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Abstract

We address the phenomenon of statistical orthogonality catastrophe in insulating disordered systems.
In more detail, we analyse the response of a system of non-interacting fermions to a local perturbation
induced by an impurity. By inspecting the overlap between the pre- and post-quench many-body
ground states we fully characterise the emergent statistics of orthogonality events as a function of both
the impurity position and the coupling strength. We consider two well-known one-dimensional
models, namely the Anderson and Aubry—André insulators, highlighting the arising differences.
Particularly, in the Aubry—André model the highly correlated nature of the quasi-periodic potential
produces unexpected features in how the orthogonality catastrophe occurs. We provide a quantitative
explanation of such features via a simple, effective model. We further discuss the incommensurate
ratio approximation and suggest a viable experimental verification in terms of charge transfer statistics
and interferometric experiments using quantum probes.

1. Introduction

Cold atoms in optical lattices are nowadays universally accepted as an outstanding experimental platform to
realise paradigmatic models in condensed matter and high energy physics. Current and future lines of research
delve deep into studying the dynamics of interacting, disordered systems [ 1-5], and lattice gauge theories [6, 7].
The ability to tune atomic interactions as well as potential energy profiles practically at will, enables
experimentalists to simulate a variety of systems, interacting versus non-interacting, one- versus higher-
dimensional and clean versus disordered. Well-known examples of models implemented in optical lattices
include Heisenberg and Hubbard Hamiltonians [8, 9], and systems undergoing Anderson [10, 11] and many-
body-localisation [4, 12-20] (for a review see [21, 22]). Such direct experimental observations provide accessible
and quick validation to longstanding theoretical well-known results and speculations.

In this article we investigate the collective response of some one-dimensional localised systems to local
adiabatic perturbations. Recent studies have demonstrated that a local adiabatic quench can induce a non-local
rearrangement of the energy eigenstates, resulting in a non-local transfer of charge across the lattice. This effect
has been confirmed in the Anderson insulator (AI) [23] as well as in the Aubry—André (AA) model [24], in both
the interacting and non-interacting case. The effect was dubbed statistical orthogonality catastrophe (STOC) and
in [25, 26] it was theoretically predicted and numerically confirmed that the typical wave function overlap Fy,
between the unperturbed ground state [¥,(0)) and the perturbed one |Uy(e)) (F = |(¥5(0) |To(¢)) | the overlap
of two many-body eigenstates for a single disorder realisation) decays exponentially
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Fyp = exp(logF) ~ exp(—al), 1)

in which the bar denotes the average over disorder, L is the size of the system and «v a constant (typically of the
order of 102 or less) that depends, among other quantities, on €. This scaling behaviour is radically different
from the more familiar Anderson orthogonality catastrophe, characterising metallic systems perturbed by
impurities, for which the same overlap follows a power law decay in the system size [23]

F = [(Wo(0)[Wo(e))| ~ L. )

The difference is due to the nature of the eigenfunctions, in the first case localized, in the second extended. In
absence oflocalization, spectral and time-dependent probes of the OC have been thoroughly discussed, and
measured in experiments [27-30].

For localized dynamics, the analysis in previous works was usually focused on the study of the scaling of the
typical overlap in the thermodynamical (large L) limit. This was very reasonable for the original Anderson
orthogonality catastrophe setup, in which, since the eigenstates are extended, different regions of the spectrum
are statistically homogeneous and satisfy the eigenstate thermalization hypothesis [31-33]. It is also reasonable
for the Al where, in one dimension, there is no mobility edge and all the states are localized [10], but in the AA
model at large disorder, large fluctuations of F, when the quench site is shuffled around, yield non-trivial effects
for L up to a few hundreds, effectively probing different regions of the spectrum. This range of L is very relevant
for cold atoms experiments described in the introduction and must be taken into account if a correct description
thereof is to be achieved.

Motivated by this fact, we have performed numerical studies on the non-interacting AA model, investigating
both the non-local charge transfer and the statistics of orthogonality events in presence of a strong quench in the
localised phase. Our main finding is the emergence of a surprising and atypical behaviour in the statistics of the
catastrophe events, manifesting as a series of plateaux. This effect will be shown to be ultimately connected to the
fractal nature of the AA spectrum.

