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Abstract—We propose the concept of intelligent middle-level
game control, which lies on a continuum of control abstraction
levels between the following two dual opposites: 1) high-level
control that translates player’s simple commands into complex
actions (such as pressing Space key for jumping), and 2) low-
level control which simulates real-life complexities by directly
manipulating, e.g., joint rotations of the character as it is done
in the runner game QWOP. We posit that various novel control
abstractions can be explored using recent advances in movement
intelligence of game characters. We demonstrate this through
design and evaluation of a novel 2-player martial arts game
prototype. In this game, each player guides a simulated humanoid
character by clicking and dragging body parts. This defines the
cost function for an online continuous control algorithm that
executes the requested movement. Our control algorithm uses
Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
in a rolling horizon manner with custom population seeding
techniques. Our playtesting data indicates that intelligent middle-
level control results in producing novel and innovative gameplay
without frustrating interface complexities.

Index Terms—game control, physically-based simulation,
multi-agent systems, online optimization, continuous control

I. INTRODUCTION

Game control in present video games can be divided into
high-level and low-level control [1]. In high-level control, the
player is able to trigger actions such as punch or kick with
a simple keypress. In contrast, there are low-level control
approaches where the player directly manipulates the game
system simulation. For example, using this approach in a
martial arts game could mean that the player has to determine
the torques applied to each joint of the character’s body to
produce a punch. The fighting game Toribash [2] and the
runner game QWOP [3] are two of the games that have
successfully used this kind of low-level control.

Low-level control allows maximal expressiveness, diver-
sity/complexity, and control in game animations; it can also
remove the cost of animation production in game projects.
However, it usually makes the character control extremely dif-
ficult since it requires the player to manipulate several degrees
of freedom with high precision, often under time pressure. On
the other hand, games with high-level control usually come
with a set of pre-defined smooth and natural animations. The
downside is that the animations are costly to produce, and they
do not allow for interesting novel movements to emerge [1].

In this paper, we propose intelligent middle-level game
control by combining usability and flexibility of high-level

and low-level controls, respectively. Using this approach, the
player’s commands are more abstract and simple than low-
level control, but more detailed and expressive than high-level
control. To make this possible, we utilize recent movement
artificial intelligence (AI) techniques for physically-simulated
characters. To clarify this definition, consider the martial arts
game example again. Suppose the player can produce the
command ”use your left hand to push the opponent’s right
hand away” by left-clicking on the opponent’s right hand.
Then, the game automatically computes and then applies
the required torques for producing the requested animation,
adapting to the current physical state of the characters. In other
words, player commands cause the animations to be generated
on the fly and no pre-recorded animations are used. The main
advantages of intelligent middle-level control are as follows:

1) The synthesized movements are novel and emergent
similar to low-level control, but the player can focus
on more strategic planning instead of micro-managing
the simulation.

2) The complexity of a simulated human body’s dynamics
can create interesting challenges [1]. Both novelty and
complexity are desirable from the point of view of
inducing a feeling of curious interest in the player [4].

3) Since movement is not limited to pre-defined anima-
tions, more expressive and precise game controls can be
designed and implemented.

Middle-level control has been explored before in a few
games such as Octodad [5] and the original PC version of
Rag Doll Kung Fu [6], albeit with less control intelligence.
The games typically use some form of inverse kinematics
which limits the behaviors that can be created. We demonstrate
that intelligent middle-level control with online trajectory
optimization allows realistic handling of physical constraints
such as joint limits and non-penetration of colliding bodies.

We believe that intelligent middle-level control has the
potential for introducing various novel gameplay. To support
this claim, we developed a novel 2-player martial arts game
prototype in which the players are able to control their
physically-based humanoid characters through giving middle-
level commands. We also developed an online continuous
control trajectory optimization algorithm that computes the
simulation control parameters needed to produce the requested
movements. Screenshots of the game are shown in Fig. 1



(a) Task = Null (b) Task = Punch in head using right hand (c) Task = Move right hand to specified position

Fig. 1: Screenshots of our 2-player martial arts game prototype with 3 different tasks. The left character is controlled by the
local player.

and a gameplay video is available online1. We evaluated this
prototype by running a user study with 12 participants (6
human-vs-human pairs). The players reported that the interface
enabled them to use various martial arts strategies, and that
low-level controller was able to produce their commands with
high precision.

