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Abstract
Weaddress the phenomenon of statistical orthogonality catastrophe in insulating disordered systems.
Inmore detail, we analyse the response of a systemof non-interacting fermions to a local perturbation
induced by an impurity. By inspecting the overlap between the pre- and post-quenchmany-body
ground states we fully characterise the emergent statistics of orthogonality events as a function of both
the impurity position and the coupling strength.We consider twowell-known one-dimensional
models, namely the Anderson andAubry–André insulators, highlighting the arising differences.
Particularly, in theAubry–Andrémodel the highly correlated nature of the quasi-periodic potential
produces unexpected features in how the orthogonality catastrophe occurs.We provide a quantitative
explanation of such features via a simple, effectivemodel.We further discuss the incommensurate
ratio approximation and suggest a viable experimental verification in terms of charge transfer statistics
and interferometric experiments using quantumprobes.

1. Introduction

Cold atoms in optical lattices are nowadays universally accepted as an outstanding experimental platform to
realise paradigmaticmodels in condensedmatter and high energy physics. Current and future lines of research
delve deep into studying the dynamics of interacting, disordered systems [1–5], and lattice gauge theories [6, 7].
The ability to tune atomic interactions aswell as potential energy profiles practically at will, enables
experimentalists to simulate a variety of systems, interacting versus non-interacting, one- versus higher-
dimensional and clean versus disordered.Well-known examples ofmodels implemented in optical lattices
includeHeisenberg andHubbardHamiltonians [8, 9], and systems undergoing Anderson [10, 11] andmany-
body-localisation [4, 12–20] (for a review see [21, 22]). Such direct experimental observations provide accessible
and quick validation to longstanding theoretical well-known results and speculations.

In this article we investigate the collective response of some one-dimensional localised systems to local
adiabatic perturbations. Recent studies have demonstrated that a local adiabatic quench can induce a non-local
rearrangement of the energy eigenstates, resulting in a non-local transfer of charge across the lattice. This effect
has been confirmed in the Anderson insulator (AI) [23] aswell as in the Aubry–André (AA)model [24], in both
the interacting and non-interacting case. The effect was dubbed statistical orthogonality catastrophe (STOC) and
in [25, 26] it was theoretically predicted and numerically confirmed that the typical wave function overlap Ftyp

between the unperturbed ground state Y ñ∣ ( )00 and the perturbed one Y ñ∣ ( )0 ( = áY Y ñ∣ ( )∣ ( ) ∣F 00 0 the overlap
of twomany-body eigenstates for a single disorder realisation) decays exponentially
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aº ~ -( ) ( ) ( )F F Lexp log exp , 1typ

inwhich the bar denotes the average over disorder, L is the size of the system andα a constant (typically of the
order of 10−2 or less) that depends, among other quantities, on ò. This scaling behaviour is radically different
from themore familiar Anderson orthogonality catastrophe, characterisingmetallic systems perturbed by
impurities, for which the same overlap follows a power law decay in the system size [23]

º áY Y ñ ~ g-∣ ( )∣ ( ) ∣ ( )F L0 . 20 0

The difference is due to the nature of the eigenfunctions, in the first case localized, in the second extended. In
absence of localization, spectral and time-dependent probes of theOChave been thoroughly discussed, and
measured in experiments [27–30].

For localized dynamics, the analysis in previousworks was usually focused on the study of the scaling of the
typical overlap in the thermodynamical (large L) limit. This was very reasonable for the original Anderson
orthogonality catastrophe setup, inwhich, since the eigenstates are extended, different regions of the spectrum
are statistically homogeneous and satisfy the eigenstate thermalization hypothesis [31–33]. It is also reasonable
for the AIwhere, in one dimension, there is nomobility edge and all the states are localized [10], but in theAA
model at large disorder, largefluctuations of F, when the quench site is shuffled around, yield non-trivial effects
for L up to a fewhundreds, effectively probing different regions of the spectrum. This range of L is very relevant
for cold atoms experiments described in the introduction andmust be taken into account if a correct description
thereof is to be achieved.

