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We theoretically study the electromagnetic response of type-I and type-II centrosymmetric Weyl metals. We
derive an anisotropic permittivity tensor with off-diagonal elements to describe such gyrotropic media. Our
findings reveal that for appropriate Weyl cones tilts, the real part of the transverse component of the permittivity
can exhibit an ε-near-zero response. The tilt parameter can also control the amount of loss in the medium,
ranging from lossless to dissipative when transitioning from type-I to type-II. Similarly, by tuning either the
frequency of the electromagnetic field or the chemical potential in the system, an ε-near-zero response can
appear as the permittivity of the Weyl semimetal transitions between positive and negative values. Employing the
obtained permittivity tensor, we consider a setup where the Weyl semimetal is deposited on a perfect conductive
substrate and study the refection and absorption characteristics of this nano-layered configuration. We show
that by choosing the proper geometrical and material parameters, devices can be created that perfectly absorb
electromagnetic energy over a wide angular range of incident electromagnetic waves.
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I. INTRODUCTION

Since the advent of metamaterials, efforts to design ma-
terials that can be used to control electromagnetic (EM)
fields has flourished. One prominent route involves developing
anisotropic structures whose EM response is described by
a permittivity tensor ε that has components with extreme
values, including ε-near-zero (ENZ) [1] media, where the real
part of a component of ε vanishes along a given coordinate
axis. Within the ENZ regime, the phase of the entering EM
wave can be uniform, and the wavefront conforms to the
shape of the exit side of the ENZ medium [2]. A number
of ENZ-based architectures have been fabricated, including
subwavelength dielectric coatings that control the resonant
coupling of light with ENZ regions [3]. Experimental work
with microwave waveguides [4,5] demonstrated how a narrow
ENZ channel can lead to enhanced electromagnetic cou-
pling. A nanoparticle mixture containing dielectric and metal
constituents with an effective ENZ response exhibited an
increase in the superconducting critical temperature [6]. The
propagation of a transverse magnetic optical beam through a
subwavelength slit demonstrated a transmission enhancement
[7] when the InAsSb semiconductor substrate was tuned to its
ENZ frequency.

Many pathways have been studied that lead to the cre-
ation of ENZ materials, including intricate combinations of
metal-dielectric multilayers and arrays of rods, or transpar-
ent conducting oxides. Other approaches involve the use of
more exotic materials like graphene [8] with its intrinsic two
dimensionality and linear dispersion around the Dirac point.
Recently, Weyl semimetals [9–16] have been added to the
ever-expanding class of materials that have unconventional
EM properties. The band structure of a Weyl semimetal (WS)

is characterized by a conical energy spectrum with an even
number of Weyl nodes that are topologically protected. The
chiralities of Weyl nodes correspond to topological charges
that result in monopoles and antimonopoles in the Berry
curvature [11,12]. Indeed, the Weyl semimetal phase manifests
itself in unusual surface states with Fermi arcs [17] and
chiral anomalies [10–13,16]. Weyl semimetals are topologi-
cally nontrivial materials that are predicted for the magnetic
compounds Y2IrO7, Eu2IrO7, and HgCr2Se4 [18,19], and in
some nonmagnetic samples, including TaAs, TaP, NbAs [20],
and NbP [11,21–24]. The WS TaAs was shown to have a wide
spectral range as a room-temperature photodetector [25].

The synthesis of different alloys into Weyl semimetal
crystals can result in an unusual type of Weyl semimetal that is
characterized by titled Weyl nodes and an open Fermi surface.
This class of Weyl semimetals is identified as type-II if the tilt
of the Weyl cone exceeds the Fermi velocity [9,26–32]. Since
condensed matter systems do not require Lorentz invariance,
Weyl semimetals are not restricted to closed point-like Fermi
surfaces and support type-II Weyl fermions [9,26,33,34]. This
type of Weyl fermion appears at the boundary between electron
and hole pockets [9,26]. The experimental signatures of this
phase were recently reported in Refs. [28,29]. The effects of
Weyl cone tilt on the optical conductivity and polarization was
recently studied [35]. The effect of a tilt on the absorption
of circular polarized light was studied for both type-I and
type-II cases and it was shown that by reversing the tilting
direction of Weyl nodes the right-hand and left-hand responses
of Weyl semimetal become reversed [36]. Also, it was found
that chirality or the tilt sign in Weyl semimetals with tilted
cones in the absence of time-reversal and inversion symmetries
can change the sign of the Weyl contribution to the absorptive
Hall conductivity [37].
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Tunable metamaterial absorbers with active materials have
been explored with a variety of different materials [38–41].
The broad tunability of the chemical potential in a WS
makes it a promising material for photonics and plasmon-
ics applications [42–52]. The chiral anomaly in a WS can
alter surface plasmons and the EM response [42,47–52]. It
has been shown theoretically [51] that measurements of the
optical conductivity and the temperature dependence of the
free carrier response in pyrochlore Eu2Ir2O7 are consistent
with the WS phase. Also, the interband optical conductivity
reduces to zero in a continuous fashion at low frequencies,
as predicted for a WS. The analysis of experimental data
resulted in a Fermi velocity on the order of vF ≈ 4 × 107 cm/s
[47,51]. The surface magnetoplasmons of a Weyl semimetal
can turn to low-loss localized guided modes when two crystals
of the WSs with different magnetization orientations are
connected [42].

In this paper, we study the anisotropic electromagnetic
response of both type-I and type-II Weyl semimetals. Our
study includes both analytic and numerical results that reveal
the behavior of each component of the dielectric tensor as a
function of the Weyl cone tilt, chemical potential, and EM
wave frequency. We show that by appropriately tailoring these
system parameters, the real part of the transverse component of
the permittivity can achieve an ENZ response. In parallel, we
also demonstrate how the dissipative effects in the medium
can be controlled. Utilizing the derived permittivity tensor
and its subsequent numerical analysis, we consider a Weyl
semimetal (both types I and II) on top of a perfectly conducting
substrate and study the absorption properties of an incident
electromagnetic wave from vacuum into the Weyl semimetal.
Solving Maxwell’s equations, we derive the reflection and
absorption coefficients and show that by properly choosing
material and geometric parameters, tunable coherent perfect
absorption is feasible over a wide range of incident angles.

