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Light-driven mass density wave dynamics in
optical fibers

MIKKO PARTANEN* AND JUKKA TULKKI

Engineered Nanosystems group, School of Science, Aalto University, P.O. Box 12200, 00076 Aalto, Finland
*mikko.p.partanen@aalto.fi

Abstract: We have recently developed the mass-polariton (MP) theory of light to describe the
light propagation in transparent bulk materials [Phys. Rev. A 95, 063850 (2017)]. The MP theory
is general as it is based on the covariance principle and the fundamental conservation laws of
nature. Therefore, it can be applied also to nonhomogeneous and dispersive materials. In this
work, we apply the MP theory of light to describe propagation of light in step-index circular
waveguides. We study the eigenmodes of the electric and magnetic fields in a waveguide and use
these modes to calculate the optical force density, which is used in the optoelastic continuum
dynamics (OCD) to simulate the dynamics of medium atoms in the waveguide. We show that
the total momentum and angular momentum in the waveguide are carried by a coupled state
of the field and the medium. In particular, we focus in the dynamics of atoms, which has not
been covered in previous theories that consider only field dynamics in waveguides. We also
study the elastic waves generated in the waveguide during the relaxation following from atomic
displacements in the waveguide.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The linear and angular momenta of light have been recently investigated in vacuum [1, 2],
in various photonic materials [3–6], in the quantum domain [7, 8], and also in the near-field
regime [9–12]. Part of the recent progress has been covered in books [13,14] and reviews [15–19].
However, despite the long history of the studies of optical waveguides [20, 21], the detailed
theoretical description of the linear and angular momenta of light in waveguides has been missing.
In particular, the coupled dynamics of the field and the medium atoms and its relation to the
linear and angular momenta of light have been considered recently for homogeneous dielectric
materials [22–24], but detailed studies of the effects arising from the coupled field-medium
dynamics do not exist for waveguides. The works on the coupled dynamics also question the
conventional approximation of fixed atomic positions in the description of propagation of light in
a medium by showing that the atomic dynamics is both necessary for the fulfillment of Newton’s
first law and it also carries an essential well-defined part of the total linear and angular momenta
of light in a medium. In the present work, we study the coupled field-medium dynamics and
related effects beyond the conventional approximation of fixed atoms in waveguides.
Combining the electrodynamics of continuous media, elasticity theory, and Newtonian

mechanics, it has been shown that a light pulse propagating in a medium drives forwards an
atomic mass density wave (MDW), which carries a major part of the total linear and angular
momenta of light in many common dielectrics [22–24]. In the classical optoelastic continuum
dynamics (OCD), formulated by us, the MDW is an inevitable consequence of the optical force
density of the electromagnetic field. When the optical force density and the elastic forces
are included in the Newtonian equation of motion, one can solve numerically the space-time
dynamics of the medium. By considering the numerically calculated space-time dynamics of
the atoms in the medium, one can see that field intensity maxima are accompanied by atomic
density maxima, which propagate with the same velocity as the field intensity maxima. Note, in
particular, that these MDWs should not be confused with elastic waves, the dynamics of which is
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governed by elastic forces and which propagate with the velocity of sound. Instead, the MDWs
should sooner be considered as shock waves, which are generated by the optical force field.
In the single-photon picture, the coupling of the electromagnetic field to the atomic MDW

gives rise to mass-polariton (MP) quasiparticles, which are covariant coupled states of the field
and matter having a nonzero rest mass [22,23]. In this MP quasiparticle model, the MDW follows
directly from the Lorentz transformation of the energy and momentum of light. Hence, the MP
is fundamentally different from the conventional exciton-polariton and the phonon-polariton
quasiparticles, in which a photon is in resonance or in close resonance with an internal excited
state of the medium. Within the framework of the MP theory of light, the correct way of thinking
the exciton-polariton and the phonon-polariton quasiparticles is to think them as coupled states
of the MP and an exciton or an optical phonon, respectively. Note, however, that in the present
work we limit our investigations to highly transparent materials in which the coupling of the MPs
to the excitons or optical phonons is very weak, and therefore, we do not elaborate this coupling
further in this work.
The MP quasiparticles have been shown to carry a total momentum of the Minkowski form

pMP = np~ω/c, where np is the phase refractive index of the medium, ~ is the reduced Planck
constant, ω is the angular frequency, and c is the speed of light in vacuum [23]. The total MP
momentum is split between the electromagnetic field and the MDW so that the share of the field
corresponds to the Abraham momentum pfield = ~ω/(ngc), where ng is the group refractive index.
The MDW carries the difference of the Minkowski and Abraham momenta. Therefore, the MP
theory of light provides a resolution to the centennial Abraham-Minkowski controversy of photon
momentum in a medium [10,11, 25–29]. Both momenta are right when they are defined in the
right context.
In this work, we apply the MP theory to simulate the propagation of the MDW of selected

light pulses in a step-index circular waveguide. It is well-known that, in waveguides, part of the
electromagnetic field propagates as an evanescent field in the cladding layer surrounding the core.
In the MP theory of light, this affects the atomic MDW that propagates partly in the core and
partly in the cladding layer. The total magnitude of the the MDW is, however, fully determined
by the covariant state of light in a medium [22,23]. If the cladding layer is vacuum, the entire
MDW is propagating in the core material and its magnitude should be reduced when compared
to the MDW in the case of a homogeneous dielectric. This reduction of the MDW should also
be related to the waveguide dispersion. Here we show that the numerical OCD simulations
accurately verify these points and the full correspondence with the MP quasiparticle model. This
also shows that the optical force density used in the OCD model in homogeneous materials also
accurately applies to waveguides.