Motivated by this fact, we have performed numerical studies on the non-interacting AAmodel, investigating
both the non-local charge transfer and the statistics of orthogonality events in presence of a strong quench in the
localised phase. Ourmainfinding is the emergence of a surprising and atypical behaviour in the statistics of the
catastrophe events,manifesting as a series of plateaux. This effect will be shown to be ultimately connected to the
fractal nature of theAA spectrum.

Themanuscript is organised as follows: in section 2we first briefly summarise theAI andAAmodels and
introduce the quenching protocol and some key quantities. The results are presented in section 3, wherewe also
link the statistics of orthogonality events to space–energy correlations typical of a quasi-periodic potential, a key
feature that is completely absent in the AI.We further discuss our results in section 4 and propose a possible
experimental verification, beforemoving to conclusions in section 5.

2. Themodel

We investigate a systemof non-interacting fermions in a one-dimensional lattice subject to a local quench of the
confining potential. The tight-bindingHamiltonianH reads

å å= - + + +
=

-

+
=

( ) ( ) ( )† † †H J a a V a a t a ah.c. , 3
j

N

j j
j

N

j j j x x
1

1

1
1

s s

where †a a,j j are the jth site fermionic annihilation and creation operators, J is the hopping parameter,Vj the jth
site local potential and x ranges between 1 andNs, the length of the chain. The last term can be viewed as the
effective time-dependent density–density interactionwith a localised impurity at position j=x that is
adiabatically switched on.Wewill study a half-filled lattice, with a total number of particlesN=Ns/2, or
alternatively afilling fraction n=N/Ns=1/2, so that the ground state will be a Fermi sea occupying half of the
spectrum. At half filling the Fermi energywill beEF=0. The time evolution of the impurity potential is such
that ò(0)=0 and  ¥ =( ) . According to the adiabatic theorem, for a system initially prepared in themany-
body ground state ofHamiltonian(3)with no impurity potential, the asymptotic final state following the
adiabatic couplingwill be

 Y ñ = +¥ Y = ñ∣ ( ) ( )∣ ( ) ( )x U, 0 , 40 0

where Y ñ∣ ( )x,0 is themany-body groundwith the perturbation at site x, as in equation (3).
Depending on the potentialVj, theHamiltonian(3) operator can capture differentmodels. Here, we focus

on twomodels: a quasi-periodic potential characterised by the profile pb f= D +( )V jcos 2j , withβ irrational
and known in the literature as the Aubry–André (AA)model [24], and a completely randomVjwhose local
amplitudes are sampledwith uniformprobability in the interval [−Δ,Δ], which yields theAnderson Insulator
(AI)model [25]. TheAAmodel is not analytically solvable, however, ifβ is irrational, the resulting potential is
quasi-periodic and forΔ=2J a transition fromdelocalised to localised eigenstates occurs [24, 34, 35]. On the
other hand, theAImodel also exhibits eigenstate localisation for anyΔ>0 in 1D.

In this article wewill characterise the adiabaticmany-body response to a local quench by studying the
overlap (orfidelity) between the pre and post-quench ground states,

2
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  = áY = Y ñ( ) ∣ ( )∣ ( ) ∣ ( )F x x, 0 , . 50 0

Weexpect this quantity to vanish for any position of the impurity in the limit of very large values of ò, when the
corresponding term in equation (3) becomes dominant. The overlap Fwill be averaged over two instances. The
first one is the position x of the impurity potential and the second one is the noise realisation. In the AAmodel,
the latter corresponds to averaging over different phasesf, while in theAI such an average is performed over the
different random realisations of the potentialVj.With a slight abuse of notation, both averages will be henceforth
indicatedwith brackets.We therefore define

 ås q d= -
=

( ) ( ( )) ( )
N

F x
1

, , 6
s x

N

1 noise

s

with θ being the Theta function and δ being conventionally set at 10−4. This is the probability for an
orthogonality event F;0 to occur and it is the key quantity to be investigated.We stress that this orthogonality
event is due to a rearrangement of the single particle energy eigenstates, leading to an adiabatic charge transfer as
shown in [25, 26].Wewill always focus on the case J=Δ, i.e. when the single particle eigenstates are strongly
localised. Thus, changing the impurity positionwithin the lattice will result in an effective interactionwith
different levels of the single particle spectrum.