The paper is organized as follows. In Sec. II, we present the
derived permittivity tensor applicable to both type-I and type-II
WSs. We apply various approximations and discuss the EM
response of type-I and type-II WSs in Subsecs. II B and II C,
respectively. In Subsec. II D, we numerically illustrate and
analyze various features of both types of WSs. In Sec. III, we
present a practical application of the analyses given in Sec. II.
In particular, we study the electromagnetic response of a WS
grounded by a perfect conductor. Starting from Maxwell’s
equations, we derive analytical expressions for the reflection
and absorption coefficients of this structure as a function
of incident electromagnetic wave angle and thickness of the
WS. Furthermore, we numerically analyze various aspects of
the absorption characteristics of this system. Finally, we give
concluding remarks in Sec. IV.

II. APPROACH AND RESULTS

In this section, we outline the model Hamiltonian and
calculate the permittivity tensor for both a type-I and type-II
WS. General expressions are given for determining each of
the permittivity components, and analytic results are derived
for various limiting cases. Results are then presented for
the susceptibility and ε-near-zero response as a function of
frequency ω, chemical potential μ, and tilt parameter β.

A. Permittivity tensor

Throughout this paper, we focus on a model Hamiltonian
with broken time-reversal symmetry and only two Weyl nodes.
This model can be achieved through the stacking of multiple
thin films involving a topological insulator and ferromagnet
blocks, as first proposed theoretically [10]. The Hamiltonian
describing the low-energy physics around the two Weyl nodes,
defined by s = ±, is given by

Hs (p) = vF [βs (pz − sQ) + sσ (p − sQez)]. (1)

Here ez is the unit vector along the z direction, and we take the
Fermi velocity vF to be positive. The separation between two
Weyl points in the z direction in momentum space is defined
by 2|Q|, where the sign of Q depends on the orientation
of magnetization with respect to the quantization axis. The
quantities β± are tilting parameters that control the transition
between the type-I and type-II phases. For centrosymmetric
materials with broken time-reversal symmetry, we apply the
condition β+ = −β−. The corresponding electron Green’s
functions are given by

Gs (εn, p) = 1

2

∑
t=±1

1 + stσp(s)/|p(s)|
iεn + μ − vF

[
βsp

(s)
z + t |p(s)|] , (2)

where the index t identifies each of the two subbands, p(s) =
p − sQez, and μ is the chemical potential, in which we set
μ � 0 without loss of generality. The fermionic Matsubara
frequency is εn = πT (2n + 1), in which T represents temper-
ature and n is an integer. The dielectric function εab(ω) (where
a, b ≡ x, y, z) is defined through the optical conductivity σab

via

σab(ω) = i

ω
lim

|q|→0
[�ab(ω, q) − �ab(0, q)],

(3)

εab(ω) = δab + i
σab(ω)

ε0ω
,

where ε0 is the permittivity of free space and the current-current
correlation function reads

�ab(ω, q) = e2T
∑

n

∑
s=±

Tr
∫

d3p

(2π )3
Ja,sGs (εn + ωk, p + q)

× Jb,sGs (εn, p)}|iωk→ω+iδ, (4)

where Js = vF (βsez + sσ ), ωk = 2πT k is the bosonic Mat-
subara frequency and k is an integer. Thus, the permittivity
tensor ε takes the following gyrotropic form that is valid for
both type-I and type-II Weyl semimetal phases:

ε =
⎛
⎝εxx (ω) εxy (ω) 0

εyx (ω) εyy (ω) 0
0 0 εzz(ω)

⎞
⎠, (5a)

where the off-diagonal components are given by εxy (ω) =
−εyx (ω) = iγ (ω). These terms can lead to modified polar-
ization rotations via the Kerr and Faraday effects [53,54].
Variations in the gyrotropic term can also cause shifts in the
surface plasmon frequency [55]. The εxx,yy (ω) components are
equal and can be written analytically as

εxx,yy (ω) = 1+ α

3π

[
ln

∣∣∣∣ 4�2

4μ2 −ω2

∣∣∣∣ − 4μ2

ω2
+ iπ�(ω − 2μ)

]
,

(5b)
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in which α = e2/(4πε0h̄vF ) and � ∼ vF |Q|, such that � �
(ω,μ) is the high-energy cutoff where applicability of the
linear model no longer holds. Here �(X) represents the

usual step function. The remaining components involve inte-
grals, which for � � (ω,μ), are written in the limit of zero
temperature:

εzz(ω) = 1 − πα

ω2

∑
t=±1

∑
s=±

∫
d3p

(2π )3

[
− p2

⊥tω2
k/4

p3
(
p2 + ω2

k/4
)�(μ − ζs,t ) +

(
βs + t

pz

p

)2

δ(μ − ζs,t )

]∣∣∣∣∣
iωk→ω+iδ

. (5c)

It is convenient to separate Fermi surface and vacuum contributions to γ (ω) = ∑
s=±[γ (s)

FS (ω) + γ
(s)

0 (ω)], where

γ
(s)
FS (ω) = sα

ω2

∫ ∞

0

p⊥dp⊥
2π

∫ �−svF Q

−�−svF Q

dpz

pz

p

iωk

p2 + ω2
k/4

[�(μ − ζs,+) − �(μ − ζs,−) − 1]|iωk→ω+iδ, (5d)

γ
(s)

0 (ω) = sα

ω2

∫ ∞

0

p⊥dp⊥
2π

∫ �0−svF Q

−�0−svF Q

dpz

pz

p

iωk

p2 + ω2
k/4

∣∣∣∣
iωk→ω+iδ

, (5e)

in which we have defined ζs,t ≡ tp + pzβs , p =
√
p2

z + p2
⊥,

and a momentum cutoff along the z axis, �. Generally, the
cutoff � is a function of the tilt parameter. Nevertheless, in our
calculations, we choose a large enough cutoff and neglect the
contribution of β to �. The cutoff �0 > vF |Q| is introduced
for the correct definition of the vacuum contribution.