Note that there exist some previous works that address the question of consistent definition of
the angular momentum of light in circular waveguides [30–32]. These works do not, however,
consider the essential role of the atomic MDW as a carrier of the major part of the total angular
momentum of light in waveguides. Therefore, these works have inherent limitations like (1) not
being able to predict the transfer of atomic density with light, and (2) not describing the inevitable
dissipation of field energy resulting from the displacement of waveguide atoms. In contrast, these
aspects are directly obtained in the present work from the numerical OCD simulations.
This work is organized as follows: Section 2 reviews the theoretical foundations of the OCD

model. Section 3 presents the solution of the electric and magnetic fields of a light pulse in a
step-index circular waveguide geometry. The OCD simulations of the propagation of selected
light pulses in a circular waveguide are presented in Sec. 4, where we also describe the elastic
relaxation dynamics of the nonequilibrium atomic displacements that the MDW leaves in the
waveguide. In Sec. 5, we compare the OCD results with the results obtained by using the MP
quasiparticle model. Finally, conclusions are drawn in Sec. 6.
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2. Optoelastic continuum dynamics

2.1. Beyond the approximation of fixed atoms

In the approximation of fixed atoms, the atomic nuclei are bound to their fixed equilibrium
positions and atoms respond to the electromagnetic field only through their polarization. This
approximation is deeply rooted in the foundations of conventional electrodynamics of continuous
media [33, 34]. The atoms have been traditionally assumed to be fixed in a medium as their total
mass energy is extremely large in comparison with typical energies of optical fields. Therefore,
in short time scales of optical fields, the atoms that interact with photons can at most move by an
exceedingly small amount during the interaction. Conventionally, this small atomic movement
has been thought to be fully negligible. Note that, if the atoms were fixed in a solid, there
would not be elastic or sound waves either because these waves are made from displacement of
atoms around their equilibrium positions. If the elastic forces can displace atoms around their
equilibrium positions, why could not the optical force desplace them?

Very recently, the results of computer simulations using the OCDmodel [22–24], which couples
the electrodynamics of continuous media to the elasticity theory and Newtonian mechanics of
atoms, have questioned the approximation of fixed atoms by showing that the collective small
motion of atoms forms an atomic MDW. As coupled systems have long been under detailed
investigations in many fields of physics, it is surprising that the coupled dynamics of light and
matter has not been studied in detail already much earlier.

2.2. Newton’s equation of motion

Light is optoelastically coupled to the medium by Newton’s equation of motion. This is one
of the key elements of the OCD model. Since the force density of the optical field can give
only small velocities for the atoms of a continuous medium, the atomic velocities are certainly
nonrelativistic. Therefore, Newton’s equation of motion for the mass density of the medium
ρa(r, t), which is equal to the number density of atoms times the atomic mass, can be written as

ρa(r, t)
d2ra(r, t)

dt2 = fopt(r, t) + fel(r, t), (1)

where ra(r, t) is the instantaneous position- and time-dependent atomic displacement field of the
medium, fopt(r, t) is the optical force density experienced by the medium atoms, and fel(r, t) is the
elastic force density, which arises between atoms that are displaced from their initial equilibrium
positions by the optical force density.
In previous literature, several forms of the optical force density have been extensively

discussed [15, 35]. We have recently shown, for a low-loss dielectric, that there is only one
form of optical force density that is fully consistent with the MP quasiparticle model and the
underlying principles of the special theory of relativity [22]. This force density is presented for a
nondispersive medium with a refractive index n as [15, 22]

fopt(r, t) = −
ε0
2

E2∇n2 +
n2 − 1

c2
∂

∂t
E ×H. (2)

This optical force density leads to the transfer of an inevitable part of the total momentum of
light by the MDW [22,23]. In this work, we show that the optical force density in Eq. (2) is also
applicable in the description of optical forces of confined modes, such as light propagating in
optical fibers or waveguides.

In the OCD simulations, we use the well-known elastic force density that follows from Hooke’s
law [36]. Using the material displacement field ra(r, t), this elastic force density can be given for
an isotropic linear elastic medium as [37]

fel(r, t) = (λL + 2µL)∇[∇ · ra(r, t)] − µL∇ × [∇ × ra(r, t)], (3)
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where λL and µL are the Lamé elastic constants of the medium. The Lamé elastic constants could
also be replaced by any two independent elastic moduli, such as the bulk and shear moduli whose
relation to the Lamé constants is described in [38]. For anisotropic cubic crystals, such as silicon,
the elastic force density has a slightly more complicated form, which is given, e.g., in [23, 36].

Whenwe apply the OCDmodel to simulate the propagation of light pulses in optical waveguides
in Sec. 4, we use a perturbative approach in which we neglect the extremely small damping of the
field that results from the transfer of field energy to the kinetic and elastic energies of the medium
atoms by the optical force density in Eq. (2). In the case of light propagation in a homogeneous
medium, the accuracy of this approximation is estimated in [22], but the conclusions are also valid
for waveguides provided that optical losses are small, which is typically a good approximation as
light can travel in waveguides over long distances.

2.3. Energies, momenta, and angular momenta of the field and the mass density wave

The total electromagnetic energy of the light pulse is obtained as an integral of the instantaneous
energy density of the field and the total mass energy of the MDW is obtained as an integral of the
MDW mass density just as in the case of a homogeneous medium [22]. These relations and the
expression of the total MP energy of a light pulse are given by

EMP =

∫ [
ρMDWc2 +

1
2
(εE2 + µH2)

]
d3r,

EMDW =

∫
ρMDWc2d3r, Efield =

∫
1
2
(εE2 + µH2)d3r . (4)

As shown in [22], the kinetic energy of the MDW is extremely small and neglected in EMDW,
which only describes the mass energy of the MDW.

Again, in the same way as in a homogeneous medium, the total momentum of the coupled
MP state of the field and matter and the momentum shares of the electromagnetic field and the
atomic MDW are given by [22]

PMP =

∫ (
ρava +

E ×H
c2

)
d3r,

PMDW =

∫
ρavad3r, Pfield =

∫
E ×H

c2 d3r . (5)

In the MP theory of light, we also obtain the total angular momentum of the MP, denoted by JMP,
and its shares Jfield and JMDW carried by the electromagnetic field and the atomic MDW. These
angular momenta are given by [24]

JMP =

∫
r ×

(
ρava +

E ×H
c2

)
d3r,

JMDW =

∫
r × ρavad3r, Jfield =

∫
r ×

(E ×H
c2

)
d3r . (6)

3. Electric and magnetic fields of a light pulse in a circular waveguide

We aim at using the electric and magnetic fields of a light pulse in a waveguide to simulate the
propagation of the MDW driven by the light pulse. Therefore, we next review the solution of
the electric and magnetic fields of a light pulse in a step-index circular waveguide geometry
illustrated in Fig. 1. The waveguide core radius is R. Inside the core, the refractive index is n1
while the refractive index in the cladding layer is n2.
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Fig. 1. Illustration of the step-index circular waveguide geometry. The waveguide core with
radius R has a refractive index n1 while the refractive index of the cladding layer is n2. The
total length of the waveguide is L.

