ẅ′′ + ρIγ2ẅ(4), ∀x ∈ (0, L) (2.18)

with the essential – Dirichlet type – boundary conditions (BCs) (left column) as well as the natural
– Neumann type – BCs (right column) defined as

w = w0 or Q1 = −(EI + EAg2)w′′′ + EIg2w(5) + (ρI + 2ρAγ2)ẅ′ − ρIγ2ẅ(3), (2.19)

w′ = w1 or M1 = (EI + EAg2)w′′ − EIg2w(4) + ρIγ2ẅ′′, (2.20)

w′′ = w2 or M2 = EIg2w′′′ at x = 0, L, (2.21)

where

EI = EfIf + EcIc, EIg2 = EfIfg
2
f + EcIcg

2
c , EAg2 = EfAfg

2
f + EcAcg

2
c ,

ρI = ρfIf + ρcIc, ρIγ2 = ρfIfγ
2
f + ρcIcγ

2
c , (2.22)

ρA = ρfAf + ρcAc, ρAγ2 = ρfAfγ
2
f + ρcAcγ

2
c .

Subscripts f and c stand for the facesheet and core materials, respectively.

(a)

(b)
(c)

Figure 1: Long prismatic body: (a) in the xy-plane and (b) yz-plane. (c) Distribution of Young’s
modulus across the thickness.

It is worth noting that within the kinematical assumptions (2.13) the derived generalized sandwich
beam model corresponds to the so-called engineering theory of sandwich beams. The strong form
(2.18)– (2.21) stays valid for multi-layer and functionally graded beam structures as well. The overlined
terms are defined analogously to the expressions in (2.22). In case of homogeneous beams, the model
reduces to the corresponding one in [25].

2.3 Generalized Timoshenko model for sandwich beams

Let us derive the Timoshenko beam bending model for the prismatic body described in section 2.2.
According to the kinematic assumptions of the Timoshenko model, the components of the displacement
vector can be written as

ux = −yβ(x, t), uy = w(x, t), uz = 0, (2.23)
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where along with deflection w(x, t) we introduce rotation β(x, t) of a beam cross section around the
neutral axis.

By following the assumptions made in Subsection 2.1, one can write the non-zero components of
the stress tensors required for further derivation of the strain energy:

τxx = Eεxx, τxy = τyx = 2Gεxy,

µxxx = g2E∂xεxx, µyxx = g2E∂yεxx, µxxy = µxyx = 2g2G∂xεxy, (2.24)

where G = E/(2(1 + ν)) stands for the shear modulus as usual.
By using the kinematic assumptions (2.23), one can rewrite expression (2.5) for the kinetic energy

variation as follows (analogously to (2.15)):

δ

t1∫
t0

∫
Ω

TdΩdt = −
t1∫
t0

L∫
0

∫
A

ρ
(
ẅδw + (y2 + γ2)β̈δβ + γ2ẅ′δw′ + y2γ2β̈′δβ′)

)
dV dt. (2.25)

Similarly, with the aid of (2.23) and (2.24), the variation of the strain energy (2.7) transforms into
(on the analogy of (2.16)):

δ

t1∫
t0

∫
Ω

WdΩdt =

t1∫
t0

L∫
0

∫
A

(
E(y2 + g2)β′δβ′ + Eg2y2β′′δβ′′

+G(w′ − β)(δw′ − δβ) + g2G(w′′ − β′)(δw′′ − δβ′)
)
dV dt.

(2.26)

The variation of work done by external forces (2.17) undergoes a change as well:

t1∫
t0

δW1dt =

t1∫
t0

 L∫
0

(qδw +mδβ) dx+Q1δw|L0 +Q2δw
′|L0 +M1δβ|L0 +M2δβ

′|L0

 dt. (2.27)

Substituting equations (2.25)–(2.27) into the Hamilton’s principle (2.1) implies governing equation
of an isotropic Timoshenko sandwich beam with material parameters changing along the thickness
direction:

GA(w′′ − β′)−GAg2(w′′′′ − β′′′) + q = ρAẅ + ρAγ2ẅ′′ (2.28)

EIβ′′ − EIg2β′′′′ +GA(w′ − β)−GAg2(w′′′ − β′′) + EAg2β′′ +m = ρIβ̈ − ρIγ2β̈′′ + ρAγ2β̈,
(2.29)

for all x ∈ (0, L) as well as the boundary conditions at x = 0, L:

w = w0 or Q1 = GA(w′ − β)−GAg2(w′′′ − β′′) + ρAγ2ẅ′, (2.30)

w′ = w1 or Q2 = GAg2(w′′ − β′), (2.31)

β = β0 or M1 = EIβ′ − EIg2β′′′ −GAg2(w′′ − β′) + EAg2β′ + ρIγ2β̈′, (2.32)

β′ = β1 or M2 = EIg2β′′. (2.33)

For the sandwich structure described in Subsection 2.2, the overlined parameters in (2.28)–(2.33)
related to shear deformation are defined as follows:

