
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Retal, Sara; Bagaa, Miloud; Taleb, Tarik; Flinck, Hannu
Content delivery network slicing

Published in:
2017 IEEE International Conference on Communications, ICC 2017

DOI:
10.1109/ICC.2017.7996499

Published: 28/07/2017

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Please cite the original version:
Retal, S., Bagaa, M., Taleb, T., & Flinck, H. (2017). Content delivery network slicing: QoE and cost awareness.
In 2017 IEEE International Conference on Communications, ICC 2017 Article 7996499 (IEEE International
Conference on Communications). IEEE. https://doi.org/10.1109/ICC.2017.7996499

https://doi.org/10.1109/ICC.2017.7996499
https://doi.org/10.1109/ICC.2017.7996499

Content Delivery Network Slicing: QoE and Cost
Awareness

Sara Retal∗†, Miloud Bagaa∗, Tarik Taleb∗ and Hannu Flinck ‡
∗Dep. of Communications and Networking, School of Elect Eng, Aalto University, Espoo, Finland

†Computer Science Laboratory, Faculty of Sciences, Mohammed V University in Rabat
‡Nokia Bell Labs, Finland

Emails: ∗firstname.lastname@aalto.fi, ‡hannu.flinck@nokia-bell-labs.com

Abstract—Content Delivery Networks (CDNs) emerged to
manage the great amount of content, as well as the transmissions
over long distances. In recent years, this concept proves to be
a promising solution for emergent enterprises. In this paper,
we present a Content Delivery Network as a Service (CDNaaS)
platform which can create virtual machines (VMs) through a
network of data centers and provide a customized slice of CDN
to users. CDNaaS manages a great number of videos by means
of caches, transcoders, and streamers hosted in different VMs.
However, an optimal placement of VMs with adequate flavors
for the different images is required to obtain an efficient slice of
CDN. In this work, we argue the need to find a convenient slice for
the CDN owner while respecting his performance requirements
and minimizing as much as possible the incurred cost. We first
formulate the VMs placement problem as two Linear Integer
problem solutions, aiming at minimizing the cost and maximizing
the quality of experience of streaming. Then, extensive simulation
results are presented to illustrate the effectiveness of the proposed
models.

I. INTRODUCTION

Over the last decade, content delivery networks (CDNs)

have played a valuable role in hosting and distributing content

to users. Thanks to its architecture that consists of multiple

servers distributed geographically, content is replicated across

a wide area, and has accordingly become highly available.

Several studies have demonstrated the effectiveness of CDNs

in improving the quality of experience (QoE) by making

applications and services faster and more reliable [1]–[3].

One thing is certain, this concept has helped many renowned

companies to develop and to expand their revenues. CDNs can

improve the access by caching and streaming content, with

many distributed components collaborating to deliver content

across different network nodes. Hence, CDN providers have

in general distributed topologies around the world . Moreover,

those providers have two types of users: (i) the customers are

CDN administrators who must pay fees to the supplier; (ii)
CDN clients are the end users who download content through

the CDNs.

Cloud providers own a number of globally distributed data

centers which is growing continuously. Their different services

including compute, storage, network, and virtualization allow

elasticity and provide customers more choice than ever before.

Most cloud providers use machine virtualization to provide

flexible and cost effective resources, and the price can vary

depending on the performance of the Virtual Machines (VMs).

Recently, a great number of companies such as Amazon,

Google, and Microsoft, have launched their cloud service

businesses. Nowadays, users rent machine instances with dif-

ferent capabilities as needed and pay at a certain per machine

hour billing rate. Thanks to machine virtualization techniques,

flexible and cost-effective resources are provided for users.

For example, Amazon EC2 [4] solution supports multiple

VM instances on a single physical server. However, CDN

infrastructure can benefit from these virtualization techniques

and gain geographically dispersed nodes in large scale [5].