The manuscript is organised as follows: in section 2 we first briefly summarise the Al and AA models and
introduce the quenching protocol and some key quantities. The results are presented in section 3, where we also
link the statistics of orthogonality events to space—energy correlations typical of a quasi-periodic potential, a key
feature that is completely absent in the Al. We further discuss our results in section 4 and propose a possible
experimental verification, before moving to conclusions in section 5.

2. The model

We investigate a system of non-interacting fermions in a one-dimensional lattice subject to alocal quench of the
confining potential. The tight-binding Hamiltonian H reads

N—1 N,
H=-]Y (a;ajﬂ +he) + > Vja]Taj + e(t)alay, 3)
j=1 j=1

where aj, a ; are the jth site fermionic annihilation and creation operators, Jis the hopping parameter, V; the jth
site local potential and x ranges between 1 and Nj, the length of the chain. The last term can be viewed as the
effective time-dependent density—density interaction with a localised impurity at position j = x that s
adiabatically switched on. We will study a half-filled lattice, with a total number of particles N = N,/2, or
alternatively a filling fraction n = N/N; = 1/2, so that the ground state will be a Fermi sea occupying half of the
spectrum. At half filling the Fermi energy will be Ep = 0. The time evolution of the impurity potential is such
thate(0) = 0and e (00) = €. According to the adiabatic theorem, for a system initially prepared in the many-
body ground state of Hamiltonian (3) with no impurity potential, the asymptotic final state following the
adiabatic coupling will be

[Wo(x, €)) = U (+00)|Yy(e = 0)), %)

where |[¥y(x, €))is the many-body ground with the perturbation at site x, as in equation (3).

Depending on the potential V}, the Hamiltonian (3) operator can capture different models. Here, we focus
on two models: a quasi-periodic potential characterised by the profile V; = A cos(2m3j + ¢), with Birrational
and known in the literature as the Aubry—André (AA) model [24], and a completely random V; whose local
amplitudes are sampled with uniform probability in the interval [— A, A], which yields the Anderson Insulator
(AI) model [25]. The AA model is not analytically solvable, however, if 3is irrational, the resulting potential is
quasi-periodic and for A = 2] a transition from delocalised to localised eigenstates occurs [24, 34, 35]. On the
other hand, the Al model also exhibits eigenstate localisation forany A > 0in 1D.

In this article we will characterise the adiabatic many-body response to alocal quench by studying the
overlap (or fidelity) between the pre and post-quench ground states,

2
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F(x, €) = [{Wo(e = 0)[Wo(x, €))]. )

We expect this quantity to vanish for any position of the impurity in the limit of very large values of ¢, when the
corresponding term in equation (3) becomes dominant. The overlap F will be averaged over two instances. The
first one is the position x of the impurity potential and the second one is the noise realisation. In the AA model,
the latter corresponds to averaging over different phases ¢, while in the Al such an average is performed over the
different random realisations of the potential V;. With a slight abuse of notation, both averages will be henceforth
indicated with brackets. We therefore define

N,
o(e) = <i S0 — F(x, e>)> , ©)
I\]S x=1 noise

with @ being the Theta function and § being conventionally set at 10~ *, This is the probability for an
orthogonality event F ~ 0 to occur and it is the key quantity to be investigated. We stress that this orthogonality
event is due to a rearrangement of the single particle energy eigenstates, leading to an adiabatic charge transfer as
shownin [25, 26]. We will always focus on the case ] < A, i.e. when the single particle eigenstates are strongly
localised. Thus, changing the impurity position within the lattice will result in an effective interaction with
different levels of the single particle spectrum.

3. Results

The o function, displayed in figure 1, shows striking differences in the two models here considered. As expected,
by increasing the value of the interaction between the impurity and the surrounding fermionic gas, the number
of the orthogonality events increases monotonically. When € >> A this saturates to 1/2, being naturally bounded
by the filling factor. This is reasonable, since in the strongly interacting regime the gas—impurity interaction
strength overcomes the energy scales given by both the on-site potential and the kinetic term. Interestingly,
while in the Al such saturations is achieved monotonically and without any particular structure nor dependence
from the hopping parameter, in the AA model the appearance of a plateau can be clearly noticed. The amplitude
of this plateau is comparable with the principal energy gap present in the AA energy spectrum, suggesting a
possible link (see figure 5(d)). However, since the number of events at which the plateau starts is well above the
number of states between the Fermi energy and the energy gap itself, in order to understand this behaviour we
need to analyse the mechanism responsible for the energy gap as well as the properties of the neighbouring
eigenstates. Since we are interested in the localised phase of the AA model, i.e. A > 2], the spectrum is, for the
most part, well approximated by the on-site potential energy