B. Zero-tilt phase: β = 0

It is evident that εxx,yy (ω) are independent of the tilting
parameters βs . To reduce ε to the situation where the Weyl
nodes experience no tilt, it suffices to set |β+| = |β−| = 0. In
this case, εzz(ω) = εxx,yy (ω), and the off-diagonal frequency
dependent component γ (ω) reduces to

γ (ω) = 2α

π

vF Q

ω
. (6)

The gyrotropic parameter γ (ω) can play an important role
in changing the polarization state of electromagnetic waves
interacting with the WS via Faraday and Kerr rotations [54].
The imaginary term in Eq. (5b) describes the interband
contribution to the optical conductivity, which exists only
when the frequency ω of the EM wave satisfies ω > 2μ. The
interval of frequencies in which εxx,yy is real and positive
correspond to

2μ > ω > 2μ

√
α

3π
(
1 + 2α

3π
ln

∣∣�
μ

∣∣) . (7)

Thus, for frequencies around the chemical potential, 2μ >

ω � μ, the diagonal components εxx,yy do not contribute to
dissipation in the medium. On the other hand, if ω > 2μ, εxx,yy

acquires an imaginary part, leading to dissipation.

C. Finite tilt phase: β �= 0

We now examine some limiting cases for the integrals in
Eqs. (5c) and (5d) when the tilting parameter is nonzero. At

the charge neutrality point, μ = 0, the off-diagonal gyrotropic
component γ (ω) reduces to

γ (ω) = α

π

vF Q

ω
[min(1, |β+|−1) + min(1, |β−|−1)]. (8)

It is seen that γ (ω) is independent of the tilt parameter if |βs | <

1, while inversely proportional to it when |βs | > 1. The εzz

component of the dielectric tensor in the limit of zero chemical
potential, μ = 0, can be calculated exactly as well. For |βs | <

1, we find

εzz = 1 + α

3π

[
ln

∣∣∣∣4�2

ω2

∣∣∣∣ + iπ�(ω)

]
, (9)

and when the tilt parameter satisfies |βs | > 1, we arrive at

εzz = 1 + α

3π

[
ln

∣∣∣∣4�2

ω2

∣∣∣∣ + iπ�(ω)

] ∑
s=±

1

4|βs |
(

3 − 1

β2
s

)

− α�2

πω2

∑
s=±

|βs |
(

1 − 1

β2
s

)2

. (10)

Here, the last term describes the contribution from the Fermi
pocket, which is bounded by �/v along the z axis in momentum
space, thus demonstrating that the real part of εzz is always
positive and independent of the tilt parameters if |βs | < 1. Only
when the conical tilt parameters exceed unity (|βs | > 1) can
the real part of εzz become negative or zero, thus allowing for
the possibility of an ENZ response. Note that the amplitude
of the imaginary component declines monotonically with
increasing the tilt parameter β.

We now turn our attention to the tilted case when the
chemical potential is finite. In general, the integral in Eq. (5c)
for εzz is highly complicated, and solutions must be obtained
numerically. Nonetheless, when |βs | < 1, it is possible to
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approximate εzz as follows:

ε′
zz = 1 + αμ2

πω2

∑
s=±

1

β3
s

{
8

3
βs − 4 arctanh βs + ln

∣∣∣∣4μ2 − ω2(1 + βs )2

4μ2 − ω2(1 − βs )2

∣∣∣∣
+ ω2

12μ2

∑
t=±1

[
t (1 + 2tβs )(1 − tβs )2 ln

∣∣∣∣ 4�2(1 − tβs )2

4μ2 − ω2(1 − tβs )2

∣∣∣∣ − 2μ

ω

(
4μ2

ω2
+ 3 − 3β2

s

)
ln

∣∣∣∣2μ − tω(1 + tβs )

2μ + tω(1 + tβs )

∣∣∣∣
]}

,

(11a)

ε′′
zz = α

6

∑
s=±

�

(
ω − 2μ

1 + |βs |
){

1 − 1

2

[
1 + 3

2|βs |
(

2μ

ω
− 1

)(
1 − 1

3β2
s

{
2μ

ω
− 1

}2)]
�

(
2μ

1 − |βs | − ω

)}
, (11b)

where we have decomposed the permittivity into its real and
imaginary components: εzz = ε′

zz + iε′′
zz. If |β−| = |β+| ≡ |β|,

the imaginary part of εzz is zero when ω < 2μ/(1 + |β|)
and increases as a function of ω in the interval 2μ/(1 +
|β|) < ω < 2μ/(1 − |β|). This expression is independent of
frequency if ω > 2μ/(1 − |β|). Next, if we consider the limit
|4μ2 − ω2|1/2 � μ|βs |, we find that εzz takes the following
form:

εzz = 1 + α

3π

[
ln

∣∣∣∣ 4�2

4μ2 − ω2

∣∣∣∣ − 4μ2

ω2
+ iπ�(ω − 2μ)

− 8μ4

ω2

12μ2 − 5ω2

5(4μ2 − ω2)2
(β2

− + β2
+)

]
, (12)

where the last term can be viewed as a correction arising from
the tilt of the Weyl cones. Finally, in the limit ω → 0, the
off-diagonal component has the form

γ = α

πω

[
2vF Q −

∑
s=±

sμ

2βs

(
1

βs

ln

∣∣∣∣1 + βs

1 − βs

∣∣∣∣ − 2

)]
,

|βs | 
 1, (13a)

γ = α

πω

∑
s=±

[
vF Q

|βs | − sμ

2βs

ln

∣∣∣∣β2
s

�

μ

∣∣∣∣
]
, |βs | � 1. (13b)

Thus, for fixed β, these expressions show that for small values
of the tilt parameter, γ is linear function of μ, declining as the
chemical potential increases. Forβ � 1,γ strongly diminishes
with μ, eventually changing sign. If on the other hand, we have
a set chemical potential, increasing the tilt also reduces the
gyrotropic effect by weakening γ , and more rapidly for larger
μ. In both regimes, at a vanishing chemical potential μ →
0, we recover our previously discussed results at the charge
neutrality point.

D. Susceptibility and ε-near-zero responses

When characterizing the nontrivial behavior of ε in the WS,
there are several relevant parameters to consider, including the
chemical potential, frequency of the EM wave, tilt of the Weyl
cones, and the node separation parameter Q, which is taken to
be positive. Although it may be possible to generate a mixture

of type-I and type-II Weyl points [56], we consider here the
simpler configuration where β+ = −β− = β. In presenting
the results, we write ω in units of energy, and the complex
component εzz is written in terms of its real and imaginary
parts: εzz = ε′

zz + iε′′
zz. When presenting results, we plot the

normalized susceptibility χzz, defined as χzz ≡ (ε′
zz − 1)3π/α.