GA = κ(GfAf +GcAc), GAg2 = κ(GfAfg
2
f +GcAcg

2
c ), (2.34)

while other parameters are defined as in (2.22). Shear correction factor κ is added according to [50].
In case of homogeneous beams, the model reduces to the corresponding one in [26].
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3 Triangular lattice structure: homogenization via classical
techniques

In this section, we consider a 2D triangular lattice structure presented in Fig. 2a made of isotropic
material with Young’s modulus E = 2 GPa, Poisson’s ratio ν = 0.25 and volume density ρ = 1040
kg/m3. The effective classical mechanical properties are defined according to [51]. It is assumed
that the effective homogenized continuum is governed by the generalized Hooke’s law for orthotropic
materials. The main homogenization steps based on classical homogenization techniques and finite
element simulations are highlighted below.

At first, we choose the representative volume element (RVE) as depicted in Fig. 2b with dimensions
given in Table 1. Next, we solve two problems by stretching RVE in the directions of axes x1 and x2

by setting the following boundary conditions: u1 = ±u◦1/2 at x1 = ±h1/2 and u2 = 0 at x2 = ±h2/2,
for problem (1), and u1 = 0 at x1 = ±h1/2 and u2 = ±u◦2/2 at x2 = ±h2/2, for problem (2).

The effective material properties are defined by resolving the equations of the generalized Hooke’s
law with respect to two Young’s moduli E∗1 and E∗2 and two Poisson’s ratios ν∗12 and ν∗21:

E∗1ε
◦
11 = 〈τ (1)

11 〉 − ν∗12〈τ
(1)
22 〉

0 = 〈τ (1)
22 〉 − ν∗21〈τ

(1)
11 〉

0 = 〈τ (2)
11 〉 − ν∗12〈τ

(2)
22 〉

E∗2ε
◦
22 = 〈τ (2)

22 〉 − ν∗21〈τ
(2)
11 〉

, (3.35)

where ε◦11 = u◦1/h1 and ε◦22 = u◦2/h2. The superscripts (1) and (2) indicate that the correspond-
ing strains and stresses are defined upon solving problems (1) and (2), respectively. The averaging
procedure is defined as

〈τ 〉 =
1

V

∫
V

τdV, (3.36)

where V = h1h2 denotes the RVE volume. The effective volume density is defined as ρ∗ = ρVm/V ,
where Vm stands for the volume occupied by the base material with respect to RVE. For more details,
one can consult [51].

The values of the effective material constants are listed in Table 1. As can be seen, the mechanical
properties in two directions exactly coincide, which allows us to conclude that such a triangular lattice
structure behaves as an isotropic material, at least in the classical sense. The value of Poisson’s ratio
is close to the theoretical estimation ν = 1/3 based on the discrete spring model in [52].

(a) (b)

Figure 2: (a) 2D triangular lattice structure. (b) Representative volume element.

Table 1: Dimensions and effective properties of RVE.

h1, [mm] h2, [mm] t, [mm] E∗1 , [MPa] E∗2 , [MPa] ν∗12 ν∗21 ρ∗, [kg/m3]

5 4.33 0.5 246.7 246.7 0.335 0.335 329.1
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4 Triangular lattice structure: size-dependent mechanical re-
sponse in bending, buckling and vibration

In this section, we investigate the size-dependent mechanical response of a 2D triangular lattice struc-
ture by considering three problem settings, namely, static bending, static buckling and transversal
vibrations. It is worth noting that triangular lattices are stretching dominated structures [53], this
fact remains valid for the selected test settings as well. Thus, for the corresponding homogenized con-
tinuum, rotational degrees of freedom (DOFs) associated to the bending of the struts are not active,
which excludes the higher-order continuum models associated with rotational DOFs from considera-
tion.

At first, we compose a lattice strip with thickness a = 4.33 mm and length l as shown in Fig. 3a
by copying a single RVE (shown in Fig. 2b) along the x-axis and then, by duplicating it in the x-
and y-directions, we produce strip specimens of length L = Nl and thickness h = Na, N = 1, 2, 3, ...,
such that the ratio of the strip thickness to the length is kept constant L/h = l/a. These specimens
are called type 1. Next, in order to make the outer struts of the same thickness t (see Fig. 2b) as
the inner ones, we attach a thin layer with thickness d/2 made of the same material to the upper and
lower sides of each strip specimen of type 1 as shown in Fig. 3b. The built samples are called type 2.

For specimens of type 2, the outer layers (dark grey) act as facesheets, whereas the inner lattice
structure (light grey) forms the core. The facesheets are modelled by a classical material, while
the sandwich core is replaced by an effective strain gradient continuum with the classical material
parameters E = E∗1 and ρ = ρ∗ listed in Table 2. The given values for the intrinsic length scales g
and γ are defined in the next subsections. Specimens of type 1 are assumed to be sandwich beams
with zero facesheet thickness, i.e, they are modelled as homogeneous strain-gradient beams with
material parameters associated to the sandwich core. Numerical experiments are accomplished via a
commercial finite element software Abaqus (standard 2D solid elements and modified beam elements).