3. Results

Theσ function, displayed infigure 1, shows striking differences in the twomodels here considered. As expected,
by increasing the value of the interaction between the impurity and the surrounding fermionic gas, the number
of the orthogonality events increasesmonotonically.When ò?Δ this saturates to 1/2, being naturally bounded
by thefilling factor. This is reasonable, since in the strongly interacting regime the gas–impurity interaction
strength overcomes the energy scales given by both the on-site potential and the kinetic term. Interestingly,
while in the AI such saturations is achievedmonotonically andwithout any particular structure nor dependence
from the hopping parameter, in the AAmodel the appearance of a plateau can be clearly noticed. The amplitude
of this plateau is comparable with the principal energy gap present in the AA energy spectrum, suggesting a
possible link (see figure 5(d)). However, since the number of events at which the plateau starts is well above the
number of states between the Fermi energy and the energy gap itself, in order to understand this behaviourwe
need to analyse themechanism responsible for the energy gap as well as the properties of the neighbouring
eigenstates. Sincewe are interested in the localised phase of the AAmodel, i.e.Δ>2J, the spectrum is, for the
most part, well approximated by the on-site potential energy

pb f» D +( ) ( )E icos 2 . 7i

The only exception is when two adjacent sites have an energy difference of the same order or lower than the
hopping parameter, that is -+∣ ∣E E Ji i1 . In this case the two levels are quasi-resonant and a fermion is
therefore delocalised between both the two sites i and i+1. This quasi-resonance condition -+∣ ∣E E Ji i1

leads to

pb f
pb

+ +
D

∣ ( ( ) )∣
( )

( )i
J

sin 2 1 2
2 sin

. 8

The center of the gap is obtained by finding the states which are exactly resonating, therefore the following
condition

pb f pb p+ = - ( )i2 mod 9

yields + E E Ei i g1 2
and onefinds, from equations (7)–(8), that the gap is located around the energy

pb= D ( ) ( )E cos . 10g2

See figure 2(a).
Two non-exactly resonant sites i and i+1 can be described by an effective two-siteHamiltonian

d
=

-
- +

⎡
⎣⎢

⎤
⎦⎥ ( )H

E J
J E E

, 11i

i
2

wherewewrote d= ++E E Ei i1 . To be concrete, when i satisfies (8), δE=0 and =E Ei g2
in (10).

For any state yY = å ñ= ( )∣j jj
N

1
s , where ñ = ñ∣ ∣†j a vacj , we can use as ameasure of localisation the inverse

participation ratio
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å y
Y =

=

( )
∣ ( )∣

( )
j

IPR
1

. 12

j
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1
4s

For approximate resonances, the effectivemodel (11) gives as IPR:

d
d

=
+
+

( )I
E J

E J

4

2
, 132

2 2

2 2

which is a Lorentzian curvewithmaximum2 andwidth J as a function of δE. See figure 3. Thewidth of the gap is
given by the energy difference between these two states, which is J2 . See figure 2.

One can extend this argument to states which are 2-site distant, say i and i+2.However, in this case the
required energy differencemust be less than J2/Δ, as the intermediate state i+1 has energy ofO(Δ)under
which the particle has to tunnel

- < D+ + ∣ ∣ ( )E E J E J , 14i i i2
2

1
2

so

pb f pbD + + < D∣ ( ( ) ) ( )∣ ( )i J2 sin 2 1 sin 2 , 152

which leads to a gap of size pbD( ( ))J 2 sin 22 located around

pb f pb p+ = - ( )i2 2 mod 16

Figure 1.Probabilityσ that the ground stateswith andwithout impurity become orthogonal; the impurity is located at different lattice
sites and averaged over site location and noise (or phase of potential).σ is displayed versus ò in units ofΔ for J/Δ=0.01, 0.05, 0.1
(dotted blue, dashed red and solid green, respectively). The lattice size isNs=200 and the two ground states are defined to be
‘orthogonal’when their overlap is less than a conventional threshold δ=10−4. (a)AImodel; (b) and (c)AAmodel, withβ being the
golden and silver ratio, respectively. The vertical lines in (b) and (c) correspond to  pbD = ∣ ( )∣sin 2 .