3.1. Fields in a step-index circular waveguide

The electric and magnetic field modes are given as exact solutions of the Maxwell’s equations
for the step-index circular waveguide geometry as presented, e.g., in [39]. These solutions are
called Bessel modes. The necessary condition for the existence of confined modes is n1 > n2.
The cladding layer is assumed to be thick enough so that the field of confined modes is virtually
zero in the outermost boundary of the cladding layer and we only need to account for the core
and the cladding when computing the spatial distribution of the electromagnetic field inside the
waveguide.

Here, we assume a light pulse with a nonzero spectral width as described by the Gaussian
function u(k ′0) = e−[(k

′
0−k0)/∆k0]2/2/(

√
2π∆k0), where k0 = ω0/c is the wavenumber in vacuum

for central frequency ω0, and ∆k0 is the standard deviation of the wavenumber in vacuum. In
the cylindrical coordinate system with coordinates r , φ, and z and basis vectors r̂, φ̂, and ẑ, the
instantaneous electric and magnetic fields of the Bessel mode pulses are given, in the waveguide
core (r < R), as

E{r<R}(r, t) = Re
( ∫ ∞

−∞

{ ik ′z
h′2

[
Ah′J ′l (h

′r) + ilω′µ0
k ′zr

BJl(h′r)
]
r̂

+
ik ′z
h′2

[ il
r

AJl(h′r) −
ω′µ0

k ′z
Bh′J ′l (h

′r)
]
φ̂

+ AJl(h′r)ẑ
}
eilφu(k ′0)e

i[k′z z−ω(k′z )t]dk ′0
)
, (7)

H{r<R}(r, t) = Re
( ∫ ∞

−∞

{ ik ′z
h′2

[
Bh′J ′l (h

′r) −
ilω′ε′1

k ′zr
AJl(h′r)

]
r̂

+
ik ′z
h′2

[ il
r

BJl(h′r) +
ω′ε′1

k ′z
Ah′J ′l (h

′r)
]
φ̂

+ BJl(h′r)ẑ
}
eilφu(k ′0)e

i[k′z z−ω(k′z )t]dk ′0
)
, (8)
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and, in the cladding layer (r > R), as

E{r>R}(r, t) = Re
( ∫ ∞

−∞

{
−

ik ′z
q′2

[
Cq′K ′l (q

′r) + ilω′µ0
k ′zr

DKl(q′r)
]
r̂

−
ik ′z
q′2

[ il
r

CKl(q′r) −
ω′µ0

k ′z
Dq′K ′l (q

′r)
]
φ̂

+ CKl(q′r)ẑ
}
eilφu(k ′0)e

i[k′z z−ω(k′z )t]dk ′0
)
, (9)

H{r>R}(r, t) = Re
( ∫ ∞

−∞

{
−

ik ′z
q′2

[
DqK ′l (q

′r) − ilω′ε2
k ′zr

CKl(q′r)
]
r̂

−
ik ′z
q′2

[ il
r

DKl(q′r) +
ω′ε′2

k ′z
Cq′K ′l (q

′r)
]
φ̂

+ DKl(q′r)ẑ
}
eilφu(k ′0)e

i[k′z z−ω(k′z )t]dk ′0
)
. (10)

Here Jl(x) are the Bessel functions of the first kind, Kl(x) are the modified Bessel functions
of the second kind, h =

√
k2

1 − k2
z , q =

√
k2
z − k2

2 , and ω(k
′
z) = ck ′z/n′p,eff is the waveguide

dispersion relation with the effective phase index denoted by np,eff and the wavenumbers of the
core and cladding are given by k1 = n1k0 and k2 = n2k0, respectively. The derivatives of the
Bessel functions are denoted by J ′

l
(x) and K ′

l
(x). The other primed quantities in Eqs. (7)–(10)

correspond to the values obtained for k ′0 instead of k0. The materials are here assumed to be
nondispersive. The unknown amplitude factors A, B, C, and D can be related to each other by
applying the boundary conditions at the interface between the core and the cladding as described
below or, e.g., in [39].
In this work, we apply the fields above to describe the propagation of light pulses with a

relatively small spectral width. In this limit, the light pulse is approximately monochromatic and
Eqs. (7)–(10) can be approximated further in the same way as presented for Laguerre-Gaussian
pulses in a homogeneous medium in [24].

3.2. Characteristic equation and the relations between the field amplitudes

The unknown amplitude factors A, B, C, and D can be related to each other by the boundary
conditions. Requiring that Eφ , Ez , Hφ , and Hz are continuous at the interface between the core
and the cladding at r = R leads to four equations, given by

AJl(hR) = CKl(qR), (11)

BJl(hR) = DKl(qR), (12)

A
ilkz
ωµ0R

( 1
q2 +

1
h2

)
= B

[ J ′
l
(hR)

hJl(hR) +
K ′
l
(qR)

qKl(qR)

]
, (13)

A
[n2

1 J ′
l
(hR)

hJl(hR) +
n2

2K ′
l
(qR)

qKl(qR)

]
= B

lkz
iωε0R

( 1
q2 +

1
h2

)
. (14)

Equations (13) and (14) lead to the characteristic equation for kz from which the coefficients
A and B have been cancelled. This characteristic equation is transcendental and it reads( lkz

k0R

)2 ( 1
q2 +

1
h2

)2
=

[ J ′
l
(hR)

hJl(hR) +
K ′
l
(qR)

qKl(qR)

] [n2
1 J ′

l
(hR)

hJl(hR) +
n2

2K ′
l
(qR)

qKl(qR)

]
. (15)
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For a given l and a given frequency ω, there will be only a finite number of solutions kz that
satisfy Eq. (15). Once a specific solution is known, one can use Eqs. (11)–(14) to solve the
ratios of the amplitude factors A, B, C, and D. The absolute magnitudes of the amplitude factors
become determined independent of a free phase factor by normalizing the fields so that the total
electromagnetic energy of the light pulse is Efield.