Table 2: List of sandwich material parameters.

E, [MPa] ρ, [kg/m3] g, [mm] γ, [mm]

Facesheet 2000 1040 0 0
Core 246.7 329.1 1.57 2.51

(a) (b)

Figure 3: Lattice structure strips (a) of type 1 and (b) type 2 made of the same base material depicted
by light grey or dark grey.

4.1 Bending rigidity

Let us consider a static Bernoulli–Euler bending problem (eliminating the right hand side terms in
(2.18)) without a body load (q = 0). The higher-order term in the left hand side is neglected as
well. Namely, in [25] it is shown that, essentially, the higher-order term plays a role in capturing and
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describing boundary layer effects. In the present work, our focus lies on the global response of the
structure which with reliable accuracy can be modelled by the reduced strain gradient model. For
static regimes, the strong formulation (2.18)–(2.21) then reduces to

(EI + EAg2)w(4) = 0, ∀x ∈ (0, L) (4.37)

Q1 = −(EI + EAg2)w′′′ or w = w0, (4.38)

M1 = (EI + EAg2)w′′ or w′ = w1, x = 0, L. (4.39)

This model coincides with the so-called modified couple-stress model [25]. For a cantilever beam
bended by a transversal load at the free end (see Fig. 4a), the boundary conditions simply read as
w(0) = 0, w′(0) = 0, Q1(L) = F and M1(L) = 0 resulting in the following expression for the deflection
at the free end x = L:

wBEgr =
FL3

3(EI + EAg2)
. (4.40)

For rectangular cross-sections, the second moments of area are I = bh3/12, Ic = b(h − d)3/12,
If = I − Ic. The corresponding normalized bending rigidity takes the form

D

D0
= 1 + 12

g2

h2
(1− d/h) +

∆E

Ec
(1− (1− d/h)3), (4.41)

where ∆E = Ef − Ec. In case of a homogeneous beam (d = 0), it holds that

D

D0
= 1 + 12

g2

h2
, (4.42)

where D0 = F/wBEcl denotes the bending rigidity within the classical Bernoulli–Euler model and
wBEcl = FL3/(3EcI) stands for the deflection at point x = L within the classical elasticity theory
(g = 0).

For the numerical simulations, the problem setting is the following: The left end (x = 0) is fixed,
the free end (x = L) is loaded by a concentrated force F acting in the y-direction as shown in Fig. 4a.
The length to thickness ratio is fixed to l/a = 20.8 for all samples. The truss is modelled as a 2D
domain discretized by a fine enough mesh of quadrilateral elements (CPS4 type in Abaqus). The
bending rigidity is calculated as the ratio of the applied force to the deflection wFE at y = 0, x = L
as D = F/wFE .

(a) Static bending

(b) Static buckling

Figure 4: Problem settings for the computational analysis. (a) Static bending of a clamped strip with
h = 8.66 mm and L = 180 mm. (b) Static buckling of a simply supported strip with h = 4.33 mm
and L = 180 mm.
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The normalized bending rigidity against the beam thickness is plotted in Fig. 5. The blue dots
correspond to the numerical simulation of static bending. The horizontal black line stands for the
classical bending rigidity which stays at level one. In Fig. 5a, the red line is prescribed by expression
(4.42) valid for the homogeneous beams (specimens of type 1). A plot fitting for the blue dots and
the red line calibrates the intrinsic structural length scale parameter to g = 1.57 mm. It can be
seen that after the calibration, for coarse microstructures (N = 1, .., 4) in which the size of triangles
is comparable to the thickness of the beam, the generalized model of Subsection 2.2 is necessary in
order to describe the size-dependent bending phenomenon. For dense microstructures (N ≥ 16) in
which the triangular microstructure becomes unnoticeable and the material can be hence regarded as
homogeneous, the classical bending rigidity is retrieved.

The behaviour of sandwich beams (specimens of type 2) is represented in Fig. 5b. The red line
is governed by expression (4.41). It can be seen that the behaviour of the specimens of type 2 (see
Fig. 3b) is again perfectly captured by the strain gradient sandwich beam model derived in Subsection
2.2.

(a) (b)

Figure 5: Normalized bending rigidity (a) for the homogeneous beams (specimens of type 1) and (b)
for the sandwich beams (specimens of type 2).