E; ~ AcosQnBi + ¢). )

The only exception is when two adjacent sites have an energy difference of the same order or lower than the
hopping parameter, thatis |E;;; — E;| < J.Inthis case the two levels are quasi-resonant and a fermion is
therefore delocalised between both the two sitesiand i 4+ 1. This quasi-resonance condition |E;;; — Ej| ST
leads to

. ) J
sinQnB3G + 1/2) + < — 8
| sin(27/3( /2) ¢)|N2Asin(ﬁﬂ) ®)
The center of the gap is obtained by finding the states which are exactly resonating, therefore the following
condition
2n0i + ¢ = —w mod 7 ©)
yields E; >~ E;; | =~ E, and one finds, from equations (7)—(8), that the gap is located around the energy
Ey = £A cos(m3). (10)
See figure 2(a).
Two non-exactly resonant sites iand i + 1 can be described by an effective two-site Hamiltonian
_| Ei —J
H, = [_] b 5E], (11)

where we wrote E; = E; + OE.Tobe concrete, when i satisfies (8), 6E = 0 and E; = E,, in (10).
Forany state ¥ = Z?’; LY (D)), where|j) = af|vac), we can use as a measure of localisation the inverse
participation ratio
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Figure 1. Probability o that the ground states with and without impurity become orthogonal; the impurity is located at different lattice
sites and averaged over site location and noise (or phase of potential). o is displayed versus € in units of A for J/A = 0.01,0.05, 0.1
(dotted blue, dashed red and solid green, respectively). The lattice size is N; = 200 and the two ground states are defined to be
‘orthogonal’ when their overlap is less than a conventional threshold 6 = 10™*. (a) Al model; (b) and (c) AA model, with Fbeing the
golden and silver ratio, respectively. The vertical lines in (b) and (c) correspond to € /A = | sin(27(3)|.

PONRIEDIE
For approximate resonances, the effective model (11) gives as IPR:
OE? + 4)?
, = S+ A (13)
0E* + 2]

which is a Lorentzian curve with maximum 2 and width J as a function of §E. See figure 3. The width of the gap is
given by the energy difference between these two states, which is 2. See figure 2.

One can extend this argument to states which are 2-site distant, say iand i + 2. However, in this case the
required energy difference must be less than J*/A, as the intermediate state i + 1 has energy of O(A) under
which the particle has to tunnel

|Eiya — Eil <J*/Eiq1 = J*/A, (14)
)
2A|sin(27B3 + 1) + ¢)sin(2rB)| < J*/A, (15)
which leads to a gap of size J2/(2A sin(27(3)) located around
2n0i + ¢ = =273 mod w (16)
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Figure 2. (a) Resonant states around the gap; the gap is of the order 2J. Correlation function C,,,, for the (b) AA and (c) Al models. In
the first case there is the clear emergence of an ordered pattern, with non-zero elements connecting states on opposite sides of the
energy gaps. This feature is due to the fact that the Aubry—André model entails a form of highly correlated noise that displays
correlations in energy and space. This does not happen in the Anderson insulator, in which the non-zero off-diagonal elements are
randomly distributed.
2.t Egy/A
1.8F
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1.4t A
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Figure 3. Inverse participation ratio defined as IPR(E;) = 1 /Z]N; i) [*, with 1); eigenstate corresponding to energy E;. The black

curves are Lorentzian fits centered around the first two gaps Eg, (solid) and Eg, (dashed). The IPR and the eigenenergies E; are

calculated for a system with ] = 0.1A,N; = 200and § = % and arandom value of the phase ¢.

and therefore the centeres of the gaps, whose size is 7 /A are at
Ey = £Acos2mp). (17)
Notice that also these states are located around these gaps and they are delocalized on the sites iand i + 2 only.

See the smaller Lorentzian in figure 3. This is the onset of the fractal structure of the gaps, with widths
O(J"*'/A™ and located around A cos(n73). For finite N however, only the first few gaps will be visible (an
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approximate conditionis NJ"/A" 2> 2, for atleast two states have to be resonant to observe the gap of
ordern + 1).
An alternative way to visualize these resonances is through the following correlation function

N,
C(Em - En) = len(])lzlwm(]ﬂz’ (18)

=1
where 1,,/,,, are the eigenfunctions of the Hamiltonian with no impurity, i.e.