The rest of the paper is organized as follows: A brief
overview of literature is given in Section II. Section III
explains the details of intelligent middle-level control and our
martial arts game prototype. Section IV describes the details
and results of the user study that was run for evaluating
intelligent middle-level control in our game. Finally, Section
V gives conclusions and Section VI analyzes the limitations
and future lines of research in this work.

II. RELATED WORKS

In this section, we first give an overview of recent methods
for synthesis and control of physically-based character anima-
tion, followed by game control interface research relevant to
this work.

A. Character Movement Synthesis

Traditional animation technology has limited movement
expressiveness and emergence, except for simple low-level
simulation control (e.g., Toribash [2] and QWOP [3]). How-
ever, this is changing due to deep reinforcement learning and
novel real-time movement optimization methods, which can
endow game characters with expressive movement intelligence
not limited to pre-defined animations. We refer the reader to
[7] for a thorough introduction to character animation and
physically-based simulation along with a survey on common
techniques.

Simulation-Based Methods: In physical environments, be-
havior of objects and their interactions is usually difficult to
model and predict. One of the most common approaches for
character control in these environments is to use simulation-
based methods. The basic idea behind these methods is simple:
generate a number of action sequences, evaluate them using
forward simulation and computing some cost function, and

1https://youtu.be/rnsSWY7HZJA

finally, choose the action sequence that minimizes the cost
function.

If the simulation has differentiable dynamics, one can use
dynamic programming version of gradient-based optimization
[8] to control a variety of systems ranging from an inverted
pendulum to a full humanoid. With black-box simulation, simi-
lar results were obtained by Sequential Monte Carlo sampling
of control trajectories encoded as cubic splines [9]. Instead
of a spline parameterization, Control Particle Belief Propaga-
tion (C-PBP) uses a Markov Random Field factorization for
both sampling and smoothing trajectories [10]. Rajamäki and
Hämäläinen [11] have recently shown that adding supervised
learning on top of Monte Carlo tree search (MCTS) methods
[12] can yield both robust control and low movement noise.

Several simulation-based methods have been developed us-
ing evolutionary computation. A recent study has used graph
search along with Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) [13] to develop an offline controller for
solving humanoid wall climbing problems [14]. It has been
shown that CMA-ES can be used in a rolling horizon manner
in single-agent control problems with continuous states and
actions [15] and 2-player games with discrete actions [16].
Another study has shown that performance of rolling horizon
evolutionary algorithms can be improved significantly using
simple population seeding techniques [17]. We are investi-
gating this approach in the context of a more complex 2-
player simulation with continuous actions and complex contact
dynamics.

Reinforcement Learning: Reinforcement learning (RL) is a
field of machine learning that studies how an agent should
take actions in an environment in order to maximize rewards.
In the past few years, RL has received a lot more attention
due to remarkable results of Deep Reinforcement Learning
(DRL) in Atari games [18] and the game of Go [19], [20].
These advances have inspired several breakthroughs in RL for
continuous control. Mixture of actor-critic experts (MACE)
accelerates learning by developing separate pairs of actors and
critics such that each pair learns some part of the movement
[21]. Schulman et al. [22] introduced a method called Trust
Region Policy Optimization (TRPO) that uses a surrogate ob-
jective function and is able to learn several complex tasks such



as swimming and walking. Another method called Proximal
Policy Optimization (PPO) has managed to outperform TRPO
by clipping the surrogate objective function [23]. The most
important limitation of DRL methods is that they need a lot
of simulation data and training time to learn. This can be a
problem especially when iterating the reward function design.

Data-Driven Methods: Studies have shown that data-driven
methods can be effective for generating robust and smooth
movements. One of the studies has shown that kinematic
controllers can be constructed by learning a low-dimensional
space from motion capture data and interpolating in that space
[24]. Motion matching is a similar kinematic method that
uses a dataset of pre-recorded animations and in each frame
finds the closest pose to the character’s current pose such that
desired future movement is produced [25]. Holden et al. [26]
use convolutional autoencoders on a large motion capture data
set to re-produce and interpolate recorded motions. Another
study breaks control problem into short time fragments (0.1s
in length), and learns a linear feedback control strategy for
each fragment [27]. A more recent method, called DeepLoco,
uses a combination of high-level and low-level controllers
and is able to produce stable gaits given some reference
motions [28]. Phase-functioned neural network is a recent
neural network architecture that uses cyclic functions for
computing the weights and is trained using a large dataset of
pre-recorded animations [29]. Although data-driven methods
are able to produce high-quality movements, it can be difficult
to obtain the training data, and the resulting movement is
limited by the data.