4.2 Critical buckling load

For static linear buckling, the variation of the work done by external forces (2.17) is enriched by a
term corresponding to the work of a compressive force P as [18]

δWP
1 = δW1 +

L∫
0

Pw′δw′dx. (4.43)

The corresponding strong formulation of the problem is of the form

(EI + EAg2)w(4) − EIg2w(6) + Pw′′ = q, ∀x ∈ (0, L) (4.44)

w = w0 or QP = −Pw′ +Q1, (4.45)

w′ = w1 or M1 = (EI + EAg2)w′′ − EIg2w(4), (4.46)

w′′ = w2 or M2 = EIg2w(3), x = 0, L. (4.47)

As in the previous subsection, we neglect the higher-order term and eliminate distributed forces
(q = 0). For the simply supported case, w(0) = w(L) = 0, M1(0) = M1(L) = 0, the critical buckling
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loads are given as

P =
π2n2

L2
(EI + EAg2), n = 1, 2, 3, ... . (4.48)

For rectangular cross-sections, the normalized critical loads are expressed in the form

P

P0
= 1 + 12

g2

h2
(1− d/h) +

∆E

Ec
(1− (1− d/h)3) (4.49)

which is valid for all eigenmodes. In case of homogeneous beams (d = 0), the normalized buckling
loads are given as

P

P0
= 1 + 12

g2

h2
, (4.50)

where P0 = π2n2EcI/L
2 denotes the critical load of the classical elasticity model. It is notable that

expressions (4.49) and (4.50) coincide with the corresponding expressions for the normalized bending
rigidities (4.41) and (4.42), respectively.

For buckling analysis, for specimens of type 1 we choose thin beams and set L/h = 41.6. The
normalized values of the first buckling load calculated via numerical simulations are shown in Fig. 6
by blue dots. In Fig. 6a, the results correspond to strips of type 1. The red line, governed by (4.50),
stands for the homogeneous generalized beam model. In Fig. 6b, representing the sandwich beam
case, the red line is defined by (4.49).

(a) (b)

Figure 6: Normalized first buckling load (n = 1) as a function of strip thickness with L/h = 41.6 (a)
for the homogeneous beams (specimens of type 1) and (b) for the sandwich beams (specimens of type
2).

4.3 Eigenanalysis

For beams of infinite length, we seek for a wave form solution as w(x, t) = W0e
−i(kx−ωt), where i is

the imaginary unit, k stands for the wavenumber, ω denotes the angular frequency and W0 is the wave
amplitude. In case of long waves (low frequencies), we neglect the higher-order terms EIg2w(6) and
ρIγ2ẅ(4) in (2.18), which eliminates the highest degrees of wave number k in the dispersion relation
ω = ω(k). For the reduced strain gradient elastic beam model, the dispersion relation is given as

ω = k2

√
EI + EAg2

ρA+ (ρI + 2ρAγ2)k2
. (4.51)
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For rectangular cross-sections, dispersion relation (4.51) is rewritten as

ω = k2

√
Ec
ρc

√√√√√√√ 1 + 12
g2

h2
(1− d/h) +

∆E

Ec
(1− (1− d/h)3)

12(1 +
∆ρ

ρc
d/h)/h2 + (1 + 24

γ2

h2
(1− d/h) +

∆ρ

ρc
(1− (1− d/h)3))k2

. (4.52)

In case of homogeneous beams (d = 0), the dispersion relation degenerates into the expression

ω = k2

√
Ec
ρc

√
1 + 12g2/h2

12/h2 + (1 + 24γ2/h2)k2
. (4.53)

For the simply supported case, w(0) = w(L) = 0, M1(0) = M1(L) = 0, the wave number values are
explicitly defined as kn = πn/L, n = 1, 2, 3, ... .

Let us at first consider the lattice specimens of type 1 with L/h = 41.6 and the corresponding
samples of type 2. Side edges (x = 0 and x = L) are constrained in a way corresponding to a simply
supported beam. By varying the strip thickness, we compare the first frequency of the triangular
lattice structure strips with the corresponding first eigenvalue predicted by the classical and generalized
beam models. For the specimens of type 1, the comparison is performed with respect to the analytical
expression (4.53), whereas relation (4.52) is utilized for the samples of type 2. The comparison is
presented in Fig. 7a for homogeneous beams and in Fig. 7b for sandwich beams. The first frequency
(n = 1) is calculated by f1 = ω/(2π). The classical model gives f cl1 = π

√
Ech2/(12ρc)/(2L

2).

(a) (b)

Figure 7: The first frequency against the strip thickness (a) for the homogeneous beams (specimens
of type 1) and (b) for the sandwich beams (specimens of type 2).

Next, for a specimen of type 1 with h = 4.33 mm and L = 720 mm (L/h = 166.3) and for the
corresponding sample of type 2, the eigenfrequency spectrum as a function of (angular) wavenumber
k is represented in Fig. 8 (blue circles). In Fig. 8a, the black solid line corresponds to the classical
beam model (eq. (4.53) with g = γ = 0), the green solid line represents the strain gradient beam
model without the higher-order inertia term (eq. (4.53) with γ = 0), the red solid line relates to
the gradient-elastic beam model accounting for the first velocity gradient (eq. (4.53) with g = 1.57
mm, γ = 2.51 mm). For small wavenumbers, we report that dispersion relation (4.53) based on the
strain gradient beam model perfectly matches the experimental eigenvalues (extracted upon numerical
simulations with fine-scale FE models for the lattice specimen of type 1).