3.3. Waveguide dispersion

The effective phase refractive index np,eff for the field propagating in the optical fiber is given as
the ratio of kz , solved from the characteristic equation in Eq. (15), and k0 as [39]

np,eff =
kz
k0
. (16)

In terms of the total MP momentum in Eq. (5) and the field energy in Eq. (4), the effective phase
refractive index can also be written as np,eff = c|PMP |/Efield. This relation is justified by the
numerical OCD simulations of Sec. 4. From the characteristic equation, one also obtains the
effective group refractive index ng,eff , given by

ng,eff =
∂kz
∂k0

. (17)

There also exists an alternative well-known expression for the group refractive index as a ratio
of the integrals of the energy density and the Poynting vector. Using Eqs. (4) and (5), we then
obtain ng,eff = Efield/(c |Pfield |).

3.4. Field modes and cutoff conditions

3.4.1. TE and TM modes

First, we consider the special cases of the TE and T M modes. For the TE modes, we have
Ez = 0, from which it follows that A = C = 0. In this case, the left hand sides of Eqs. (13) and
(14) become zero. Equation (14) is then satisfied if l = 0 and Eq. (13) leads to the characteristic
equation for the TE modes given by

J1(hR)
hRJ0(hR) = −

K1(qR)
qRK0(qR), (18)

where we have used the Bessel function relations J ′0(x) = −J1(x) and K ′0(x) = −K1(x). The
remaining Eq. (11) is trivially satisfied and Eq. (12) relates the nonzero field amplitudes B and D
to each other.
Respectively, for the T M modes we have Hz = 0, from which it follows that B = D = 0. In

this case, the right hand sides of Eqs. (13) and (14) become zero. Equation (13) is then satisfied
if l = 0 and Eq. (14) leads to the characteristic equation for the T M modes given by

J1(hR)
hRJ0(hR) = −

n2
2K1(qR)

n2
1qRK0(qR)

, (19)

where we have again used the Bessel function relations J ′0(x) = −J1(x) and K ′0(x) = −K1(x).
The remaining Eq. (12) is trivially satisfied and Eq. (11) relates the nonzero field amplitudes A
and C to each other.

The TE0,m and T M0,m modes are numbered so that the lowest mode number m corresponds to
the solution of the characteristic equation for which the value of hR is the smallest. The cutoff
condition for the existence of the TE0,m and T M0,m modes is given by [39]( R

λ0

)
0,m
≥ x0,m

2π
√

n2
1 − n2

2

, (20)
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where x0,m, m ≥ 1, is the mth zero of the Bessel function J0(x). The first three zeros of the
Bessel function J0(x) are x0,1 = 2.405, x0,2 = 5.520, and x0,3 = 8.654.

3.4.2. EH and HE modes

Second, we consider the general solution of the characteristic equation in Eq. (15). Solving the
characteristic equation for J ′

l
(hR)/(hRJl(hR)) gives

J ′
l
(hR)

hRJl(hR) = −
(n2

1 + n2
2

2n2
1

) K ′
l
(qR)

qRKl(qR) ±
[(n2

1 − n2
2

2n2
1

)2 ( K ′
l
(qR)

qRKl(qR)

)2

+
( lkz

n1k0

)2 ( 1
(qR)2

+
1
(hR)2

)2]1/2
. (21)

Here, the plus sign corresponds to the EH modes and the minus sign corresponds to the HE
modes. The cutoff conditions for the existence of the EH1,m and HE1,m modes are given by [39]( R

λ0

)EH

1,m
≥ x1,m

2π
√

n2
1 − n2

2

,
( R
λ0

)HE

1,m
≥ x1,m−1

2π
√

n2
1 − n2

2

, (22)

where x1,m, m ≥ 1, is the mth zero of the Bessel function J1(x) and x1,0 = 0. The first three
zeros of the Bessel function J1(x) are x1,1 = 3.832, x1,2 = 7.016, and x1,3 = 10.173. The cutoff
values of (R/λ0)1,m for the HE1,m modes are smaller than for the EH1,m modes, and especially,
the mode HE1,1 does not have a cutoff. The cutoff conditions for the existence of the EHl,m and
HEl,m modes with l ≥ 2 are given by [39]( R

λ0

)EH

l,m
≥ xl,m

2π
√

n2
1 − n2

2

,
( R
λ0

)HE

l,m
≥ zl,m

2π
√

n2
1 − n2

2

, (23)

where xl,m, m ≥ 1, is the mth zero of the Bessel function Jl(x) and zl,m is the mth root of equation
zJl(z) = (l − 1)(1 + n2

1/n
2
2)Jl−1(z).

3.5. Angular momentum and relation to Laguerre-Gaussian modes

The Bessel modes studied in this work are eigenmodes of step-index circular waveguides as
discussed above. The step-index profile is used in most single-mode fibers and in some multi-
mode fibers. In counter distinction, Laguerre-Gaussian modes are eigenmodes of graded-index
circular waveguides with a parabolic refractive index profile. The parabolic profile is the most
common profile in graded-index multi-mode fibers as it minimizes modal dispersion by continual
refocusing of the rays in the fiber core. The Bessel and Laguerre-Gaussian beams can both carry
angular momentum. This has been experimentally demonstrated by rotating microparticles in
optical tweezers [40–47].