To deliver content to end users with QoE guarantees, a CDN

administrator should ensure that his content is strategically

placed across the Web [6], [7]. This can be done thanks to

some algorithms which specify the location of VMs running

the applications, in order to achieve an improved performance

with a low infrastructure cost. Some parameters are of crucial

importance such as the number of VMs, where those VMs are

geographically located, and which server will serve end users’

requests. In the context of CDNs, several studies have been

conducted proposing different algorithms to place strategically

servers. In [8], the authors propose a dynamic programming

algorithm for cache placement aiming at improving the per-

formance of CDNs. Other algorithms have been proposed

for this issue, e.g., the Greedy algorithm [9], [10]. The VM

placement problem is of vital importance and differs from

one case to another. Generally speaking, the problem is to

place a number of servers in different locations in a way

that yields the lowest cost. For example in Carrier Cloud

[11], [12], the placement of VMs was the subject of several

kinds of research [13]–[16]. The goal here is the placement

of VMs in specific data centers for a given user respecting

architecture constraints. This problem can be studied in two

ways [16]: (i) in the same data center, the research has been

done with the goal of reducing costs using Bin packing,

Simulated Annealing, Ant Colony, Transient cooling effects,

N-dimensional set, etc. (ii) through a group of data centers.

However, as shown in the following, it is necessary to consider

an intelligent VMs placement through a group of data centers

for the CDN owner to provide better services and satisfy his

performance requirements. In this paper, we propose a CDN as

a service (CDNaaS) platform where the user can create a CDN

slice including caches, transcoders, and streamers, in order

to manage a number of videos for a number of subscribers.

This platform is designed to have the maximum level of

flexibility for integrating with different public and private

infrastructure as a service (IaaS) providers such as Amazon

AWS service [4], Microsoft Azure [17], Rackspace [18], and

OpenStack-managed cloud [19]. And thus, cache, transcoder,

and streamer images could be hosted. Furthermore, CDNaaS

Fig. 1. Key stakeholders of a CDNaaS architecture.

proposes an efficient cost of CDN slice with a number of VMs

and its locations for each image and also with an efficient

QoE. Consequently, the challenge is to provide a delicate

balance between costs and customers satisfaction. Therefore,

the objective of this paper is to find an efficient cost of CDN

slice respecting, on one hand, the CDN owner requirements in

terms of QoE, and on the other hand, the cloud infrastructure

and its costs. Two solutions are proposed for image placement

over the cloud.

The rest of this paper is organized in the following way.

In Section II, an overview of the proposed CDNaaS platform

is presented. In Section III, system model and problem for-

mulation for VM allocation problem are given. Section IV

presents the optimal solutions and illustrates the simulation

results. Finally, we conclude this study in Section V.

II. CDN AS A SERVICE PLATFORM

The envisioned CDNaaS platform is designed to offer to

users an easy way to manage a great number of videos for

plenty of subscribers, providing different VM instances from

different cloud suppliers [7], [20]. This platform consists of the

following components: an orchestrator, a coordinator server,

a cache server, a transcoding server, and a streaming server.

The orchestrator enables users to connect via a web interface

and create, modify or delete their respected CDN slices over

the available IaaS providers. Fig. 1 shows the most important

stakeholders in the envisioned CDNaaS architecture. It consists

of a public network connecting different data centers across

several geographical areas. Server racks within a data center

are connected through a private network. The virtual infras-

tructure is created using different infrastructure providers,

e.g., Amazone AWS service [4], Microsoft Azure [17], and

Rackspace [18]. The CDNaaS manager architecture is depicted

in Fig. 2. The orchestrator acts as the main management

component of the CDNaaS platform and is responsible for

running core front and back-end services. Front-end services

help to meet users’ preferences and set up VMs for coordi-

nator, cache, transcoder, and streamer images. Regarding the

Fig. 2. CDNaaS orchestrator’s architecture.

back-end related functions used in the orchestrator, they are

as follows:

• Main component: The CDNaaS main component is re-

sponsible for checking the database and VMs creation

and deletion.

• Data Manager Component: This component contains all

database-related methods required for data management.

• Coordinator Agent: This agent contains required methods

used for communications among orchestrator and coordi-

nator servers in different CDN slices.

• Amazon AWS Agent: This agent contains methods re-

quired for handling Amazon AWS IaaS provider.

• Microsoft Azure Agent: This agent contains methods

required for handling Microsoft Azure IaaS provider.