H(e = 0)¢, = E, Y. (19)

Figure 2(b) shows how states on opposite sides of the main gap display a strong degree of correlation, being close
in space (namely nearest neighbours). As mentioned before, these energy gaps are the reason for the plateau
structures displayed in o, as we are now going to explain in detail.

First of all, it must be noticed that when adding the impurity energy e on the occupied site x (so E, < Er = 0)
the energy of the particle simply moves to

E.~E, + e. (20)

Whenever E; > Er = 0an orthogonality event occurs. However, because of the non-zero tunnelling (J = 0), the
impurity energy on-site x affects the energies related to the other sites E., , Ey., ,,.... As € increases the condition
E.., > Er = 0becomes relevant to generate new orthogonality events whenever the neighbour of the perturbed
site is occupied. The previous discussion about the distribution of the resonant states around the main gap
guarantees that the states on opposite sides of the gap are nearest neighbours. This explains why the number of
events at which we reach the plateau is well beyond the number of states between the Fermi energy and the
energy gap itself. The last occupied site with an occupied neighbour to generate an orthogonality event before the
plateau is obviously paired with the site close to the Fermi energy. Being Er = 0 we can assume the energy of the
highest energy occupied state to be E >~ 0 and therefore the potential on this site to be
A cosQ2mfj + ¢) ~ Acos (mg) with m odd integer.

As a consequence the energy difference between this site and its nearest neighbour is E = A|sin(273)|,
and identifies in turn the pair of states in the tails of the main Lorentzian in figure 3 below the Fermi energy. This
OE therefore predicts the centre of the plateau. In fact, the absence of orthogonality events condition is given by

Alsin@r3)| + ] 2 € 2 Alsin@mp)| — J, 21

in our numerics | sin(273)| = 0.67 ... for the case of S being the golden ratio. In panels (b) and (c) of figure 1 we
can see how this condition correctly predicts the centre of the plateau for different hopping parameters for the
two cases considered, i.e. the golden ratio or the silver ratio taken as incommensurate frequencies. This manifests
itself as a plateau in o(e) of width 2J. From our previous discussion on the presence of other gaps of width
O(J"*!/ A" arranged in a fractal structure, we can deduce that o(€) too will have a fractal structure, much alike a
devil’s staircase.

It goes without saying that only the first few steps of the staircase are visible, because of the presence of a
resolution cut due to the system size.

4. Discussion

4.1. Noise sources and density measurements

We shall now corroborate our analysis by looking at other interesting quantities. Let us first observe that the
function o defined in equation (6) is obtained by averaging over all possible positions of the impurity and over
the random phase of the quasi-periodic potential. Let us consider the following quantity

Ux(f) = <9(6 - F(x) 6))>noise) (22)

where the position x of the impurity is fixed and the average over the lattice sites is not performed. In the previous
section we saw that an orthogonality event is generated whenever the energy of a site, as a consequence of the
perturbation, becomes larger than the Fermi energy. Being the system highly localized, this orthogonality event
is therefore associated with a particle occupying, in the new ground state, the site relative to the Fermi energy of
the impurity-free system. Such a site is spatially separated from the site left unoccupied in the new configuration.
In other words, the orthogonality event is associated with a rearrangement of the occupied sites. Motivated by
this reasoning, let us define

N,
Re(e) = { D_IG = 0)[n(j) — (j, €, 0] , (23)

j=1 noise
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Figure 4. (a) The quantity R in equation (23) (dashed red) and o, N,/4 (solid green), in a system with N; = 200andJ = 0.05A and the
impurity placed in the centre of the lattice. (b) R versus ¢/ A, for J/A = 0.01,0.05, 0.1 (dotted blue, dashed red and solid green,
respectively). (c) Comparison among the quantities o, in equation (22), solid green, X, in equation (24), dashed red, and 7). in
equation (25), dotted blue. The impurity is at the centre of the lattice, N; = 200, ] = 0.1A. (d) Probability &(¢), in equation (26), to
generate an orthogonality event when every realization of the phase is associated with a random position of the impurity (dashed red);
for comparison, we display, in solid green, the case in which the position is averaged over the whole lattice at every random realization
of the phase. In all the panels 3is the golden ratio.