4. Simulations

Next, we apply the OCD model to illustrate the node structure of the atomic MDW and
the actual atomic displacements due to a light pulse in a circular waveguide made of fused
silica. The light pulse of Eqs. (7)–(10) is assumed to have a total electromagnetic energy of
U0 = 1 µJ and a vacuum wavelength of λ0 = 1550 nm. The corresponding photon number is
Nph = Efield/~ω0 = 7.803 × 1012. In our examples, the waveguide core radius is R = λ0/2. The
relative spectral width of the pulse used in the simulations is ∆ω/ω0 = ∆k0/k0 = 0.05, which
corresponds to the temporal full width at half maximum (FWHM) of ∆tFWHM = 27 fs. The
FWHM is fixed to this small value, which is close to the engineering feasibility limit, to make
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the node structure of the MDW visible in the same scale with the longitudinal Gaussian envelope
of the pulse. In our simulations, we use temporal discretization of ht = 2π/(40ω0) and spatial
discretization of hz = λ/40, where λ = λ0/np,eff is the effective wavelength of the studied mode
in the waveguide. This discretization is sufficiently dense compared to the scale of the harmonic
cycle of the optical field. The flowchart of the OCD simulation is described in Appendix C
of [22].
The simulations are performed for a waveguide whose core is assumed to be made of fused

silica, which is the standard material used in optical fibers. The cladding layer is assumed to
be vacuum meaning that there is no cladding. The corresponding fields are a special case of
Eqs. (7)–(10) obtained by setting n2 = 1. The phase and group refractive indices of fused silica
are given by np = 1.4440, and ng = 1.4626 for λ0 = 1550 nm [48]. As the material dispersion
is not very large, in this work, we neglect the material dispersion and use the phase refractive
index only. However, the material dispersion could be accounted for as explained in [23]. The
waveguide dispersion is here the dominating form of dispersion and it is described by the effective
phase and group refractive indices of the waveguide geometry following from Eqs. (16) and (17).
For the TE0,1 mode studied below, the effective phase refractive index of our waveguide geometry
is np,eff = 1.1330 and the effective group refractive index is ng,eff = 1.5856. Respectively, for
the HE1,1 mode that is studied in the second example, the effective phase refractive index is
np,eff = 1.3033 and the effective group refractive index is ng,eff = 1.5355. The mass density of
fused silica used in the OCD simulations is ρ0 = 2200 kg/m3 [49], and the Lamé elastic constants
are λL = 15.4 GPa and µL = 31.3 GPa [50].

4.1. Simulations of the atomic mass density wave

First, we study the atomic MDW of a temporally Gaussian TE0,1 light pulse for which l = 0.
See Visualization 1 for a video file of the simulation. Figure 2(a) shows the longitudinal atomic
velocities of the simulated MDW as a function of position in the plane y = 0 µm when the TE0,1
pulse center is propagating at the position z = 0 µm. In vacuum, outside the waveguide core
at x < −λ0/2 or at x > λ0/2, the atomic velocities are zero as the atomic MDW does not exist.
Inside the waveguide core, the atomic velocities in the MDW follow the field intensity. The node
structure of the field is then also well seen in the atomic MDW. The atomic velocities are zero at
the center of the waveguide at the position x = 0 µm following the TE0,1 mode profile. When
the Gaussian envelope of the pulse drops to zero on the left of z = −5 µm and on the right of
z = 5 µm, also the atomic velocities of the MDW become zero.
Figure 2(b) shows the longitudinal atomic displacements of the simulated MDW as a function

of position along z axis in the plane y = 0 µm when the TE0,1 pulse center is propagating at the
position z = 0 µm corresponding to the atomic velocities in Fig. 2(a). One can see that the atomic
displacements are largest at lateral positions of maximum field intensity. At positions z > 5
µm, the atomic displacement is zero as the light pulse has not yet reached these positions, and
therefore, these atoms have not yet experienced the optical force density. In vacuum, outside the
waveguide core, the atomic displacement in Fig. 2(b) is zero as the atomic velocities in Fig. 2(a).
Behind the light pulse at z < −5 µm, the atomic displacement has obtained a value that is in the
femtosecond time scale practically constant in time, but which varies in the lateral direction. This
atomic displacement is also the origin of the transferred mass of the MDW and the corresponding
mass energy term in Eq. (4) since it is related to the denser spacing of atoms at the position of
the light pulse.
The longitudinal atomic displacement in the waveguide cross section just after the light

pulse has gone is presented in Fig. 2(c). These atomic displacements correspond to the atomic
displacements behind the light pulse in Fig. 2(b). The atomic displacement averaged over the
waveguide cross section is given by ∆rMDW = δM/(ρ0πR2) = 2.135 × 10−15 m. The atomic
displacements that the light pulse leaves behind are relaxed to equilibrium only in the much larger
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Fig. 2. Simulation of the mass transfer due to a temporally Gaussian TE0,1 mode light
pulse in a silica fiber (see also Visualization 1). (a) Simulated longitudinal atomic velocity
of the MDW in the fiber as a function of position in the plane y = 0 µm. (b) Longitudinal
atomic displacement in the fiber as a function of position in the plane y = 0 µm. (c)
Longitudinal atomic displacement in the fiber cross section z = 0 µm just after the pulse has
gone. The pulse energy is Efield = 1 µJ, the wavelength is λ0 = 1550 nm, and the duration
is ∆tFWHM = 27 fs. The radius of the circular fiber core is R = λ0/2 and it is surrounded by
vacuum. The dashed line shows the boundaries of the fiber.

time scale of elastic waves. The relaxation dynamics of the waveguide in the longer time scale is
studied in more detail in Sec. 4.2.
The OCD simulation results in Fig. 2 are fully consistent with the MP quasiparticle model

of [22, 23] as the total transferred mass and momentum following from the atomic velocities and
displacements equal the quasiparticle model results within the 6-digit numerical accuracy of
the simulation. This very good accuracy is related to the monochromatic field approximation
of light pulses used in the OCD simulations. It is not exact for our short pulses, but the
relative error is found to be less than 1%, which is sufficient for our visualization purposes.
Therefore, our results must be interpreted to indicate that full agreement between the OCD and
MP quasiparticle models is obtained in the limit of long narrow-band pulses in which limit our
pulse approximation becomes exact. For the total transferred mass, the MP quasiparticle model
gives an expression δM = (np,effng,eff − 1)Nph~ω0/c2 that is obtained from the homogeneous
field result presented in [23] by simply replacing the phase and group refractive indices of the
material with the conventional effective values for the studied mode in the waveguide geometry.
The numerical OCD model gives the total transferred mass for our TE0,1 mode light pulse
as δM =

∫
[ρa(r, t) − ρ0]d3r = 8.862 × 10−24 kg, which corresponds to the value obtained

by using the MP quasiparticle model formula. For the momentum of the MDW, the OCD
simulations give pMDW = |