4
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and therefore the centeres of the gaps, whose size is J2/Δ are at

pb= D ( ) ( )E cos 2 . 17g3

Notice that also these states are located around these gaps and they are delocalized on the sites i and i+2 only.
See the smaller Lorentzian infigure 3. This is the onset of the fractal structure of the gaps, withwidths
O(J n+1/Δn) and located around pbD ( )ncos . For finiteNhowever, only thefirst few gapswill be visible (an

Figure 2. (a)Resonant states around the gap; the gap is of the order 2J. Correlation functionCnm for the (b)AA and (c)AImodels. In
the first case there is the clear emergence of an ordered pattern, with non-zero elements connecting states on opposite sides of the
energy gaps. This feature is due to the fact that the Aubry–Andrémodel entails a formof highly correlated noise that displays
correlations in energy and space. This does not happen in theAnderson insulator, inwhich the non-zero off-diagonal elements are
randomly distributed.

Figure 3. Inverse participation ratio defined as y= å =( ) ∣ ( )∣E jIPR 1i j
N

i1
4s , withψi eigenstate corresponding to energy Ei. The black

curves are Lorentzian fits centered around the first two gaps Eg2
(solid) and Eg3

(dashed). The IPR and the eigenenergies Ei are

calculated for a systemwith J=0.1Δ,Ns=200 and b = +1 5

2
and a randomvalue of the phasef.
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approximate condition isN Jn/Δn2, for at least two states have to be resonant to observe the gap of
order n+1).

An alternative way to visualize these resonances is through the following correlation function

å y y- =
=

( ) ∣ ( )∣ ∣ ( )∣ ( )C E E j j , 18m n
j

N

n m
1

2 2
s

whereψn/m are the eigenfunctions of theHamiltonianwith no impurity, i.e.

 y y= =( ) ( )H E0 . 19n n n

Figure 2(b) shows how states on opposite sides of themain gap display a strong degree of correlation, being close
in space (namely nearest neighbours). Asmentioned before, these energy gaps are the reason for the plateau
structures displayed inσ, as we are now going to explain in detail.

First of all, itmust be noticed thatwhen adding the impurity energy ò on the occupied site x (so Ex<EF=0)
the energy of the particle simplymoves to

¢ + ( )E E . 20x x

Whenever ¢ > =E E 0x F an orthogonality event occurs. However, because of the non-zero tunnelling ¹( )J 0 , the
impurity energy on-site x affects the energies related to the other sites ¢ ¢ ¼+ +E E, ,x x1 2 . As ò increases the condition
¢ > =+E E 0x F1 becomes relevant to generate neworthogonality events whenever the neighbour of the perturbed

site is occupied. The previous discussion about the distribution of the resonant states around themain gap
guarantees that the states on opposite sides of the gap are nearest neighbours. This explains why the number of
events at whichwe reach the plateau is well beyond the number of states between the Fermi energy and the
energy gap itself. The last occupied site with an occupied neighbour to generate an orthogonality event before the
plateau is obviously pairedwith the site close to the Fermi energy. Being EF=0we can assume the energy of the
highest energy occupied state to beE; 0 and therefore the potential on this site to be

pb fD + » D p( )( )j mcos 2 cos
2

withm odd integer.