B. Game Control Interface

There is a lot of research on alternative input devices and
interfaces, e.g., for controlling games with body movements
[30]–[32]. On the other hand, some studies have proposed
using traditional input devices but novel input-avatar mappings
[1], [33].

A recent study has used predictive simulation for developing
6 novel game prototypes using low-level control of physically-
based simulated characters [1]. Our work is close to this work
as we solve the same problem of enabling expressive control of
fully physically-simulated characters without excessive control
difficulty. They propose predictive visualizations as the solu-
tion, whereas we explore the possibility of offloading some
complexity onto the movement optimizer.

It can be argued that middle-level control is not an entirely
new concept. For example, games like Octodad [5], and the
original PC version of Rag Doll Kung Fu [6] have used
inverse kinematics style control. Compared to Toribash [2]
and QWOP [3], they provide the player with a slightly higher-
level interface of directly controlling hand and feet locations
instead of joint rotations. Our contribution is in demonstrating
how modern physically-based optimization methods for online
continuous control provide novel tools for exploring game
control interfaces and abstractions.

III. METHOD

In this section we describe our 2-player martial arts game
prototype demonstrating the intelligent middle-level control
concept. At Section III-A, the details of reference model are
explained. Then, at Section III-B we explain the design of
intelligent middle-level control in our martial arts game pro-
totype. At Section III-C, the structure of low-level controller
is introduced. Finally, the network architecture of our martial
arts game is explained in Section III-D. The values of all
parameters introduced in this section are reported at Appendix.

A. Character Model

Characters in this game are upper-body humanoid characters
with 16 actuated degrees of freedom (DOF) as shown in Fig.
2. Each character has 9 bones that are connected using 3-
DOF ball-and-socket or 1-DOF hinge joints. We use Open
Dynamics Engine (ODE) [34] for physics simulations.

Fig. 2: Upper-body character model in its reference martial
arts pose.

B. Novel Middle-Level Control for Martial Arts Games

The overall schema of our control system is shown in Fig. 3.
In each frame, the current task of the character is determined
and then a low-level controller plans a sequence of actions
in order to complete the task. Then, the first action in the
sequence is executed and the simulation goes to the next
frame. This form of online optimization, i.e., 1) finding a
multi-step solution, 2) applying the initial step of the solution,
and 3) moving/rolling the horizon forward, is called the rolling
horizon control (also known as receding horizon control) [35].
Note that the character is not necessarily given a new task in
each frame in which case the task from previous frame is
considered as the current task.

Tasks: Characters can have 2 main tasks: 1) Move hand
to a specific position, and 2) Punch opponent either in the
head or in the chest. The Move task is enabled using mouse
drag in which case the desired position is determined based
on hand’s current position and mouse drag direction. A single
click on opponent’s head or chest enables the Punch task for
those parts. Both tasks can be executed using either hands
depending on the clicked mouse button (i.e., the left click for
the left hand and the right click for the right hand). There is
also a dummy Null task defined for specifying a character with



Fig. 3: Core loop in intelligent middle-level control.

no tasks. Character’s task is set to Null if 1) current task is
completed, or 2) time spent on task has passed some threshold
τMax Task.

Heads-Up Display (HUD) for tasks: The current task of
character is indicated using a simple color coding as follows:
1) when the character is given a punching command, the
operating hand and punching target are highlighted using green
color, 2) when a successful punch is executed, the punching
target will become red, and 3) when a moving command is
set for one of the hands, a yellow line connects the current
position of the hand to its desired position.

Additional input keys: Each player can use W/S keys to
move his/her character on a horizontal line. We added this
ability because in martial arts it is very important for the
characters to adjust distance to their opponent. Finally, each
player can rotate the camera around his/her character using
A/D keys.

C. Low-Level Controller

In each frame, we need a low-level controller for achieving
the character’s current task. To this end, we developed an
online simulation-based algorithm for physically-based contin-
uous control. This algorithm uses CMA-ES in a rolling horizon
manner along with custom population seeding techniques
and outputs the best found action sequence up to a fixed
horizon τHorizon. CMA-ES is a common evolutionary algorithm
that assumes a multi-variate Gaussian distribution as the
underlying data distribution. In each iteration of CMA-ES, a
new population is generated using some assumed distribution.
Then, after evaluating the fitness of each individual, CMA-ES
updates mean and covariance matrix of Gaussian distribution
by selecting a subset of population with highest fitness values
[13]. Population seeding means that in each iteration of CMA-
ES, some proportion of the population is generated using
external distributions. To the best of our knowledge, this is the
first time that CMA-ES is used in a rolling horizon manner for
online control of 3D physically-based simulated characters.