• OpenStack Agent: This agent contains methods required

for handling an Openstack-based IaaS provider.

• RackSpace Agent: This agent contains methods required

for handling Rackspace IaaS provider.

The creation of a CDN slice is depicted in Fig. 3. The

process follows these steps:

• R1: A user requests the creation of a CDN slice specify-

ing its requirements.

• R2: The orchestrator sends requests to each IaaS provider

indicating the VM instances to be instantiated and speci-

fying the images (i.e., Virtual Network Functions - VNFs

- cache, transcoder, streamer, and coordinator) to be run

on each of them.

• R3: VMs for all images are created and information on

these VMs are communicated to the orchestrator.

• R4: The user (i.e., CDN owner) can manage the VMs of

his CDN slice via the orchestrator.

The coordinator server is responsible for getting information

about available machines in each CDN slice from the orches-

trator and manages communications among the different nodes

such as the transcode request (i.e., sent by the coordinator

to the transcoder) or the transcode reply (i.e., sent by the

transcoder to the coordinator) as depicted in Fig. 4. A CDN

slice consists of one coordinator, one or more transcoders,

streamers, and caches. Once a CDN slice is created, the

CDN owner can manage his videos through the coordinator,

which is a mandatory component used to manage the entire

Fig. 3. Creation of a CDN slice.

CDN slice including caches, transcoders, and streamers. It

enables users to upload, modify or delete videos, select the

preferred transcoder, cache, and streamer among the available

ones to transcode the video to desired resolutions, store and

stream the transcoded videos. Caches are mainly in charge of

storing videos after being uploaded by users and after being

transcoded by the selected transcoder server. Transcoders get

a request from the coordinator and transcode videos at rates

specified by the CDN owner. The role of streamers is load bal-

ancing and receiving end users’requests for playing a specific

video and redirecting the request to a proper cache server to

show the video content using available resolutions (See Fig. 4).

For the creation of cost-efficient and QoE-aware CDN slices,

a smart placement of VNF images on adequate VM flavors

must be ensured by the system. This placement concerns the

geographical locations of VMs and their respected flavors

(e.g., CPU, memory and storage) offered by providers [21].

Indeed, the placement of caches, transcoders, and streamers

has a great impact on the QoE. Moreover, it affects the cost

paid by the CDN owner (i.e., similar in spirit to the general

VNF placement problem in case of cloud-based Telco) [13],

[16]. In the following section, the problem formulation is given

and two Linear Integer problem solutions are proposed for the

CDNaaS VNF placement problem.

III. SYSTEM MODEL AND PROBLEM FORMULATION

Once a user successfully logs into the orchestrator domain,

he is able to create a CDN slice. He defines a validity period

for the CDN slice and specifies a number of videos to be stored

and a number of subscribers to be serviced across a specific

geographical area, with the service areas of a number of IaaS

providers. Each IaaS provider can offer a number of VMs

with specific flavors. A VM flavor defines the category of the

VM instance and is characterized by a vCPU, a RAM, and a

storage capacity, in addition to other feature [21]. Each flavor

has a cost which should be paid by the CDN owner. Each

VM shall run an image that can be either for a coordinator,

a transcoder, a cache or a streamer. The objective is to create

a cost-efficient CDN slice minimizing the incurred cost while

meeting the requirements specified by the user.
We model the physical network representing the cloud

infrastructure and subscribers as a weighted bipartite complete

graph and denote it as G = (V; E). The set of vertices is

V = V1∪V2 where V1 is the set of physical nodes constituting

locations of data centers and V2 is the set of subscribers’

locations. E is the set of physical links. We assume that the

QoE of each physical link is different because of the distance

between nodes. We note that the distance between subscribers’

locations and the VM hosting a streamer has an impact on the

QoE of streaming. Hence, ω(k, l) = λkl denotes the QoE of a

physical link between two locations where k ∈ V1 and l ∈ V2.