inwhich n(j) = (Yy(e = 0) |ajT aj|Wy(e = 0)) is the ground state occupation of the jth site in the absence of the
impurity, and 7i(j, ¢, x) = (Yy(x, €) |a]T aj|Wy(x, €))is the ground state occupation of the jth site in the presence
of an impurity at site x with interaction strength €. The latter can be seen as the adiabatic response to the quench.
The quantity R can be roughly interpreted as the average distance at which a particle is adiabatically moved as a
consequence of the perturbation. As explained above, the particle will move to the site corresponding to the
Fermi energy of the system without impurity. This site, for random realisations of the phase, can correspond to
any lattice site with uniform probability. Therefore, for an impurity placed at the centre of the lattice, the site
corresponding to the Fermi energy will be at an average distance ~N,/4. By considering the full statistics of the
adiabatic transport, as a function of the perturbation potential, we can write R (€) >~ o, (€) N,/4, where we are
roughly assuming that the probability of an orthogonality event is equivalent to the probability of adiabatically
transfering a charge (notice that we have taken x = N,/2 and dropped the label x). Figure 4(a) strongly
corroborates this assumption; notice also how the quantity o,(€)N,/4 saturates to a value ~n N,/4 for large e. It
is then not surprising to see that, as displayed in figure 4(b), by varying the ratio J/ A, the plateau of the function
R displays the same qualitative features of the o function. This is in line with the findings of [25], where it is
shown that the radius of disturbance does not scale like the localisation length, which in turn is determined by
theratio J/A, but rather grows linearly with Ni.
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In order to further analyse the changes induced by the impurity in the density profile, let us define

N,
Xa(e) = <%Zln(j) — A, e x)|> , (24)
=1 noise
and similarly
1 N,
n.(€) = EZ[n(j) — 7(j, € x)I? - (25)
=1 noise

These two quantities enable us to further link the statistics of orthogonality events to the statistics of adiabatic
charge transfers induced by the local quench. Also, they should be easy to access experimentally, as confirmed by
recent experiment in cold atomic gas where a single site resolution has been successfully achieved [36]. These
two quantities mimic to some extent the behaviour of the probability o in equation (22). Indeed, the quantity x
in equation (24), for a single realisation of the random phase, is bounded to take values in the interval [0,1]. The
limiting cases are easily understood: y = 0 when the two density profiles coincide, and x = 1 when the density
differs only for two spatially separated states. In this scenario, x in equation (24) acts as a witness of the density
rearrangement, and in turn as a signature for an orthogonality event. Furthermore, for strong values of the
perturbation, it saturates to the filling factor. An analogous reasoning can be done for the quantity introduced in
equation (25).

As shown in figure 4(c), the o, function displays a trend similar to o averaged over the lattice sites.
Furthermore, both y, and 7, also show an anomalous behaviour in the plateau region, where they increase with
aslower rate in . The intuitive explanation of this behaviour is that when € is increased in this interval, the
number orthogonality events, or charge transfer events, does not change but the wave function of the perturbed
site is nonetheless modified. In order to test the robustness of this phenomenon with respect to impurity
position, we assume that at each realisation of the quasi-periodic potential the impurity is plunged at a
completely random site. We define

o(e) = <0((5 - F(X@, 5))>n0ise) (26)

in which x,, represents the position of the impurity associated to each realization of the quasi-periodic potential,
characterized by a random phase ¢. Despite this further source of noise we see that also &(¢) features a plateau,
as shown in figure 4(d).

As a further example, providing a more complete analysis of quench-induced changes in the density, we
introduce the following quantities

1 N,
X = ﬁsle X (€)s 27)
and
1 N,
n= E; n,(6), (28)

that correspond to averaging (24) and (25) over all possible impurity positions in the lattice. This further average
smoothens the quantities define above, as displayed in figure 5(a), without altering the behaviour observed in the
single site analysis.