In Fig. 8b, concerning the sandwich lattice structure, we observe that the Bernoulli–Euler model
(BE) of sandwich beams (giving the dispersion relation in form (4.52) and represented by the red
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solid curve) fails to describe the dynamic response of the sandwich lattice structure (sample of type
2). The reason is that normal fibres of the beam axis do not remain as normals during the deformation
for wavenumbers larger than k∗ ≈ 0.08 r/mm. In the next section, it is shown that the generalized
Timoshenko sandwich beam model (T) is capable of capturing such effect (as can be seen already in
Fig. 8b).

(a) (b)

Figure 8: Dispersion relations (a) for the homogeneous beam (sample of type 1) and (b) for the
sandwich beam (sample of type 2).

5 Timoshenko model versus Bernoulli–Euler model

Let us define the problem of Subsection 4.1 for the Timoshenko beam model. Equations for the static
case of a sandwich Timoshenko beam in the framework of gradient elasticity can be obtained by
omitting the right hand side terms in (2.28)–(2.29):

GA(w′′ − β′)−GAg2(w′′′′ − β′′′) + q = 0,

EIβ′′ +GA(w′ − β)−GAg2(w′′′ − β′′) + EAg2β′′ +m = 0, ∀x ∈ (0, L). (5.54)

The boundary conditions (2.30)–(2.33) can be rewritten in the form

w = w0 or Q1 = GA(w′ − β)−GAg2(w′′′ − β′′), (5.55)

w′ = w1 or Q2 = GAg2(w′′ − β′), (5.56)

β = β0 or M1 = EIβ′ −GAg2(w′′ − β′) + EAg2β′. (5.57)

Note that here, similarly to the case of Bernoulli–Euler beams, we omit the higher-order terms in
(2.29), (2.32) and (2.33).

For a cantilever beam affected by a transversal load at the free end, the boundary conditions can
be written as follows: w(0) = 0, β(0) = 0, Q2(0) = 0, Q1(L) = F , M1(L) = 0, Q2(L) = 0. Deflection
at the right end (x = L) is equal to

wTgr =
FL(L2GA/3 + EI + EAg2)

GA(EI + EAg2)
, (5.58)

which for the homogeneous beam can be simplified as follows:

wTgr =
FL(L2κGA/3 + EI + EAg2)

κGAE(I +Ag2)
, (5.59)
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with κ = 0.85 in case of rectangular cross-sections [50].
It is a well known fact that the Bernoulli–Euler beam model is not able to describe bending of

thick beams unlike the Timoshenko model. This fact is next shown to be valid for the case of lattice
beams as well. Two models of extremely thick lattice beams are depicted in Fig. 9a for L = 10 mm,
h = 4.33 mm and in Fig. 9b for L = 15 mm, h = 4.33 mm. Bending results for beams obtained by
replicating these two specimens (with L/h = 2.31 and L/h = 3.46) are represented in Figure 10a. It
can be seen that according to the Bernoulli–Euler model (green line) the normalized bending rigidity
is not sensitive to the l/a-ratio, whereas the Timoshenko model (red lines) shows a good correlation
with the fine-scale simulations (blue dots).

(a) L/h = 2.31 (b) L/h = 3.46

Figure 9: Static bending of clamped thick lattice structure strips (specimens of type 1) with h = 4.33
mm and (a) L = 10 mm, (b) L = 15 mm.

Figure 10b demonstrates the advantage of the Timoshenko beam model (T) over the Bernoulli–
Euler model (BE) for a case of sandwich beams with length to thickness ratio l/a = 5.77. However,
for smaller values of l/a, both models fail to describe the bending behaviour properly (as shown in
Fig. 10b for l/a = 2.31). A visual analysis of the deformed state shows that the cross sections do not
remain planar, which means that ”engineering” sandwich beam theory is not sufficient and a more
complicated theory (e.g., third order shear deformable beam theory) is required.

(a) l/a = 2.31 and l/a = 3.46 (b) l/a = 5.77

Figure 10: Normalized bending rigidity (a) for the homogeneous beams (specimens of type 1), (b)
for the sandwich beams (specimens of type 2). Normalization is accomplished with respect to the
bending rigidity within the corresponding classical Bernoulli–Euler beam model.

Let us finally turn our attention to the free vibration problem considered in Subsection 4.3 for
Bernoulli–Euler beams. By assuming that the solution of the dynamic problem (equations (2.28) and
(2.29) with the higher-order terms omitted) has the following form of the particular variable-separable
functions:

w(x, t) = w(x)e−iωt, β(x, t) = β(x)e−iωt, (5.60)
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one can derive a dispersion relation (expression for the eigenfrequency) in the form

ωn1,2
=

√
−c2 ∓

√
c22 − 4c1c3

2c1
, (5.61)

with coefficients c1, c2 and c3 defined as follows:

c1 = (ρA+ γ2ρAk2)(ρI + γ2ρA),

c2 = −k2(GA+ g2GAk2)(ρI + γ2ρA)− (ρA+ γ2ρAk2)(GA+ g2GAk2 + EIk2 + g2EAk2),

c3 = k4(GA+ g2GAk2)(EI + g2EA).