As a consequence the energy difference between this site and its nearest neighbour is d pb= D∣ ( )∣E sin 2 ,
and identifies in turn the pair of states in the tails of themain Lorentzian infigure 3 below the Fermi energy. This
δE therefore predicts the centre of the plateau. In fact, the absence of orthogonality events condition is given by

 pb pbD + D -∣ ( )∣ ∣ ( )∣ ( )J Jsin 2 sin 2 , 21

in our numerics pb =∣ ( )∣sin 2 0.67 ... for the case ofβ being the golden ratio. In panels (b) and (c) offigure 1we
can see how this condition correctly predicts the centre of the plateau for different hopping parameters for the
two cases considered, i.e. the golden ratio or the silver ratio taken as incommensurate frequencies. Thismanifests
itself as a plateau inσ(ò) ofwidth J2 . Fromour previous discussion on the presence of other gaps of width

D+( )O J n n1 arranged in a fractal structure, we can deduce thatσ(ò) toowill have a fractal structure,much alike a
devil’s staircase.

It goes without saying that only the first few steps of the staircase are visible, because of the presence of a
resolution cut due to the system size.

4.Discussion

4.1.Noise sources and densitymeasurements
We shall now corroborate our analysis by looking at other interesting quantities. Let usfirst observe that the
functionσ defined in equation (6) is obtained by averaging over all possible positions of the impurity and over
the randomphase of the quasi-periodic potential. Let us consider the following quantity

 s q d= á - ñ( ) ( ( )) ( )F x, , 22x noise

where the position x of the impurity isfixed and the average over the lattice sites is not performed. In the previous
sectionwe saw that an orthogonality event is generatedwhenever the energy of a site, as a consequence of the
perturbation, becomes larger than the Fermi energy. Being the systemhighly localized, this orthogonality event
is therefore associatedwith a particle occupying, in the new ground state, the site relative to the Fermi energy of
the impurity-free system. Such a site is spatially separated from the site left unoccupied in the new configuration.
In otherwords, the orthogonality event is associatedwith a rearrangement of the occupied sites.Motivated by
this reasoning, let us define

 å= - -
=

( ) ∣( )[ ( ) ˜( )]∣ ( )R j x n j n j x, , , 23x
j

N

1 noise

s
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inwhich  = áY = Y = ñ( ) ( )∣ ∣ ( )†n j a a0 0j j0 0 is the ground state occupation of the jth site in the absence of the

impurity, and   = áY Y ñ˜( ) ( )∣ ∣ ( )†n j x x a a x, , , ,j j0 0 is the ground state occupation of the jth site in the presence
of an impurity at site xwith interaction strength ò. The latter can be seen as the adiabatic response to the quench.
The quantityR can be roughly interpreted as the average distance at which a particle is adiabaticallymoved as a
consequence of the perturbation. As explained above, the particle willmove to the site corresponding to the
Fermi energy of the systemwithout impurity. This site, for random realisations of the phase, can correspond to
any lattice site with uniformprobability. Therefore, for an impurity placed at the centre of the lattice, the site
corresponding to the Fermi energywill be at an average distance∼Ns/4. By considering the full statistics of the
adiabatic transport, as a function of the perturbation potential, we canwriteR (ò);σx (ò)Ns/4, wherewe are
roughly assuming that the probability of an orthogonality event is equivalent to the probability of adiabatically
transfering a charge (notice thatwe have taken x=Ns/2 and dropped the label x). Figure 4(a) strongly
corroborates this assumption; notice also how the quantityσx(ò)Ns/4 saturates to a value;nNs/4 for large ò. It
is then not surprising to see that, as displayed infigure 4(b), by varying the ratio J/Δ, the plateau of the function
R displays the same qualitative features of theσ function. This is in line with the findings of [25], where it is
shown that the radius of disturbance does not scale like the localisation length, which in turn is determined by
the ratio J/Δ, but rather grows linearly withNs.

Figure 4. (a)The quantityR in equation (23) (dashed red) andσx Ns/4 (solid green), in a systemwithNs=200 and J=0.05Δ and the
impurity placed in the centre of the lattice. (b)R versus ò/Δ, for J/Δ=0.01, 0.05, 0.1 (dotted blue, dashed red and solid green,
respectively). (c)Comparison among the quantitiesσx in equation (22), solid green,χx in equation (24), dashed red, and ηx in
equation (25), dotted blue. The impurity is at the centre of the lattice,Ns=200, J=0.1Δ. (d)Probability s̃( ), in equation (26), to
generate an orthogonality event when every realization of the phase is associatedwith a randomposition of the impurity (dashed red);
for comparison, we display, in solid green, the case inwhich the position is averaged over thewhole lattice at every random realization
of the phase. In all the panelsβ is the golden ratio.