Therefore, the ENZ regime corresponds to χzz = −3π/α. We
also normalize the dissipative component by α. One of the
primary aims is to locate in parameter space, the particular
ω, μ, and β that result in the real part of εzz ∼ 0. Therefore,
when varying the chemical potential in the WS, we consider
a dimensionless μ ranging from the charge neutrality point,
μ = 0, up to μ/(vF |Q|) = 0.5. Similarly, in order to have as
complete a picture as possible, a wide spectrum of dimen-
sionless frequencies is considered corresponding to 0.05 �
ω/(vF |Q|) � 1. When the frequency is not varying, we set it
to its dimensionless value of ω/(vF |Q|) = 0.3. Of particular
importance is the tilt of the Weyl cones, which determines the
corresponding μ and ω that lead to a vanishing of the real part
of εzz. A broad range of cone inclinations covering both type-I
and type-II scenarios is therefore examined. When computing
the integrals, it is necessary to specify an energy cutoff �.
Here we set �/(vF |Q|) ∼ 8, recalling that the linearized model
breaks down when � > vF |Q|, and which is consistent with
the requirement � � (ω,μ) discussed in conjunction with
Eq. (5b). Since the linear model is most suitable away from the
Lifshitz transition between type-I and type-II Weyl semimetals,
a qualitatively correct description of the system can still be
obtained with the linearized model near the transition by simply
taking either larger cutoffs or by incorporating higher order
momenta into the linear model.

To begin, in Fig. 1, we examine the frequency response
of the normalized susceptibility χzz and ε′′

zz over a broad
range of β. The other diagonal components can be com-
pared by examining the β = 0 cases, whereby εxx,yy = εzz.
When μ = 0, we calculate εzz using Eq. (9) for β < 1 and
Eq. (10) for β > 1. For finite μ and β < 1, we utilize the
expressions in Eqs. (11a) and (11b). If, however, the WS is
type-II with β > 1, we must resort to the general integral
in Eq. (5c) and solve for εzz numerically. The results are
separated into three columns, where each column represents
a different chemical potential, as labeled. Figures 1(a) and
1(b) show χzz and εzz for μ/(vF |Q|) = 0, Figs. 1(c) and 1(d)
correspond to μ/(vF |Q|) = 0.2, and Figs. 1(e) and 1(f) have
μ/(vF |Q|) = 0.4. Beginning with the charge neutrality point,
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FIG. 1. Representative behavior of the permittivity εzz as a function of frequency. The top row corresponds to the normalized susceptibility
χzz, while the bottom row is the imaginary component ε ′′

zz/α. The dashed lines identify points where an ENZ response arises. The tilting of the
Weyl cones are seen to have a significant effect in creating an ENZ response. The corresponding β are depicted in the legends. The effects of
altering the chemical potential is also shown, where each column depicts one of the three different μ considered. [(a), (b)] μ/(vF |Q|) = 0, [(c),
(d)] μ/(vF |Q|) = 0.2, and [(e), (f)] μ/(vF |Q|) = 0.4.

μ/(vF |Q|) = 0, we see in Figs. 1(a) and 1(b) that for β � 1,
χzz remains positive over the given frequency range, similar
to a conventional dielectric. As β increases, and the system
transitions toward a type-II WS (β > 1), the susceptibility gets
shifted down overall, leading to regions where ε′

zz < 0. Indeed,
within the type-II regime and β � 1, the ENZ frequency can
be found from Eq. (10) to be approximately written as

ω2
ENZ ≈ 2α

π
|β|�2. (14)

The dissipative component does not depend on frequency, and
for β � 1, declines toward zero.

Next, in Figs. 1(c) and 1(d), the normalized chemical
potential is increased to μ/(vF |Q|) = 0.2, so that now the
frequency range of interest is shifted accordingly. The top
panel shows that for the case β = 0, a peak in χzz arises. This
peak emerges due to the interband transition, which leads to
the singularity arising from the logarithmic term at ω = 2μ in
Eq. (5b). For most β, we again find at the lowest frequencies,
ε′
zz < 0, similar to the behavior of some metals at optical

frequencies. Upon increasing ω, ε′
zz increases until arriving

at the ENZ frequency where ε′
zz = 0. Figure 1(d) exhibits the

dissipation characteristics of this WS. There are now several
distinct features that ε′′

zz has compared to the μ = 0 case. In
particular, for β = 0, the imaginary component abruptly
changes from lossless to lossy at the frequency ω = 2μ.
Increasing β causes the dissipation at the transition point to
broaden, until β = 1, after which the imaginary component
becomes independent of the tilt parameter. Note that for
β < 1, ε′′

zz vanishes for ω � 2μ/(1 + β ), and increases as
a function of ω in the interval 2μ/(1 + β ) < ω < 2μ/(1 −
β ) [see Eq. (11b)]. Lastly, in Figs. 1(e) and 1(f), a larger

chemical potential corresponding to the dimensionless value
of μ/(vF |Q|) = 0.4 is considered. It is observed that when
increasing μ, there is a widening of the frequency window in
which the ENZ response occurs. There is also a broadening of
the imaginary component, resulting in finite dissipation over
more frequencies.

One of the salient features of Weyl semimetals is the ability
to systematically change their chemical potential. It is possible
to shift μ about the charge neutrality point through doping,
varying the temperature, or altering the lattice constant of the
material through pressure variations [24,43,44]. For instance,
upon raising the temperature, the number of thermally excited
charged carriers increases near the Weyl points, increasing
the chemical potential [43]. The injection of various dopants
into the Weyl semimetal also can increase the number of free
charged carriers, depending on the dopant type [44,45,47]. To
examine how changes in μ can alter the EM response of a WS,
we examine in Fig. 2(a) χzz and in Fig. 2(b) the dimensionless
ε′′
zz as functions of μ. Figure 2(a) shows that for β � 1 and

μ = 0, all curves originate at χzz = ln(4�2/ω2) ≈ 7.85 [see
Eq. (9)]. For Weyl cones that are tilted with β � 1, increasing
μ causes a splitting of the curves which then monotonically
decline. Further increases in β causes χzz to shift downward,
becoming negative for all μ. Figure 2(b) exhibits how the
normalized dissipation ε′′

zz/α can be drastically manipulated
through changes in μ. The type-I case at μ = ω/2 has an
abrupt transition at β = 0. By increasing the tilt angle of the
Weyl cones, the dissipative response broadens and ε′′

zz is finite
over a larger interval of chemical potentials. This can be of
significance in anisotropic ENZ systems with dielectric losses
where system parameters are tuned to control beam directivity
[57] or EM wave absorption [58,59].
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FIG. 2. (a) Illustration of how the susceptibility χzz is affected
by changing the chemical potential in a Weyl semimetal. Increasing
the tilt of the Weyl cones is seen to require a smaller μ for an ENZ
response, corresponding to the intersection of the curves with the
dashed line. (b) The normalized dissipative response ε ′′

zz/α. In both
case, the normalized frequency corresponds to ω/(vF |Q|) = 0.3.