(5.62)

Note that we do not discuss here the physicality of the second part of the eigen spectrum ωn2 (with
”+” sign in front of the inner square root in (5.61)) and consider only spectrum ωn1

. In Fig. 8b, it can
be seen that introducing the additional rotational degree of freedom of the Timoshenko beam model
provides more accurate results for a wider range of eigenfrequencies (the magenta line crossing the
majority of the blue circles) in comparison with the Bernoulli–Euler beam model (the red curve).

6 Application to auxetics

Let us consider a reentrant honeycomb structure [54] depicted in Fig. 11a (set to type A) being a
representative of the so-called auxetics, i.e., materials with negative Poisson’s ratio (see [55] for a
review on auxetic materials). The geometrical characteristics are set to a = 72.5 mm, b = 40 mm,
t = 2.165 mm and α = π/3. By replacing solid struts with triangular lattice trusses as shown in
Fig. 11b, we compose an auxetic structure of type B. The geometry of the triangular lattice trusses
is defined in Section 3. The type C auxetic structure is obtained from type B by removing a part of
the material from the fastenings as shown in Fig. 11c. The properties of the base material are E = 2
GPa, ν = 0.25 and ρ = 1040 kg/m3.

The effective elastic constants calculated through fine-scale FE modeling are listed in Table 3. The
fine-scale FE models correspond to 2D FEM of 2D classical plane elasticity by standard Abaqus plane
stress elements of type CPS4. The properties of type A auxetic are set as a reference. It can be seen
that by modifying the ”micro”-architecture of the reference auxetic, i.e., by utilizing hollow trusses,
namely, triangular lattice trusses instead of solid ones (type B), it is possible to (i) reduce the mass
of the structure by 23 %, (ii) dramatically increase the stiffness of the global structure (by 147 % and
163 % for Ex and Ey, respectively) with admissible reduction in Poisson’s ratios (by 19 % and 8 %
for νxy and νyx, respectively). By making fastenings lighter (type C), the mass of the global structure
is reduced by 33 % with a similar reduction in Poisson’s ratios, which makes the structure less stiff
compared to the auxetic of type B, however.

It should be noted that the reentrant honeycomb structures in Figs. 11a–11c are bending-dominated
in the sense that the bending part of the accumulated energy of each strut is essentially higher than
the stretching part of the energy. In Subsection 4.1, it has been demonstrated that upon bending the
triangular lattice strips demonstrate significant size dependency in bending rigidity, which, in fact,
explains the considerable increase in Young’s moduli of the architectured auxetic structures of types
B and C (see the discussion in Subsection 7.1).

The fine-scale modeling, used for defining the effective elastic properties of the considered auxetic
structures, is computationally extremely costly and hence the reduced modeling by structural beam
elements is preferable (see Fig. 11d). For the auxetic structure of type A, the model reduction is
straightforward since the use of standard beam elements of classical elasticity is sufficient. However,
this approach is not valid for the auxetic structures of type B or C since the behaviour of lattice
trusses is governed by generalized beam models as shown in Section 4. In general, the generalized
beam element formulation based on (2.18)–(2.21) is required (see [25]). For the reduced strain gradient
beam formulation (4.37)–(4.39), the intrinsic structural length scale parameter g can be incorporated
into standard FE analysis by endowing the classical beam elements with effective second moment of
area Ieff = I + g2A (coming from (4.37)). As a result, compared to the fine-scale 2D FEM approach
the number of DOFs is reduced by factor 82, whereas the computational time is reduced by factor 17.
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(a) Type A

(b) Type B

(c) Type C (d) Beam model

Figure 11: Auxetic material types made of (green) base material and the corresponding (blue) beam
model. (a) Type A: solid struts (and finite elements of the fine-scale model). (b) Type B: struts with
a triangular lattice microstructure with solid joints (and finite elements of the fine-scale model). (c)
Type C: Type B struts with lightweight fastenings (finite elements of the fine-scale model not shown).
(d) Deformed shape: reduced auxetic model by utilizing generalized beam elements (blue solid lines)
against the Type B model (green).
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The effective elastic properties of the auxetic structures defined by FEA of fine-scale and reduced
models are compared in Table 4. It can be seen that the maximal deviation in values is 6.6 % (in Ex)
for the type A structure and 4.8 % (in νyx) for the type B structure.

Table 3: List of auxetic effective properties.

Type ρ, [kg/m3] νxy νyx Ex, [MPa] Ey, [MPa]

A 92.5 -0.86 -1.13 0.76 1.04
B 71 -0.7 -1.04 1.88 2.73
C 62 -0.7 -1.06 1.57 2.39

Table 4: Comparison between fine-scale and reduced beam models of auxetic structures.