7
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In order to further analyse the changes induced by the impurity in the density profile, let us define

 åc = -
=

( ) ∣ ( ) ˜( )∣ ( )n j n j x
1

2
, , , 24x

j

N

1 noise

s

and similarly

 åh = -
=

( ) [ ( ) ˜( )] ( )n j n j x
1

2
, , . 25x

j

N

1

2

noise

s

These two quantities enable us to further link the statistics of orthogonality events to the statistics of adiabatic
charge transfers induced by the local quench. Also, they should be easy to access experimentally, as confirmed by
recent experiment in cold atomic gaswhere a single site resolution has been successfully achieved [36]. These
two quantitiesmimic to some extent the behaviour of the probabilityσ in equation (22). Indeed, the quantityχ
in equation (24), for a single realisation of the randomphase, is bounded to take values in the interval [0,1]. The
limiting cases are easily understood:χ=0when the two density profiles coincide, andχ=1when the density
differs only for two spatially separated states. In this scenario,χ in equation (24) acts as awitness of the density
rearrangement, and in turn as a signature for an orthogonality event. Furthermore, for strong values of the
perturbation, it saturates to the filling factor. An analogous reasoning can be done for the quantity introduced in
equation (25).

As shown infigure 4(c), theσx function displays a trend similar toσ averaged over the lattice sites.
Furthermore, bothχx and ηx also show an anomalous behaviour in the plateau region, where they increase with
a slower rate in ò. The intuitive explanation of this behaviour is that when ò is increased in this interval, the
number orthogonality events, or charge transfer events, does not change but thewave function of the perturbed
site is nonethelessmodified. In order to test the robustness of this phenomenonwith respect to impurity
position, we assume that at each realisation of the quasi-periodic potential the impurity is plunged at a
completely random site.We define

 s q d= á - ñf˜ ( ) ( ( )) ( )F x , , 26noise

inwhich xf represents the position of the impurity associated to each realization of the quasi-periodic potential,
characterized by a randomphasef. Despite this further source of noise we see that also s̃( ) features a plateau,
as shown infigure 4(d).

As a further example, providing amore complete analysis of quench-induced changes in the density, we
introduce the following quantities

åc c=
=

( ) ( )
N

1
, 27

s x

N

x
1

s

and

åh h=
=

( ) ( )
N

1
, 28

s x

N

x
1

s

that correspond to averaging (24) and (25) over all possible impurity positions in the lattice. This further average
smoothens the quantities define above, as displayed infigure 5(a), without altering the behaviour observed in the
single site analysis.

Finally, to show the versatility of the figures ofmerit based onmeasurements of the density profile, we
provide another possible quantifier, that is built by using the density imbalance between odd and even sites.
Recent studies proved that the density imbalance can be efficientlymonitored and can be employed to study
relaxation properties in interacting Aubry–André andmany-body localisation phenomena [4, 37]. Therefore,
we look at

   å= á - = ñ
=

( ) ˜ ( ) ( ) ( )
N

n x n
2

, 0 , 29
s x

N

1
odd odd noise

s

where, ˜ ( )n x,odd is the occupation of all odd sites when the impurity is at site xwith interaction strength ò.We
monitor then the fluctuation over the occupation of the odd sites due to the presence of the impurity, by
averaging as usual over the random realisation of the quasi-periodic potential and the position of the
pertubation. Infigure 5(b)we see that this quantifier is able to capture the plateau of theσ function. Such a good
overlap can be explained by considering that an orthogonality event is associated to a charge transfer in the lattice
that alters the number of odd (and even) occupied sites.
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4.2. Interferometric protocol
Recent developments in the physics of impurity-based quantumprobing techniques suggest an alternative, yet
viable, scheme tomeasure thefidelity in equation (5) directly (see [28]). The key idea is to associate an additional
energy level to the impurity acting as local perturbation and to design an interaction forwhich just one degree of
freedomof the impurity couples to the fermionic bath, e.g.  ñá Ä( )∣ ∣ †t e e a ax x (for the sake of simplicity the
impurity ismodelled as a two level systemwith levels ñ∣g and ñ∣e ). After intialising the impurity state in an equal

superposition ñ + ñ(∣ ∣ )g e1

2
, we assume to adiabatically couple it to the gas. The evolution generated by the