We first tried using the combined tree search and supervised
learning approach of Rajamäki and Hämäläinen [11], but
found that it had difficulties generating extreme dynamic
movements such as punches. We then tried our present ap-
proach, as the combination of CMA-ES and a spline param-
eterization was successfully utilized in the dynamic climbing

movement synthesis of Naderi et al. [14]. They however use
CMA-ES for offline optimization instead of in online rolling
horizon manner.

Overall Search Method: In each frame, we run CMA-ES
update nCMA-ES Updates times. In each update, a population of
size nPopulation Size is generated using mean and covariance of
CMA-ES and 2 seeding techniques. Then the fitness value
of each population member is computed and the CMA-ES
updates its mean and covariance. After repeating this process
nCMA-ES Updates times, first action in the best found action
sequence is returned as the character’s next action.

Spline Parameterization: We parameterize each action se-
quence using a cubic spline of nSpline Points = 3 control
points. This reduces the problem dimension significantly since
we do not need to optimize each individual action in the
sequence. Plus, interpolation between control points enforces
coordination between body joints which results in smooth
movements. We also optimize the time variable of each control
point; so each spline is defined using 3 × (16 + 1) = 51
parameters.

Population Seeding Techniques: In each CMA-ES update,
a fixed number of splines are generated using a multi-variate
Gaussian distribution. The standard deviation of this distribu-
tion is σPose and the mean is determined based on the following
2 seeding techniques: 1) nLast Best splines are generated by
using the best spline found in the last frame as the mean.
Note that at first CMA-ES update of each frame, we need to
shift the last best spline by one frame so it becomes valid in
the current frame. 2) nDefault Pose splines are generated by using
the default martial arts pose shown in Fig. 2 as the mean.

Fitness Computation: All action splines are evaluated in
parallel using forward simulation up until some horizon τHorizon

by assuming time step of ∆t = 1/30 seconds and computing
the reward (negative cost) in each time step. At the end of
forward simulation, the fitness value of each action spline is
equal to the average fitness value of all visited states during
its simulation. The fitness value of a state s is computed by
summing over the negation of 3 cost components as follows
(the goal is to maximize the fitness):

Fitness (s) = − (CostPose (s) + CostMove (s) + CostPunch (s))
(1)

where values of cost components CostX (s) are computed as
follows:

1) CostPose (s): Cost of pose deviation is computed by
finding the angle between current rotation of each bone
(qbcurrent) and its desired rotation (qbdesired) as shown in
the reference martial arts pose in Fig. 2. The cost is
computed as:

CostPose (s) =
∑
b

(
6
(
qbcurrent, q

b
desired

)
σPose

)2

(2)

where σPose is used for indicating how much difference
in rotation can be tolerated for each bone.



2) CostMove (s): Cost of moving hand h is simply defined
using the distance between current position phcurrent and
desired position phdesired of the hand as follows:

CostMove (s) =

(
‖phcurrent − phdesired‖2

σMove

)2

(3)

where σMove is used for tuning the amount of tolerance
for difference between current and desired positions.

3) CostPunch (s): Punching is the most complicated cost
component in our work. In a good punch, the hand
touches the target with highest possible speed. Then
the hand should get back to its relaxed position quickly
so the character’s guard is not down for a long time.
In order to favor these movements, punching cost is
computed as follows:

CostPunch (s) =

1punch not happened? ·
(
‖vhcurrent − vhdesired‖2

σHand Velocity

)2

−

1punch happened now? · PunchPower
(
vhcurrent

)
+

1punch happened before? ·
(
‖phcurrent − phdesired‖2
σHand Relax Position

)2

(4)

where 1A is the indicator function and is equal to 1
if the condition A is true, and 0 otherwise. Current
and desired velocity of hand are denoted by vhcurrent and
vhdesired, respectively. Similarly, phcurrent and phdesired denote
current and desired position of the hand, respectively.
Similar to previous cost components, σHand Velocity and
σHand Relax Position determine the amount of tolerance for
difference between current and desired values of the
hand velocity and position, respectively. The function
call PunchPower

(
vhcurrent

)
maps current velocity of the

hand h to a number in the range [1000, 3000].