Next, in Fig. 3 we investigate how tilting of the Weyl cones
influences the normalized susceptibility, Fig. 3(a), and dissipa-
tion, Fig. 3(b). Each curve represents a different μ, normalized
as shown in the legend. Starting with μ = 0 and β < 1, we
observe that the permittivity is independent of the tilt, in agree-
ment with Eq. (9). As β increases, however, χzz rapidly drops.
The same type of behavior is seen in the other curves with
small μ, where regions of relatively constant χzz diminish as
μ increases. Thus, when the chemical potential is in the vicinity
of the charge neutrality point, only a type-II WS, with β > 1,
can exhibit ENZ behavior. As μ increases, each corresponding
curve gets shifted down towards the ENZ line, so that smaller
β can lead to a transition to a metallic-like state. Eventually,
for the largest chemical potential shown, χzz cannot exhibit
an ENZ response for any value of tilt. The observed peak
at ω/μ = 2 (corresponding to μ/(vF |Q|) = 0.15) becomes
diminished for other values of μ. For relatively weak chemical
potentials, μ/(vF |Q|) � 0.2, an ENZ response is seen to be
induced only when the WS is type-II. For β � 1, the ENZ
regime arises only for larger μ. For example, the ENZ state is

FIG. 3. Generation of an ENZ state through tilting of the Weyl
cones: Through variation in β, panel (a) shows that χzz can transition
to an ENZ state as represented by the dashed horizontal line. Panel
(b) displays the imaginary component ε ′′

zz/α, where it is seen that β

strongly affects the dissipation nature of the WS. The same μ values
are used in both panels.

reached at β ≈ 0.4, and μ/(vF |Q|) = 0.45. Thus, if the Weyl
semimetal is to demonstrate an ENZ response, it should be
type-I with sufficiently large μ, or it can be type-II with smaller
μ. In either case, the dissipative component will be strongly
affected, as Fig. 3(b) illustrates how cone tilt inclinations
strongly influence ε′′

zz. The normalized ε′′
zz component is shown

to not exceed 1/3. When μ/(vF |Q|) = 0.15 (or equivalently
ω/μ = 2), the dimensionless ε′′

zz is constant and has the value
1/6. Above this value of the chemical potential, the dissipative
response tends to decline as β increases, while below it, the
dissipation increases as β increases. At the charge neutrality
point ε′′

zz, it is unaffected by changes in the tilt for type-I, but for
type-II (β � 1), there is a weak decline, according to Eq. (10).
Compared to Fig. 3(a), it is evident that for μ/(vF |Q|) � 0.3,
an ENZ response with zero effective loss can be achieved for
a type-I WS. This situation could be relevant to waveguide
structures, where localized electromagnetic waves propagate
over long distances near the surface of the WS.

To estimate the feasibility of achieving an ENZ response in
a type-II WS, we consider [23,60] Q = 1 nm−1, μ = 0.08 eV,
β = 1.02, and ω = 0.2 eV, to give ε′

zz ∼ 0, and ε′′
zz ∼ 0.5.

Although this estimate corresponds to a pair of points, to
relate to a material such as TaAs, which has 12 pairs of Weyl
cones, including 8 nodes with Fermi energy μ ≈ 1 meV and
16 nodes with μ ≈ 15 meV, α should be multiplied by 4 and
8, respectively, to account for the additional nodes.
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FIG. 4. Schematic of the configuration involving a Weyl
semimetal in region 1© with width d atop a perfectly conducting
substrate. The Weyl semimetal layer is exposed to an electromagnetic
wave from the vacuum region 0©. The incident electric field is
polarized in the x-z plane, and the magnetic field is polarized along
y. The incident wave vector k0 makes an angle θ with the z axis. The
separation of the Weyl nodes is taken to be along the z axis.

III. PERFECT ABSORPTION IN WEYL
SEMIMETAL STRUCTURES

In this section, we make use of the results for ε presented
in the previous section to demonstrate how a WS structure in
the ENZ regime can be tuned to exhibit perfect absorption of
EM waves over a broad range of incident angles and system
parameters, thus revealing a practical platform for the control
of EM radiation.

A. Maxwell’s equations and theory

We investigate the reflection and absorption of EM waves
from the layered configuration shown in Fig. 4, which consists
of a planar Weyl semimetal (region 1©) adjacent to a metallic
substrate with perfect conductivity (PEC). The electric field
of the incident wave is polarized in the x-z plane, so that the
permittivity component εzz plays a significant role in the overall
EM response. The plane wave is incident from vacuum (region
0©) with wave vector k0 also in the x-z plane: k0 = x̂k0x + ẑk0z.

If the incident wave was propagating in the x-y plane, the TE
and TM modes would become decoupled, and the reflectivity
characteristics for the TM modes would not depend on the εzz

component of the permittivity tensor. For propagation in the x-z
plane, the TE and TM modes can no longer be separated, and
the EM response of the WS structure is governed mainly by εzz.