Finally, to show the versatility of the figures of merit based on measurements of the density profile, we
provide another possible quantifier, that is built by using the density imbalance between odd and even sites.
Recent studies proved that the density imbalance can be efficiently monitored and can be employed to study
relaxation properties in interacting Aubry—André and many-body localisation phenomena [4, 37]. Therefore,
we look at

N,
I(e) = % Z <ﬁodd(6y X) — Nodd(€ = 0)>n0ise) (29)
s x=1

where, 7iyqq (€, x) is the occupation of all odd sites when the impurity is at site x with interaction strength e. We
monitor then the fluctuation over the occupation of the odd sites due to the presence of the impurity, by
averaging as usual over the random realisation of the quasi-periodic potential and the position of the
pertubation. In figure 5(b) we see that this quantifier is able to capture the plateau of the o function. Such a good
overlap can be explained by considering that an orthogonality event is associated to a charge transfer in the lattice
that alters the number of odd (and even) occupied sites.
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Figure 5. (a) The quantities x in equation (27) (dotted blu) and 7 in equation (28) (dashed red) are compared with o (solid green), in a
system with Ny = 200 and ] = 0.1A, Gbeing the golden ratio. (b) Z in equation (29) (dashed red) compared with o (solid green), in a
system with Ny = 200 and ] = 0.05A, Bbeing the golden ratio. (c) o is displayed for different approximation of the golden ratio with
B = %, %, %, in green, red and blue, respectively, with Ny = 100 andJ = 0.1A. In solid black the o function with § = M.
(d) o is displayed for different lattice size, Ng = 200, 120, 100, 80, in black, green, red and blue, respectively, with ] = 0.05A and 3
being the golden ratio. In (a), (b) and (c) the vertical red lineisat ¢ /A = |sin(273)|. In (d) the two vertical lines are at
e/A = |sinQnfB)| — J/Aande/A = |sin(QrB3)| + J/A.

4.2. Interferometric protocol

Recent developments in the physics of impurity-based quantum probing techniques suggest an alternative, yet
viable, scheme to measure the fidelity in equation (5) directly (see [28]). The key idea is to associate an additional
energy level to the impurity acting as local perturbation and to design an interaction for which just one degree of
freedom of the impurity couples to the fermionic bath, e.g. ¢ () |e) (¢| ® a; a, (for the sake of simplicity the
impurity is modelled as a two level system with levels |g) and |e)). After intialising the impurity state in an equal
superposition %(l g) + |e)), we assume to adiabatically couple it to the gas. The evolution generated by the
Hamiltonian H will not lead to population transfer, but it will cause dephasing of the impurity coherences. The
asymptotic value of the off-diagonal elements of the impurity density matrix leads to the following fidelity

| peg (+00) | = [(Wo(e = 0)|U (+00)[¥y(e = 0)) | = [{Wo(e = 0)|Wo(x; €))]. (30)

By analysing then the statistics of the probe coherences after the adiabatic coupling, it should be possible to
reconstruct the o (¢) function in equation (6). This interferometric approach has been experimentally realised to
study the dynamics of impurities coupled to a Fermi sea [29], and it has been employed extensively in the attempt
to design quantum probing protocols for cold trapped atoms, e.g. to measure a gas temperature [38], quantum
correlations in bosonic systems [39, 40], and to probe the orthogonality catastrophe in trapped fermionic
environments [30, 41].
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4.3. Lattice size and incommensurability

We finally discuss the role of the lattice size in the emergence of the plateau structure. The size of the system will
play an important role when realising a quasi-periodic potential, as it determines when a good approximation of
the irrationality of the incommensurate frequency is achieved. If F,, is the nth element of the Fibonacci sequence,

. E
the ratio ';“

n

converges to the golden ratio in the n — oo limit. Therefore, for a finite size lattice, a good

approximation of the quasi-periodic potential is achieved whenever 3 = E“F“ ,with F,, ; 2 N.. Figure 5(c)

displays the sigma function for different approximations of the golden ratio.

5. Conclusion

We have explored the statistics of orthogonality catastrophe events resulting from adiabatically perturbing a
system of non-interacting and strongly localised fermions in a disordered lattice. This has led to new and
unexpected features directly linked to the very nature of the quasi-periodic potential. In particular, we have
shown that the gapped, fractal spectrum of the Aubry—André model and the energy—space resonances affect the
statistical orthogonality catastrophe quite drastically, resulting in a plateau structure. We have also provided a
connection with experimentally accessible quantities, based on either measurement of the lattice density profile,
or atom impurities serving as controllable quantum probes, suggesting an experimental verification to be well
within reach with current available technologies.

We also stress that our analysis and numerical simulations pertain to lattice sizes of O(10* - 10°), figure 5(d).
This is the realm where most experiments can be performed. Increasing the lattice size will eventually reveal the
scaling of the typical fidelity, as in equation (1). The study of the features and fine details of this transitions are left
for a future investigation.
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