∫
ρa(r, t)va(r, t)d3r | = 1.676 × 10−15 kgm/s, which corresponds to

the MP quasiparticle model value obtained by using pMDW = (ng,eff − 1/ng,eff)Nph~ω0/c.
Another interesting case is the HE1,1 mode light pulse for which l = 1. This pulse does not

have a cutoff, and in contrast to the TE0,1 pulse above, it carries angular momentum of ~ per
photon. See Visualization 2 for a video file of the simulation. Figure 3(a) depicts the atomic
velocities of the simulated MDW as a function of position in the plane y = 0 µm when the HE1,1
pulse center is propagating at the position z = 0 µm. Inside the waveguide core, the atomic
velocities in the MDW again follow the field intensity. As the HE1,1 mode is not a transverse
mode, the pulse does not have as clear peaks and throughs as the TE0,1 pulse above. Also, in
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Fig. 3. Simulation of the mass transfer due to a temporally Gaussian HE1,1 mode light
pulse in a silica fiber (see also Visualization 2). (a) Longitudinal atomic velocity of the
MDW in the fiber as a function of position in the plane y = 0 µm. (b) Longitudinal atomic
displacement in the fiber as a function of position in the plane y = 0 µm. (c) Longitudinal
atomic displacement in the fiber cross section z = 0 µm just after the pulse has gone. (d)
Instantaneous transverse atomic velocity of the MDW in the fiber as a function of position in
the fiber cross section at the position of the pulse center at z = 0 µm. (e) Transverse atomic
displacement in the fiber as a function of position in the fiber cross section z = 0 µm just
after the light pulse has gone. The pulse energy is Efield = 1 µJ, the wavelength is λ0 = 1550
nm, and the duration is ∆tFWHM = 27 fs. The radius of the circular fiber core is R = λ0/2
and it is surrounded by vacuum. The dashed line shows the boundaries of the fiber.

contrast to the TE0,1 pulse, the atomic velocities obtain their maximum values at the center of the
waveguide at the position x = 0 µm in accordance with the HE1,1 mode profile. On the left and
right of the light pulse, the atomic velocities in the MDW are again zero as expected.

Figure 3(b) depicts the longitudinal atomic displacements of the simulated MDW as a function
of position along z axis in the plane y = 0 µm when the HE1,1 pulse center is propagating
at the position z = 0 µm. These atomic displacements correspond to the atomic velocities in
Fig. 3(a). One can again see that the longitudinal atomic displacements are largest at lateral
positions of maximum field intensity. In front of the light pulse at positions z > 5 µm, the atomic
displacement is again zero and, behind the light pulse at z < −5 µm, the atomic displacement
has obtained a value that is temporally approximatively constant in the femtosecond time scale.
The longitudinal atomic displacements of the HE1,1 pulse just after the light pulse has gone is
presented in the waveguide cross section in Fig. 3(c). These atomic displacements correspond to
the atomic displacements after the light pulse in Fig. 3(b). The atomic displacement averaged
over the waveguide cross section is given by ∆rMDW = δM/(ρ0πR2) = 2.683 × 10−15 m.
The simulation results are again in full correspondence with the MP quasiparticle model

of [22] and [23]. Again, note that full agreement is obtained by using the monochromatic field
approximation of light pulses in the OCD model. For the total transferred mass of our HE1,1
pulse, we obtain δM = 1.114 × 10−23 kg and, for the momentum of the MDW, we obtain a value
pMDW = 2.175 × 10−15 kgm/s. These values are slightly larger than the values in the case of the
TE0,1 pulse due to the smaller evanescent field that propagates in vacuum outside the fiber core
and that does not directly contribute to the atomic MDW. In the MP quasiparticle model, this
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difference between the quantities is accounted for by the effective phase and group refractive
indices of the waveguide corresponding to the somewhat smaller waveguide dispersion in the
HE1,1 case.
Figure 3(d) presents the transverse components of the atomic velocities in the MDW at a

particular instance of time in the middle of the HE1,1 light pulse. The transverse components
of the atomic velocities follow from the nonzero transverse components of the optical force
density and the Poynting vector, which do not exist in the case of the TE0,1 pulse above. As
described in [24], the transverse components of the atomic velocities are related to the transfer of
a substantial part of the total angular momentum of light in a medium. The angular momentum of
the electromagnetic field of the HE1,1 pulse obtained using the OCDmodel is Jfield = 0.586Nph~ẑ
and the angular momentum of the MDW is JMDW = 0.414Nph~ẑ. The sum of these angular
momentum contributions is the total angular momentum of the coupled state of the field and
matter, given by JMP = Nph~ẑ, which is essentially an integer multiple of ~. This result verifies
the coupling of the field and medium components of the total angular momentum of a light pulse
in the case of a waveguide geometry. Previously, this coupling has been studied in the case of a
homogeneous medium in [24].

The cross section of the total transverse atomic displacement field that the HE1,1 pulse leaves
behind, and which follows from the transverse atomic velocities in Fig. 3(d), is depicted in
Fig. 3(e). Together with the longitudinal atomic displacements in Fig. 3, these transverse atomic
displacements are again relaxed to equilibrium in the time scale of elastic waves.

4.2. Simulations of the elastic relaxation dynamics

In the OCD simulations, the optical force density of the light pulse displaces atoms from their
initial equilibrium positions by different amounts in the cross section of the fiber. Therefore,
there will be strain and related elastic forces acting between atoms after the light pulse has gone
and when, accordingly, the optical force is zero. Thus, the after-the-light-pulse elastic relaxation
dynamics is a novel feature of the OCD model that results from rejecting the approximation of
fixed atoms. In this work, we simulate the elastic relaxation of the medium by using elasticity
theory without including terms that lead to thermalization. The elastic relaxation dynamics has
been previously simulated in the case of a homogeneous material block in [22] and it has been
qualitatively described in the case of optical fibers in [23].