The incident electric and magnetic fields thus have the
following forms: E = (Ex0 x̂ + Ez0 ẑ)ei(k0xx+k0zz−ωt ), and H =
Hy0 ŷei(k0xx+k0zz−ωt ). Here k0x is invariant across each layer,
with k0x = k0 sin θ , k0z = k0 cos θ , and k0 = ω/c. For both
regions 0© and 1©, we implement Maxwell’s equations for time
harmonic fields,

∇ × Ei = iωμ0 H i , (15a)

∇ × H i = −iωDi , (15b)

where i = 0 or 1. Within the WS, the propagation vector
k1 replaces the spatial derivatives, transforming Maxwell’s
equations into the forms k1 × E1 = ωμ0 H1 and k1 × H1 =
−ωεε0 E1. These two equations together result in the following
expression for the E1 field in k space:

k1 × (k1 × E1) = −k2
0ε E1. (16)

Using k1 = k0x x̂ + k1z ẑ and the identity k1 × (k1 × E1) =
k1(k1 E1) − k2

1 E1 permits expansion of Eq. (16),

⎛
⎜⎝

k2
0εxx − k2

1z ik2
0γ k1zk0x

ik2
0γ k2

⊥ − k2
0εyy 0

k0xk1z 0 k2
0εzz − k2

0x

⎞
⎟⎠
⎛
⎜⎝

Ex1

Ey1

Ez1

⎞
⎟⎠ = 0,

(17)

where k⊥ =
√
k2

1z + k2
0x , and k1x = k0x due to translational

invariance. The coupling of all three components of the E
fields in Eq. (17) illustrates that although the electric field of the
incident beam is polarized in the x-z plane, it can now acquire
an additional y component when entering the gyrotropic
medium. Similarly, despite having an initial polarization state
along the x direction, the incident H field can also in general
become polarized in all three directions once entering the
WS. Thus, the EM wave exiting the WS structure can have
a different overall polarization state that depends on the WS
material and geometrical parameters.

B. Results and discussions

Since the incident beam propagates in the x-z plane with
wave vector k = x̂k0x + ẑk0z (see Fig. 4), each component of
ε must be accounted for in the EM response of the WS. Taking
the determinant of the matrix in Eq. (17) and setting it equal
to zero gives the dispersion equation for the WS that can be
solved for k1z:(

εxxk
2
0 − k2

⊥
)(

εxxεzzk
2
0 − εxxk

2
0x − εzzk

2
1z

)
+ k2

0

(
k2

0x − εzzk
2
0

)
γ 2 = 0. (18)

Solving for the roots in Eq. (18) results in two types of solutions
to k1z, denoted by k+ and k−. We have

k2
± = k2

0

2εzz

[
2εzzε‖ − (ε‖ + εzz) sin2 θ

±
√

4ε2
zzγ

2 − 4εzzγ 2 sin2 θ + (ε‖ − εzz)2 sin4 θ
]
,

(19)

where ε‖ represents the components of ε parallel to the
interfaces: εxx = εyy = ε‖. The dispersion equation (18) can
now be compactly written in terms of the two types of waves:

k2
0εzz

(
k2

1z − k2
+
)(

k2
1z − k2

−
) = 0. (20)

For the configuration shown in Fig. 4, where the x-y plane
is translationally invariant, the magnetic field components in
the vacuum region, H0, are written in terms of incident and
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reflected waves:

Hx0 = r3e
−ik0zzeik0xx, (21a)

Hy0 = (eik0zz + r1e
−ik0zz)eik0xx, (21b)

Hz0 = r2e
−ik0zzeik0xx, (21c)

where the x and z components represent the change of the
incident polarization state upon reflecting from the Weyl
semimetal. In other words, the coefficients r2 and r3 take into
account the generation of additional polarization components
upon interacting with the gyrotropic WS layer. Note that
from the Maxwell’s equation ∇·H0 = 0, there exists a simple
relation between the coefficients r2 and r3:

r3 = k0z

k0x

r2. (22)

From the magnetic field components above, we can use
Eq. (15b) to easily deduce the electric field components for
region 0©.

For region 1©, when using Maxwell’s equations, we need
to take into account the anisotropic nature of the WS. The
general solution to the E field in the WS region is thus a
linear combination of the four wave-vector components k1z =
{k+,−k+, k−,−k−}:

Ey1 = (a1e
ik+z + a2e

−ik+z + a3e
ik−z + a4e

−ik−z)eik0xx .

(23)
To determine the coefficients {a1, a2, a3, a4}, it is necessary to
invoke matching interface conditions and boundary conditions,

but first we must construct the remaining E and H fields. This
is achieved via the two Maxwell’s equations, Eqs. (15a) and
(15b). First, using (15b) gives the following relations:

∂Hy1

∂z
= iωε0(ε‖Ex1 + iγEy1), (24a)

∂Hx1

∂z
− ik0xHz1 = iωε0(iγEx1 − ε‖Ey1), (24b)

k0xHy1 = −ωε0εzzEz1. (24c)

From Eq. (15a), we have

∂Ey1

∂z
= −iωμ0Hx1, (25a)

∂Ex1

∂z
− ik0xEz1 = iωμ0Hy1, (25b)

k0xEy1 = ωμ0Hz1, (25c)

where we have used the fact that x component is invariant, i.e.,
∂x → ik0x . Inserting Eq. (23) into the equations above, it is
now possible to write all components of the EM field in terms
of the coefficients {a1, a2, a3, a4}. For example, Hx1 and Hz1

are easily found from Eqs. (25a) and (25c) respectively. From
that, one can solve Eq. (24b) for Ex1, and so on.

Upon matching the tangential electric and magnetic fields at
the vacuum/WS interface, and using the boundary conditions
of vanishing tangential electric fields at the ground plane, it
is straightforward to determine the unknown coefficients. The
first reflection coefficient r1 is defined as r1 = 1 − r0, where

r0 = 2k2
z [k+q2

− cos(k+d ) sin(k−d ) − [k−q2
+ cos(k−d ) + ik0z(k2

+ − k2
−) sin(k−d )] sin(k+d )]

k− cos(k−d )[f2 sin(k+d ) + iεzzk0zk+(k2+ − k2−) cos(k+d )] + sin(k−d )[f1k+ cos(k+d ) − ik0zk2
z (k2+ − k2−) sin(k+d )]

,

kz = k0

√
εzz − sin2 θ, q± =

√
ε‖k2

0 − k2
0x − k2±, f1 = k2

z q
2
− − εzzk

2
0zq

2
+, f2 = −k2

z q
2
+ + εzzk

2
0zq

2
−. (26)

The r2 coefficient is expressed compactly in terms of r1 and
r0:

r2 = k0xγ
[
k2
z (r1 + 1) sin(k−d ) − iεzzk0zk−r0 cos(k−d )

]
εzzq

2+[ik0z sin(k−d ) − k− cos(k−d )]
.