D. Network Architecture

One of the challenges for developing this prototype was
how to design the network architecture. A critical limitation
of previous multi-agent studies is that they mostly use compet-
itive self-play RL, which is very slow and unreliable to train.
We decided to run optimization in an interleaved manner to
double our computing power. Our architecture is shown in
Fig. 4. In this architecture, both the server and client do their
own simulations in parallel by running the low-level controller
on their devices. Then each player sends its next action to
its opponent device for final simulation. Due to floating-point
computation errors, the simulations on different devices are
very likely to deviate. For solving this issue, server sends
world state and score values to the client after its simulation
is done and the client will then synchronize itself with the
server.

Another important concern in this part was how partial
information is handled. Each agent stores opponent’s last
action spline. Then, when evaluating new candidate splines,

Fig. 4: Network architecture and interactions between server
and client.

opponent’s spline is simulated up until a fixed horizon
τOpponent Horizon that is smaller than planning horizon, i.e.,
τOpponent Horizon < τHorizon. We did this because it is similar
to real life where each character can anticipate movements of
other characters by some error.

IV. EVALUATIONS

A. Experimental Setup

We ran a user study involving 12 participants to assess the
potentials of intelligent middle-level control in our martial arts
game prototype. The participants had varying proficiency in
video games and martial arts. Screenshots of our 2-player
game are shown in Fig. 1 (each player controls the left
character on his/her display).

Scoring: Each successful punch is rewarded with 1 to 10
points depending on its impact. The winner is the first player
who gets 100 points.

Slow motion modes: The game was run in slow motion so
that players have enough time for planning their movements.
We hypothesized that our middle-level control interface could
create a strategic ”body chess” experience instead of a fast-
paced action game. However, the camera rotates in real-time
speed so the players are able to quickly adjust their point of
view to see possible openings for attacks. Since we were not
sure what is the right tempo for this game, we tested 3 different
slow motion modes in this study. The chosen speeds for slow
motion were 0.12x, 0.16x, and 0.2x. In order to find the best
slow motion mode, each pair of players played one match
with each slow-motion setting, with ordering of the settings
counterbalanced between pairs. For the 6 pairs, each possible
ordering was tested once.

Goals of User Study: The participants were asked to com-
plete a questionnaire about the most important strengths and
weaknesses of the interface. Since there are no games similar
to this interface, it was not feasible to conduct a comparative
quantitative evaluation. Thus, we designed the questionnaire
using open-ended and qualitative questions on the following
themes, with the goal of informing future work by both us and
other designers and researchers:

1) What kind of combat techniques does the game allow
the players to do?



2) Does the game allow novel gameplay behavior to
emerge?

3) How much precision does the low-level controller have
in executing players’ commands?

4) Which slow motion mode is most suitable for achieving
fun gameplay involving high-quality martial arts move-
ments?

5) How can this martial arts interface be improved?

B. Results

Now we report the results obtained from 12 participants in
our user study. Empty answers and answers that were irrelevant
to the asked questions, are not included.

Slow Motion Mode: Slow motion modes of 0.12x, 0.16x,
and 0.2x were chosen by 1, 4, and 7 people, respectively. The
reported reasons are as follows:

1) The version with 0.12x speed does not produce fighting
experience as the punches do not seem to be effective.

2) In the slowest mode (0.12x), it is difficult to anticipate
the movements with good precision.

3) In two faster versions (0.16x and 0.2x), it is easier to
control the character and react to opponent’s moves.

4) The version with 0.2x speed is chosen by most of the
participants because it produces the feeling of action
more than other versions.

Our initial belief was that slower versions are easier to work
with as they allow more time for planning and anticipation
of movements. However, the results suggest that fast-paced
gameplay may be more important for martial arts games.

Strategies: The main strategies reported by participants are
as follows (some participants used more than one strategy):

1) Staying close and attacking aggressively (5 participants).
2) Using one hand for blocking and the other one for

punching (4 participants).
3) Waiting for opponent to attack and then going for the

punch (2 participants).
4) Looking for an open side and punching from that side

(1 participant).
5) Getting hands through the defense of opponent (1 par-

ticipant).
The variety of reported strategies and the gameplay videos

suggest that middle-level control provides a good testbed for
supporting different styles of gameplay.

Movement Precision: 8 participants reported that character
executes the commands with high precision. Other 4 partici-
pants stated that controlling character in slow motion mode is
difficult. This suggests that the control algorithm, despite its
flaws, is doing a good job in synthesizing dynamic movements,
but the control interface was not optimal for all participants.