Here, we simulate the beginning of the relaxation of the nonequilibrium atomic displacements
of the waveguide after the TE0,1 light pulse of Fig. 2 has gone. The initial atomic displacement
for this relaxation process is that presented in Fig. 2(c). We assume that the fiber is infinitely long,
which is realized in the simulations by setting periodic boundary conditions in the longitudinal
direction just after the light pulse has gone. The damping of the elastic waves in a closed system
is not accounted for by the elastic force density in Eq. (3). Therefore, the elastic waves that we
obtain do not attenuate. Hence, we cannot simulate how the equilibrium of atomic positions is
obtained at the end of the relaxation. Instead, we focus on the first nanosecond when the damping
of the elastic waves can be neglected.
Figure 4 presents the relaxation dynamics of the waveguide after the TE0,1 light pulse of

Fig. 2 has gone. It shows the longitudinal atomic displacement in the waveguide cross section
at three instances of time in the picosecond time scale. See Visualization 3 for a video file of
the simulation. Figure 4(a) shows the longitudinal atomic displacement at t = 110 ps, Fig. 4(b)
at t = 200 ps, and Fig. 4(c) at t = 260 ps. One can see that the minima and maxima of the
atomic displacement switch their positions in the course of time. In Figs. 4(a) and 4(c), the
maximum atomic displacement is located at the origin while, in Fig. 4(b), at the origin, the
atomic displacement obtains its minimum value. This can be understood as elastic shear waves
that propagate from the circular fiber boundary to the center and back. The atomic displacement
minima and maxima alternate, but their time-evolution is not fully periodic since the initial state
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Fig. 4. Simulation of the elastic relaxation dynamics of the silica waveguide after the TE0,1
mode light pulse (see also Visualization 3). The pulse energy is Efield = 1 µJ, the wavelength
is λ0 = 1550 nm, and ∆tFWHM = 27 fs. Longitudinal atomic velocity of the MDW at z = 0
µm cross section is shown at (a) t = 110 ps, (b) t = 200 ps, and (c) t = 260 ps after the
pulse has gone. The radius of the circular fiber core is R = λ0/2 and it is surrounded by
vacuum. The dashed line shows the fiber boundary. (d) The alternation of the elastic (kinetic
and strain) energies per unit length of the fiber as a function of time. The elastic waves
are gradually damped and thermalized by absorption and scattering not included in our
simulations. Due to the periodic boundary conditions used in the simulation of the elastic
relaxation, the interface effects at the ends of the fiber are not present.

of the relaxation process is not an eigenstate of the elastic oscillation of the waveguide.
Figure 4(d) shows the kinetic and strain energies of the elastic relaxation waves per unit length

of the fiber as a function of time. At t = 0, the elastic energy is pure strain energy as the light
pulse has only displaced atoms from their initial equilibrium positions but does not have left any
net kinetic energy to them. At t > 0, the kinetic and strain energies alternate as a function of
time so that their sum remains constant due to the conservation of energy. The highest peaks and
throughs in the kinetic and strain energies at t = 413 ps and t = 826 ps are seen to be located
close to times at which the shear waves with velocity v⊥ =

√
µL/ρ0 = 3770 m/s have propagated

distances that are multiples of the waveguide diameter.
The value of the total elastic energy, left in the waveguide after the light pulse has gone, can be

used to estimate the effective imaginary part of the refractive index ni, which corresponds to the
dissipation of the field energy when the field propagates in the waveguide. The total elastic energy
left in the waveguide per unit length is 1.1×10−18 J/m as can be read from Fig. 4(d). Dividing this
dissipated energy by the field energy U0 of the pulse, gives the attenuation coefficient 1.1× 10−12

1/m. When this value is compared with the conventional formula for the attenuation coefficient,
given by α = 2nik0, we obtain ni = 1.4 × 10−19. This is vastly smaller than the imaginary part of
the refractive index due to other physical nonidealities in highly transparent optical waveguides
that are not accounted for in the present simulations.
All of the elastic strain energy that is left in the crystal after the light pulse has gone will

be converted into heat in the course of time. The detailed simulation of the thermalization
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of strain is beyond the scope of the present manuscript. The dissipation of field energy into
energy of elastic waves is an additional very small loss mechanism to the dominant losses
in realistic transparent materials. We find the MDW-related dissipation effect even though
we initially assume that the refractive index is real valued and the field is not damped. In
self-consistent calculations, the corresponding damping of the field could be accounted for
through the self-consistently determined value of the imaginary part of the refractive index.
Note, however, that the self-consistent calculations accounting for the imaginary part of the
refractive index coming from the elastic MDW losses alone are not meaningful as this extremely
small imaginary part refers to damping that is several orders of magnitude smaller than the total
damping in the best transparent solids.
Since the velocity of light is vastly larger than the velocity of sound, the relaxation process

practically starts only after our short light pulse has gone. In this approximation, during the
relaxation process, the total external force on the medium atoms is zero. Therefore, in accordance
with Newton’s first law, the center of mass of the waveguide remains at rest during the relaxation
process since the light pulse has only displaced atoms from their initial equilibrium positions but
does not have left any net kinetic energy to them as discussed above. This contrasts to the state of
motion of the waveguide under the influence of the optical force of the light pulse, which moves
the center of mass of the waveguide slightly forwards by the atomic MDW that is present in the
waveguide while the light pulse is propagating in it.

The same kind of relaxation waves, as obtained for the longitudinal atomic displacements in
Fig. 4, are also obtained for the transverse atomic displacements in the relaxation of the atomic
displacements due to optical modes carrying angular momentum. These waves are also elastic
shear waves in nature. Compressional waves are not obtained as the light pulse does not leave any
mass density differences behind in the middle of the waveguide. As shown in [22], compressional
waves are found in the case that a light pulse crosses an interface between materials of different
refractive indices. Then, the optical surface force displaces atoms at the surface and these
displacements are relaxed in terms of both compressional and shear waves. In the case of optical
fibers, compressional waves can originate from the processes at the ends of the fiber or at any
positions where there are changes in the refractive index.