(27)

In the absence of gyrotropy, γ = 0, r2 = r3 = 0, and the
corresponding reflection coefficient r1 reduces to

r1 = 1 − 2k−
k− + ik0zε‖ cot(k−d )

, (28)

in which k− =
√
ε‖(k2

0 − k2
0x/εzz). Thus, when γ = 0, the re-

flection coefficient reverts to that of a diagonally anisotropic
medium [59], as it should. When the gyrotropic parameter
vanishes, the incident electric field that is polarized in the x-z
plane, remains in that plane after interacting with the WS.

In determining the absorptance A of the WS system, it is
beneficial to study the energy flow in the vacuum region. To
this end, we consider the time-averaged Poynting vector in the

direction perpendicular to the interfaces (the z direction), Sz0 =
R{Ex0H

∗
y0 − Ey0H

∗
x0}/2. Inserting the electric and magnetic

fields calculated for region 0© above, we find

A = 1 − |r1|2 − |r2|2 − |r3|2. (29)

Here A is defined as Sz0/S0, where S0 ≡ k0z/(2ε0ω) is the
time-averaged Poynting vector for a plane wave traveling in
the z direction.

Having established the methods for determining the ab-
sorption and reflection coefficients, we now consider a range
of material and geometrical parameters that lead to perfect
absorption in the ENZ regime where ε′

zz ≈ 0. The dissipative
component ε′′

zz, on the other hand, can vary, as it plays a crucial
role in how electromagnetic energy is absorbed by the system.
For a given WS width d, frequency ω of the incident wave, and
orientation θ , the absorptance [Eq. (29)] can be calculated by
incorporating the results of Sec. II, which gives the various μ

and β that lead to an ENZ response and allows the remaining
components of the tensor ε to be determined via Eqs. (5b)–(5d).
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FIG. 5. Color map demonstrating how the absorptance A varies
as a function of the incident angle θ and dissipation ε ′′

zz. The system
is in the ENZ regime, whereby ε ′

zz = 0. The normalized frequency is
set to ω/(vF |Q|) = 0.3, and d/λ = 1/100.

The results from Sec. II offer clear guides for identifying
ENZ regions of the parameter space. For example, it was
observed in Fig. 1 that for the range of frequencies considered,
it is necessary for the chemical potential to be nonzero for
the dissipative component ε′′

zz to have significant variations.
We show below that ε′′

zz plays a crucial role in determining
how much of the incident beam is perfectly absorbed [58]
and that strong absorption can arise over a broader range of
θ when ε′′

zz corresponds to moderate loss and also when it
is very small. Thus, we focus on the more interesting cases
when μ is away from the charge neutrality point (μ = 0).
Indeed, Figs. 1(c)–1(f) showed that by having a finite μ, ε′′

zz

can be continuously tuned from zero to a situation having
appreciable dissipation. If the dissipation vanishes entirely,
the type of perfect absorption studied here does not arise
since all incoming waves are reflected back from the ground
plane. Increasing the loss makes it possible at appropriate
frequencies and orientations of the incident beam, for the waves
in the WS to destructively interact and ultimately dissipate
through Joule heating. For most of the frequencies of interest
here, which satisfy ω/(vF |Q|) < 2μ/(vF |Q|), the component
of the permittivity parallel to the interfaces ε‖ [Eq. (5b)], is
purely real, as it has no interband contribution to the optical
conductivity.

To illustrate how ε′′
zz directly impacts the absorption char-

acteristics of the WS structure shown in Fig. 4, we present in
Fig. 5 a color map that depicts the absorptance A as a function
of the incident angle θ and the loss ε′′

zz. We consider the scenario
where the WS is assumed to have an ENZ response, ε′

zz = 0,
so that εzz is described entirely by its imaginary component.
As was extensively discussed in Sec. II, ε′′

zz generally depends
on several system parameters. Here, however, in order to
isolate the effects of dissipation and its relation to angles of
high absorption, ε′′

zz varies independently. In this example,
we have μ/(vF |Q|) = 0.2 and γ = 3. As Fig. 5 shows,
depending on ε′′

zz, perfect absorption can be achieved for vir-
tually any incident angle. Thus, for example, to determine the
WS parameters needed to achieve perfect absorption around
normal incidence (θ ∼ 0◦), it is only necessary to identify

°

°

°

�� � ��
FIG. 6. The absorptance A as a function of normalized chemical

potential μ/(vF |Q|) for a type-II WS structure having an ENZ
response. Three different orientations θ of the incident beam are
shown. The tilting parameter corresponds to β = 1.01, the normalized
frequency is ω/(vF |Q|) = 0.3, and d/λ = 1/100.

configurations where ε′
zz ≈ 0 for small ε′′

zz. The fact that for
angles near normal incidence, the loss must be extremely
weak for perfect absorption is consistent with the response
of isotropic ENZ slabs [1]. On the other hand, to have the
entire incident wave’s energy absorbed at broader angles
(θ ∼ 90◦), the ENZ structure must exhibit greater dissipation,
with ε′′

zz � 0.3. The occurrence of perfect absorption in thin,
anisotropic ENZ layers is one of the hallmarks of coherent
perfect absorption [58], which couples light to a fast wave
propagating along the WS interface. A main feature of coherent
perfect absorption is the intricate dependence on the real
and imaginary parts of εzz, which can lead to the formation
of localized waves inside very narrow regions. The perfect
conductive substrate serves as the reflecting surface that results
in the destructive interference of incoming waves, so that under
the proper conditions, the incident beam becomes completely
absorbed.