Best Part: The participants were asked to name the best
part of their experience while working with the interface. The
answers are as follows:

1) Changing the color of body parts when punching (3
participants).

2) ”I like the idea of controlling both hands very much”.

3) ”The way that the hand and body part lit up when
punching”.

4) ”The distance between characters can be adjusted in a
good way”.

5) ”Seeing the game from the top”.
6) ”Fun to play against a friend”.
7) ”When it comes to punching, the character was quite

creative”.
8) ”Different camera angles, realistic approach”.
9) ”Seeing nice landed punches”.

10) ”Nice to win”.
Worst Part: The participants have reported the followings

as the worst parts of the interface:
1) Moving arms using mouse drag (3 participants).
2) ”Nothing was strikingly bad; but I had some trouble rec-

ollecting the right/left-click-equals-right/left-hand rule.
At times, I found myself just clicking whatever clicked”.

3) ”It felt like the camera was so close to the body that you
almost would like it to be first-person, and especially
the camera angle above the head felt like it was from
so much above it was not fun to use”.

4) ”Estimating of the time that it takes to hit”.
5) ”When trying to sweep the hands of the opponent away,

it wasn’t that responsive or intuitive to use”.
6) ”Both parties just end up punching each other, the game

is over very quickly, and is not that fun”.
7) ”Unexpected rise of points in opponent’s points when in

close fight”.
Suggestions for Improvement: The participants also made

the following suggestions for improving the game:
1) Adding game-like visual and audio effects (7 partici-

pants).
2) ”I think it would be cool if you could somehow with

mouse make your punches’ curves. Maybe dragging the
mouse to show the desired curve movement for the hits”.

3) ”Moving the entire body could be possible”.
4) ”Moving hands by clicking and not dragging would make

it easier to adjust hand positions”.
5) ”Allowing to crouch which makes it easier to block

punches”.
6) ”Allowing to hit arms to incapacitate the other player

from blocking punches using them”.

V. CONCLUSIONS

We have proposed the concept of intelligent middle-level
game control, demonstrated and evaluated through a novel
game prototype followed by a user study. This type of game
control allows the player to produce novel gameplay through
commands that are executed using a low-level controller
without using any pre-recorded animations. In our 2-player
martial arts game, each player controls a physically-based
simulated character by giving commands such as ”punch in
the chest using the left hand”. Then a low-level controller
executes the commands using a real-time control algorithm.
Our online continuous control algorithm uses rolling horizon
CMA-ES along with custom population seeding techniques.



We evaluated this prototype by running a user study involv-
ing 12 participants. The results show that the interface allows
players to come up with various strategies for fighting. The
participants have also reported that low-level controller is able
to execute the commands with high precision. The users had
some difficulties in mastering some of the mechanics such as
camera movement and the Move task. However, we believe
that the interface has potential for further research and novel
game experiences.

VI. LIMITATIONS AND FUTURE WORK

Full-Body Humanoid Characters: Our control algorithm is
not currently robust enough to handle full-body humanoid
characters in multi-agent environments. We have tested the
algorithm successfully in locomotion tasks and single-agent
settings. However, heavy perturbations make maintaining bal-
ance a very complicated problem. Since using legs is very
important in martial arts, enabling this framework to work with
full-body humanoid characters is a crucial direction for future
work. Full-body characters should also provide enough realism
to make the system useful for cognitive, strategic practicing
of real martial arts, which we intend to investigate in future
user studies.

Interface Design: Some reported that they prefer to see
the movements in normal speed after they have given a
command. However, most of the participants have stated that
this character control system is fun and interesting. We are
investigating possible ways for improving this interface.

Machine Learning: Currently our control algorithm does
not apply any kind of machine learning for stabilizing move-
ments. We have already got promising results by adding neural
networks on top of our control algorithm in single-agent
settings. Our tests show that adding machine learning can
be a good approach for reducing sampling budget. Therefore,
we believe that using machine learning is one of the low-
hanging fruits of this work. On the other hand, being able
to function without learning helps as it enables fast iteration
when designing and testing the interface design.

Other Game Genres: In this work we evaluated intelligent
middle-level control only in the context of martial arts games.
A reasonable extension to this work is to apply this idea
to other games in the sports genre where the quality of
movements is important.
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APPENDIX

Table I shows the details of all important hyperparameters
used in this study.
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