HamiltonianHwill not lead to population transfer, but it will cause dephasing of the impurity coherences. The
asymptotic value of the off-diagonal elements of the impurity densitymatrix leads to the following fidelity

   r +¥ = áY = +¥ Y = ñ = áY = Y ñ∣ ( )∣ ∣ ( )∣ ( )∣ ( ) ∣ ∣ ( )∣ ( ) ∣ ( )U x0 0 0 , . 30eg 0 0 0 0

By analysing then the statistics of the probe coherences after the adiabatic coupling, it should be possible to
reconstruct theσ (ò) function in equation (6). This interferometric approach has been experimentally realised to
study the dynamics of impurities coupled to a Fermi sea [29], and it has been employed extensively in the attempt
to design quantumprobing protocols for cold trapped atoms, e.g. tomeasure a gas temperature [38], quantum
correlations in bosonic systems [39, 40], and to probe the orthogonality catastrophe in trapped fermionic
environments [30, 41].

Figure 5. (a)The quantitiesχ in equation (27) (dotted blu) and η in equation (28) (dashed red) are comparedwithσ (solid green), in a
systemwithNs=200 and J=0.1Δ,β being the golden ratio. (b)  in equation (29) (dashed red) comparedwithσ (solid green), in a
systemwithNs=200 and J=0.05Δ,β being the golden ratio. (c)σ is displayed for different approximation of the golden ratio with

b = , ,55

34

89

55

144

89
, in green, red and blue, respectively, withNS=100 and J=0.1Δ. In solid black theσ functionwith b = +1 5

2
.

(d)σ is displayed for different lattice size,NS=200, 120, 100, 80, in black, green, red and blue, respectively, with J=0.05Δ andβ
being the golden ratio. In (a), (b) and (c) the vertical red line is at  pbD = ∣ ( )∣sin 2 . In (d) the two vertical lines are at
 pbD = - D∣ ( )∣ Jsin 2 and  pbD = + D∣ ( )∣ Jsin 2 .
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4.3. Lattice size and incommensurability
Wefinally discuss the role of the lattice size in the emergence of the plateau structure. The size of the systemwill
play an important role when realising a quasi-periodic potential, as it determines when a good approximation of
the irrationality of the incommensurate frequency is achieved. If Fn is the nth element of the Fibonacci sequence,
the ratio +F

F
n

n

1 converges to the golden ratio in the  ¥n limit. Therefore, for afinite size lattice, a good

approximation of the quasi-periodic potential is achievedwhenever b = +F

F
n

n

1 , with Fn+1Ns. Figure 5(c)
displays the sigma function for different approximations of the golden ratio.

5. Conclusion

Wehave explored the statistics of orthogonality catastrophe events resulting from adiabatically perturbing a
systemof non-interacting and strongly localised fermions in a disordered lattice. This has led to new and
unexpected features directly linked to the very nature of the quasi-periodic potential. In particular, we have
shown that the gapped, fractal spectrumof the Aubry–Andrémodel and the energy–space resonances affect the
statistical orthogonality catastrophe quite drastically, resulting in a plateau structure.We have also provided a
connectionwith experimentally accessible quantities, based on eithermeasurement of the lattice density profile,
or atom impurities serving as controllable quantumprobes, suggesting an experimental verification to bewell
within reachwith current available technologies.

We also stress that our analysis and numerical simulations pertain to lattice sizes ofO(102÷ 103),figure 5(d).
This is the realmwheremost experiments can be performed. Increasing the lattice size will eventually reveal the
scaling of the typicalfidelity, as in equation (1). The study of the features and fine details of this transitions are left
for a future investigation.
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