Elastic Type A Type B
moduli Fine-scale Beam Fine-scale Beam

νxy -0.86 -0.86 -0.7 -0.7
νyx -1.13 -1.13 -1.04 -0.99
Ex, [MPa] 0.76 0.81 1.88 1.91
Ey, [MPa] 1.04 1.07 2.73 2.73

7 Discussions and conclusions

7.1 Mass-rigidity relationship and RVE scaling

At first, the mass-rigidity relationship is discussed. Let us consider a thin strip made of triangular
lattice structure (described in Sections 3 and 4) with thickness h = 4.33 mm and the corresponding
solid strips of thickness H made of the same material. The mechanical behaviour of the lattice and
solid strips is captured, respectively, by the higher-order (strain gradient) and classical Bernoulli-Euler
beam models. Relative mass M/Ms as well as relative bending rigidity D/Ds are expressed in the
form

M

Ms
=
ρ∗

ρ

h

H
,

D

Ds
=
E∗

E

( h
H

)3

(1 + 12
g2

h2
), (7.63)

where characteristics M , D and h relate to the lattice structure strips, whereas Ms, Ds and H
correspond to the solid strips.

The diagram of mass-rigidity relationship is shown in Fig. 12a. The relative mass is plotted with
the blue line (defined by (7.63) (left)), while the red line stands for the relative bending rigidity
(prescribed by (7.63) (right)). In Fig. 12a, it can be seen that by keeping the stiffness constant
(relative bending rigidity D/Ds = 1) the lattice structure strip is lighter by 53.5% than the solid one,
however occupying more space (thickness becomes larger by 47%) as shown in Fig. 13. For the case
h/H = 2 (lattice structure is two times thicker than the solid one), the lattice structure beam is 2.52
times stiffer and lighter by 36.7% than the corresponding solid counterpart.

For comparison, the relative bending rigidity within the classical elasticity theory (utilized for the
lattice strip) is represented by the black line (defined by (7.63) (right) with g = 0). It can be seen
that neglecting the strain gradient effects leads to inappropriate modelling of the structure.
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(a) (b)

Figure 12: (a) Mass-rigidity relationship: relative mass M/Ms and bending rigidity D/D0 against
relative thickness h/H. (b) Intrinsic length scale parameters g and γ against thickness h2 of the RVE.

Figure 13: Representation of a lattice structure strip with h = 4.33 mm (middle) against its solid
counterpart for h/H = 1.47 (left) and h/H = 2 (right).

Next, the effect of the RVE scaling on the effective material moduli is discussed. Upon scaling
all geometric dimensions of the RVE are changed proportionally (by the same factor), meaning that
the volume density of the effective material remains constant (ρ∗ = 329.1 kg/m3). By performing the
homogenization procedure described in Section 3, it has been observed that classical elastic moduli
E∗ and ν∗ are not sensitive to RVE scaling. By accomplishing the identification procedures described
in Subsections 4.1 and 4.3, higher-order parameters g and γ are observed to obey linear dependence
on RVE thickness h2 as depicted in Fig. 12b. For all scaled RVEs, the ratios of the intrinsic length
scale parameters to RVE thickness, namely, g/h2 = 0.36 and γ/h2 = 0.58 remain constant.

7.2 Effective moduli vs. RVE relative mass

Finally, the dependence of the effective moduli of the homogenized material on the relative RVE density
are discussed. Different types of RVEs are represented in Fig. 14, where voids remain equilateral
triangles. The corresponding classical elastic moduli are depicted in Fig. 15. It can be seen that
for low-density RVEs, the effective Young’s modulus (Fig. 15a) demonstrates linear dependence on
relative density, which coincides with the estimated expression E = EsB(ρ̄/100)b, where Es = 2 GPa
stands for Young’s modulus of the solid and coefficients B = 1/3 and b = 1 correspond to a triangular
lattice [53]. The effective Poisson’s ratio (Fig. 15b) tends to the analytical value ν = 1/3 [53] as the
relative density of the RVE decreases.

The higher-order material parameters against the relative density of RVE are depicted in Fig. 16.
For small values of the relative density, parameter g (Fig. 16a) depends linearly on ρ̄ tending to value
g0 ≈ 1.7537 in the limit ρ̄ = 0. As long as the relative density approaches value ρ̄ = 100%, the
higher-order elastic modulus g tends to value g = 0 corresponding to the classical elasticity theory.
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Intrinsic length scale parameter γ follows a similar behaviour (Fig. 16b). In the region of high relative
densities, the modulus undergoes rapid changes tending to zero as within classical continua.

(a) ρ̄ = 0.69% (b) ρ̄ = 13.4% (c) ρ̄ = 34.6%

(d) ρ̄ = 57.3% (e) ρ̄ = 76.9% (f) ρ̄ = 90.6%

Figure 14: RVEs with different relative densities ρ̄

(a) (b)

Figure 15: Effective classical elastic moduli against the relative density of RVE: (a) for Young’s
modulus and (b) for Poisson’s ratio
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(a) (b)

Figure 16: Higher-order material parameters against the relative density of RVE: (a) for intrinsic
length scale parameter g and (b) for intrinsic length scale parameter γ.