5. Comparison of the OCD and MP quasiparticle models

The correspondence between the OCD and MP quasiparticle model results is summarized in
Table 1. Full agreement is obtained within the numerical accuracy of the simulations and the
monochromatic field approximation of light pulses used in the OCD model. The results for the
energy and momentum of the MP and its field and medium parts are identical to the results for a
homogeneous medium in [22] with an exception that we must now use the effective phase and
group refractive indices of the waveguide in the MP quasiparticle model. Consequently, we obtain
the ratio np,effng,eff − 1 for the MDW’s and the electromagnetic field’s shares of energies and
momenta. This result is directly related to the Lorentz transformation and the covariance principle
of the special theory of relativity in the same way as described in the case of a homogeneous
medium in [22].

Also, note that many previous works, which are not directly related to the MP theory of light,
obtain the Minkowski momentum as the total momentum of light [10, 11,27–29] in agreement
with our result in Table 1. Since these works are typically based on the approximation of fixed
atoms, they are not able to unambiguously separate the total momentum of light between the field
and the atoms. In the work of Leonhardt [28], the atoms are allowed to move, but the medium is
assumed to be incompressible, which effectively makes one to neglect the coupled field-medium
dynamics studied in the present work.
The waveguide dispersion also influences the separation of the total angular momentum of

light between the field and matter as described by the parameter ζ = |Jfield |/|JMP | used in Table 1.
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Table 1. The transferred mass, the total momentum, the field’s share of the momentum,
and the MDW’s share of the momentum calculated by using the MP and OCD models. The
MP column shows the per photon value obtained by dividing the total quantities of the MP
model with the photon number of the pulse Nph = Efield/~ω0.

OCD MP

δM

∫
ρMDWd3r (np,effng,eff − 1) ~ω0

c2

PMP

∫ (
ρava +

E ×H
c2

)
d3r

np,eff~ω0

c
ẑ

Pfield

∫
E ×H
c2 d3r

~ω0
ng,effc

ẑ

PMDW

∫
ρavad

3r
(
np,eff −

1
ng,eff

) ~ω0
c

ẑ

JMP

∫
r ×

(
ρava +

E ×H
c2

)
d3r l~ẑ

Jfield

∫
r ×

( E ×H
c2

)
d3r ζl~ẑ

JMDW

∫
r × ρavad

3r (1 − ζ )l~ẑ

Analytic calculation using Eq. (6) and the fields in Eqs. (7)–(10) shows that the angular momenta
of the field and the MDW are given by

|Jfield | =
π3/2k0R2

cng,eff∆k0h2

{ l
2

(
ε1 |A|2 + µ0 |B|2

) [
Jl(Rh)2 − Jl−1(Rh)Jl+1(Rh)

]
+ sign(l)

np,eff

c
|AB|Jl−1(Rh)Jl+1(Rh)

}
+

π3/2k0R2

cng,eff∆k0q2

{ l
2

(
ε2 |C |2 + µ0 |D|2

) [
Kl(Rq)2 − Kl−1(Rq)Kl+1(Rq)

]
+ sign(l)

np,eff

c
|CD|Kl−1(Rq)Kl+1(Rq)

}
, (24)

|JMDW | =
(n2

1 − 1)π3/2k0R2

cng,eff∆k0h2

{ l
2

(
ε1 |A|2 + µ0 |B|2

) [
Jl(Rh)2 − Jl−1(Rh)Jl+1(Rh)

]
+ sign(l)

np,eff

c
|AB |Jl−1(Rh)Jl+1(Rh)

}
+
(n2

2 − 1)π3/2k0R2

cng,eff∆k0q2

{ l
2

(
ε2 |C |2 + µ0 |D|2

) [
Kl(Rq)2 − Kl−1(Rq)Kl+1(Rq)

]
+ sign(l)

np,eff

c
|CD|Kl−1(Rq)Kl+1(Rq)

}
. (25)

Therefore, using |JMP | = |Jfield |+ |JMDW | one also obtains an analytic expression for the parameter
ζ = |Jfield |/|JMP |. In the case of a homogeneous medium with a refractive index n, we have
ζ = 1/n2 as shown in [24]. In contrast, in the waveguide geometry studied in this work, we have
not found a simple expression for ζ in terms of the effective phase and group refractive indices
of the waveguide. One can argue that this is not surprising as the covariance condition of the
special theory of relativity used in the MP quasiparticle model relates the energies and momenta
of the field and the MDW to each other [22] but no such a simple quasiparticle model relation is
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known to exist for the separation of angular momentum. In the case of angular momentum, only
the total angular momentum of light, which is a multiple of ~, is well known to be independent of
the inertial reference frame.
Not using the monochromatic field approximation of light pulses in the OCD model induces

small changes in the relation between the OCD and MP quasiparticle models for short pulses
(e.g., the relative difference is < 1% for the pulses studied in Sec. 4). This is related to the
generally k-dependent factors of the fields in Eqs. (7)–(10), due to which the exact pulse shapes
become slightly modified in comparison with the shapes obtained by using the monochromatic
field approximation.

6. Conclusions

In conclusion, we have used the MP theory of light and the related OCD model to simulate
the atomic MDW of propagating light pulses in a step-index circular waveguide geometry. We
found unambiguous correspondence between the MP quasiparticle and OCD models in the
description of light propagation in waveguides. Since part of the total energy and momentum
of light propagates in vacuum outside the waveguide core, the total magnitude of the atomic
MDW is reduced. This reduction takes place in a way that is fully accounted for by using
the well-known effective phase and group refractive indices of the waveguide in place of the
corresponding indices of a homogeneous medium in the MP quasiparticle theory for dispersive
media formulated by us recently.

In this work, we have also studied the elastic relaxation dynamics of the atomic displacements
that the light pulse has left in the waveguide. We have found that these displacements are relaxed
by elastic shear waves. The OCD model allows detailed modeling of the optoelastic dynamics
of any material geometries under the influence of the optical force field, e.g., one can simulate
the MDW in typical waveguides used in engineering applications. The OCD simulations can
also be used for the optimization of possible measurement setups planned for the experimental
verification of the atomic MDW associated with light.

After the present work was completed, the preprint in [51] including results complementary
to our work, came to our attention. This preprint does not, however, separate the total angular
momentum of light into the field and the atomic MDW contributions as we do in the present
work. Therefore, the coupled dynamical description of the electromagnetic field and the atoms in
the waveguide is not covered in the mentioned work.
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