Previously, in Fig. 2, we found that by tuning the chemical
potential, not only can an ENZ response be achieved but also
the loss in the WS can be highly sensitive to changes in μ. To
study the effects that variations in μ have on the EM response
of the WS, in Fig. 6, we present the absorptance of the WS
structure as a function of the normalized μ. Three different
orientations of the incident wave are considered, as shown in
the legend. We consider a representative value for a type-II
case, β = 1.01, which according to Fig. 2 puts the system
in the ENZ regime at μ/(vF |Q|) ≈ 0.17. For this value of
the chemical potential, the loss corresponds to ε′′

zz ≈ 0.3. The
remaining components of the permittivity tensor are calculated
from Eqs. (5b) and (5d), resulting in ε‖ ≈ 2.8 and γ ≈ 2.9.
Note that while conventional absorbers are often restricted by
their relatively large thicknesses, remarkably the WS layer
exhibited here has an extremely subwavelength thickness,
corresponding to d/λ = 1/100. Thus, for an incident wave-
length of λ ∼ 10 μm; this implies d ∼ 100 nm. We note that
the results are relatively insensitive to ε‖. Moreover, for the
narrow WS widths considered here, the off-diagonal gyrotropic
component γ has a limited effect on the results, so that Eq. (28)
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FIG. 7. The absorptance A as a function of incident angle θ .
Several normalized chemical potentials are considered (see legend).
For μ/(vF |Q|) = 0.29, 0.28, 0.27, 0.25, and 0.2, the Weyl semimetal
should be type-I, with β ∼ 0.94, 0.96, 0.97, 0.98, and 0.99, respec-
tively. To achieve perfect absorptance for larger incident angles that
more closely approach grazing (θ → 90◦), the μ/(vF |Q|) = 0.15
case requires a type-II WS, with β ∼ 1.01. In all cases, the normalized
frequency is set to ω/(vF |Q|) = 0.3 and d/λ = 1/100.

is often suitable for describing the reflection characteristics
over a broad range of parameters. Overall, we find that the
phenomena presented here are dictated mainly by εzz. This is
consistent with the results of Fig. 6, where weak absorption
occurs for smaller θ , but when θ = 80◦, there is complete
absorption. As Fig. 5 showed, increases in the dissipative
component ε′′

zz require that the incident waves approach the
interface at larger θ in order to be absorbed perfectly.

We now proceed to show that for certain μ and tilting β,
both type-I and type-II WS systems can completely absorb
the incident EM radiation over a relatively wide range of
incident wave orientations θ . In Fig. 7, the absorptance is
shown as a function of θ for a few normalized μ (see legend).
For chemical potentials outside of this range, the imaginary
component ε′′

zz is either too small or too large to achieve
perfect absorption (see Fig. 2). The subwavelength slab width
is again fixed at d/λ = 1/100, and the incident wave has a
frequency corresponding to ω/(vF |Q|) = 0.3. Beginning with
the largest chemical potential, μ/(vF |Q|) = 0.29, we find
that perfect absorption occurs at close to normal incidence.
This is because as Fig. 2(b) showed, when μ/(vF |Q|) = 0.29,

a very small amount of loss is present. Therefore, from Fig. 5,
θ must be small in order for the incident beam to couple to
the EM modes responsible for perfect absorption. Besides
having loss, it is also necessary for ε′

zz ≈ 0, which as in
Fig. 2(a) shows, only small β < 1 in this case results in
an ENZ response. By decreasing the chemical potential, the
WS becomes more dissipative. Thus we find that each of the
perfect absorption peaks in Fig. 7 gets shifted toward grazing
incidence (θ → 90◦). This, however, requires greater tilting of
the Weyl cones to achieve ε′

zz = 0, which in some instances
corresponds to a type-II situation where β exceeds unity (see
Fig. 2).

Finally, to show the importance of using subwavelength WS
structures in the ENZ regime to achieve perfect absorption,
we investigate how changes in the width d of the WS (see
Fig. 4) affects the absorption properties of the system. In Fig. 8,
the color maps depict the absorptance as a function of the
normalized width d/λ and incident angle θ . Both WS types
are considered: (a) type-II with β = 1.01 and (b) type-I with
β = 0.96. In Fig. 8(a), μ/(vF |Q|) = 0.15, which corresponds
to εzz ≈ 0.12 + 0.37i, and a gyrotropic parameter of γ ≈ 3. In
Fig. 8(b), the chemical potential is increased to μ/(vF |Q|) =
0.28, so that the WS still has εzz in the ENZ regime, but with
very little loss, corresponding to a small imaginary component
ε′′
zz ≈ 0.005. The gyrotropic parameter is relatively unchanged

from the previous case, with now γ ≈ 3.1. For both panels, the
normalized frequency is set at ω/(vF |Q|) = 0.3. It is evident
that the type-II WS in Fig. 8(a) admits perfect absorption over
larger angles, and that the normalized width should satisfy
d/λ � 1/10 for appreciable absorption. As the incident beam
is directed more toward grazing angles (θ → 90◦), it is appar-
ent that d must be continuously reduced in order for the system
to remain a perfect absorber. For widths that are larger than the
range shown here, coupling between the incident beam and
the WS system becomes substantially diminished as additional
reflections are introduced that destroy the previous coherent
effects. For the type-I case [Fig. 8(b)], the widths again need to
be subwavelength, satisfying d/λ � 1/10, and as mentioned
above, perfect absorption arises at small inclinations of the
incident beam due to the weakly dissipative nature of εzz for
these system parameters. We also see a trend similar to the
type-II case in Fig. 8(a), where increases in θ require thinner
WS widths to achieve A ≈ 1.

FIG. 8. Color maps illustrating the perfect absorption regions for various normalized widths d/λ and incident angles θ . In panel (a), β ∼ 1.01
and μ/(vF |Q|) = 0.15. In panel (b), β ∼ 0.96 and μ/(vF |Q|) = 0.28. In both panels, the normalized frequency is set to ω/(vF |Q|) = 0.3,
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IV. CONCLUSIONS

In this paper, we studied the dielectric response of
anisotropic type-I and type-II tilted Weyl semimetals. We
presented both analytic and numerical results that character-
ized each component of the permittivity tensor. We showed
that depending on the Weyl cone tilt, chemical potential,
and electromagnetic wave frequency, the component of the
permittivity tensor normal to the interfaces can achieve an
ε-near-zero (ENZ) response. At the charge neutrality point,
we showed that only type-II Weyl semimetals can exhibit an
ENZ response. We also discussed how losses near the ENZ
frequency can be controlled and effectively eliminated by
properly adjusting the Weyl cone tilt and chemical potential.
Making use of the calculated permittivity tensor for the Weyl

semimetal, we also investigated the electromagnetic response
of a Weyl semimetal structure consisting of a planar Weyl
semimetal adjacent to a perfect conductor in vacuum. Our
findings showed that thin Weyl semimetals with an ENZ
response can be employed as coherent perfect absorbers for
nearly any incident angle by choosing the proper geometrical
and material parameters.
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