7.3 Concluding remarks

This work should be considered as a contribution in the development and utility of generalized con-
tinuum theories in the context of engineering sciences and industrial applications. Accordingly, the
main concluding remarks are summarized as follows:
1. The presented results prove the relevance and applicability of the beam models of the strain gra-
dient elasticity theory with velocity gradient inertia terms.
2. Very good correlation between experimental (numerical) and analytical results provide, first, evi-
dence on the strain gradient nature of lattice substructures and, second, calibration for both micro-
structural and micro-inertia length scale parameters.
3. The higher-order material moduli are shown to be independent of the problem type, boundary
conditions and model formulations.
4. The strain gradient Bernoulli–Euler and Timoshenko models derived for sandwich beams are shown
to be applicable for modeling beam structures composed of triangular lattices, which enables efficient
modeling of complex structures and significantly reduces the computational costs in structural design
and analysis phases.
5. For auxetic metamaterials formed by struts with a lattice microstructure (trusses), it is shown
that, first, the elastic moduli of orthotropy of the metamaterial are improved by 147 % and 163 %,
whereas mass is decreased by 23 %. Second, by replacing the fine-scale finite element model with the
corresponding gradient-elastic beam element model the computational time is reduced by factor 17
and the number of degrees of freedom can be divided by 82, without loosing accuracy more than 5 %.
6. Finally, the mechanical properties for a full range of mass densities with a triangular lattice mi-
crostructure are reported providing a source for a design table to be utilized in practical engineering
applications.

As a final conclusion, it can be stated that the demonstrations for sandwich beams and auxetics,
in particular, propose pivotal information for practical applications and, in general, a set of new
theoretical and computational tools for material and metamaterial design for materials and structures
with a microstructure or microarchitecture.
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Appendices

A Higher-order beam model assumptions

For isotropic centrosymmetric materials, strain energy density (2.2) is explicitly expressed as [6, 12]

W =
1

2
λεiiεjj + µεijεij + a1εiijεjkk + a2εijjεikk

+ a3εiikεjjk + a4εijkεijk + a5εijkεkji, (A.64)

whereas constitutive relations (2.8) take the form

τpq = λεiiδpq + 2µεpq, (A.65)

µpqr = a1(εiipδqr +
1

2
εriiδpq +

1

2
εqiiδpr) + 2a2εpiiδqr

+ a3(εiirδpq + εiiqδpr) + 2a4εpqr + a5(εrqp + εqpr), (A.66)

where εijk = ∂iεjk.
Along with the kinematical relations of (2.13), it is assumed that

ταβ = 0, α, β = 2, 3, (A.67)

which is used in the constitutive equation (A.65) in order to eliminate εαβ leading to

εyy = εzz = − λ

2(µ+ λ)
εxx, εyz = 0. (A.68)

By redefining the Lamé parameters as µ = E/2/(1 + ν) and λ = νE/(1 + ν)/(1 − 2ν), the classical
expression for τxx is retrieved

τxx = Eεxx. (A.69)

The rest of the stress components are equal to zero. For more details, one can follow [49].
Regarding double stresses, we adopt the following simplifications:

µiαβ = 0, α, β = 2, 3, i = 1, 2, 3, (A.70)

which eliminates ∂iεαβ in the constitutive relation (A.66) giving

∂xεyy
∂xεxx

=
∂xεzz
∂xεxx

= − a1 + 2a2

2(a4 + 2a2)
, (A.71)

∂yεyy
∂yεxx

=
∂zεzz
∂zεxx

=
2a4(a1 + 2a2)

(a1 + 2a2)2 − 4ā(a2 + a4)
, (A.72)

∂yεzz
∂yεxx

=
∂zεyy
∂zεxx

= − (a1 + 2a2)2 − 4āa2

(a1 + 2a2)2 − 4ā(a2 + a4)
, (A.73)

where ā = a1 + a2 + a3 + a4 + a5. The active double stress components are redefined in the form

µxxx = (2ā− (a1 + 2a2)2

a4 + 2a2
)∂xεxx, (A.74)

µyxx = (2(a2 + a4) + 2
(a1 + 2a2)2(a4 − a2) + 4āa2

2

(a1 + 2a2)2 − 4ā(a4 + a2)
)∂yεxx. (A.75)

It should be mentioned that within the simplified isotropic strain gradient elasticity [13, 47] which
is derived by adopting a1 = a3 = a5 = 0, a2 = λg2/2 and a4 = µg2, the right hand sides of
expressions (A.71), (A.72) and (A.73) degenerate into −λ/2/(µ+λ) which coincide with (A.68) for the
classical case. On the other hand, the double stresses become µxxx = g2E∂xεxx and µyxx = g2E∂yεxx
confirming that the higher-order assumptions are consistent with the classical ones.

It is also worth noting that relations (A.71)–(A.73) are derived by assuming that ∇εxy = ∇εxz =
∇εyz = 0 in equations (A.70), which should be considered as one of the possible ways of deriving the
higher-order beam model.
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