A CDN owner defines a location l ∈ V2 of his subscribers,

the minimum value of QoE (i.e., in terms of Mean Opinion

Score) the consumers of his CDN slice shall experience, the

capacities of the caches and the transcoders which are denoted

as μ, ρ and σ, respectively. Subscribers in a location l and

videos are denoted by the sets Ml and N , respectively. The

CDN owner sets an estimated average duration of videos to be

cached which we represent by tv whereby v ∈ N and desired

resolutions R = {r1, r2 . . .} where rm = (wm, lm). R is the

set of desired resolutions while wm and lm are, respectively,

the width and the length of the frame.

In what follows, we consider the placement of caches,

transcoders, and streamers in different locations and on dif-

ferent flavors. Let F = {f1, f2 . . .} denote the set of available

flavors and ci denote the cost of a flavor i. The relationship of

flavors to a location k ∈ V1 is represented through the matrix

P(F,V1). If and only if a flavor i is associated with a location

k, then P(i, k) = 1, otherwise P(i, k) = 0.

Knowing that the available disk memory of a flavor has

a great impact on the cache image, while the CPU and the

RAM have a great impact on transcoder and streamer images,

we assume that h(i, Y) and g(i, Y) are the capacities of a

flavor i running a cache and a transcoder image, respectively,

handling a size Y of videos. q(i,Ml, λkl) represents the QoE

of a streamer image with a flavor i in a location k ∈ V1

serving a set of subscribers Ml in a location l ∈ V2. We

assume that the QoE of a link between a streamer and a

cache is efficient and does not affect q. h−1(i, ρ), g−1(i, σ)
and q−1(i, μ, λkl) are respectively the inverse functions of the

functions h(i, Y), g(i, Y) and q(i,Ml, λkl). In other words,

h−1(i, ρ) and g−1(i, σ) are the possible size of videos handled

by a flavor i with the capacity ρ for the cache image and the

Fig. 4. Communication between CDN slice nodes.

capacity σ for the transcoder image. Similarly, q−1(i, μ, λkl)
denotes the possible number of subscribers in a location l ∈ V2

that can be handled by a flavor i in a location k ∈ V1 with a

QoE μ for the streamer image.

The function f estimates the cost of storing videos by

calculating an approximate video size (in Megabytes), given

the frame rate denoted by frv and the color depth denoted by

dv where v ∈ N . Knowing that sv = (tv, frv, dv) ∈ N
3 and

rm = (wm, lm) ∈ N
2, this function is defined as follows:

f : N
3 × N

2 → R

(sv, rm) �→ dv×frv×tv×wm×lm
8×1024×1024

(1)

The total size of videos is calculated using (1) as follows:

YTOTAL =
∑

v∈N

∑

m∈R

f(sv, rm) (2)

Let C, T and S denote cache, transcoder and streamer images,

respectively. E = {C, T ,S} is the set of all images. The

number of VMs with a flavor i in a location k ∈ V1 hosting an

image j is represented by Sk
ij . S(F,E,V1) ∈ Ω is a solution to

the problem where Ω denotes the set of all possible solutions.

The cost of a solution S is calculated as follows:

CTOTAL(S) =
∑

i∈F

∑

j∈E

∑

k∈V1

Sk
ijPikci (3)

The aggregate utility minimization problem is shown as

follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min CTOTAL(S)
s. t.

j = C :
∑

k∈V1

∑
i∈F h−1(i, ρ)Sk

ijPik ≥ YTOTAL

j = T :
∑

k∈V1

∑
i∈F g−1(i, σ)Sk

ijPik ≥ YTOTAL

j = S, l ∈ V2 :
∑

k∈V1

∑
i∈F q−1(i, μ, λkl)S

k
ijPik ≥ Ml

∀i ∈ F,∀j ∈ E, ∀k ∈ V1 : Sk
ij ∈ N

∀i ∈ F, ∀k ∈ V1 : Pik ∈ {0, 1}
YTOTAL,Ml, ρ, μ, σ > 0

(4)

The objective aims at minimizing as much as possible the

incurred cost and then find a cost-efficient slice of CDN.

Meanwhile, the constraints in linear programming (4) are used

to ensure the following conditions:

• Constraints 1 and 2 ensure that capacities of the cache

and the transcoder desired by the user (i.e., CDN slice

owner) must be respected. The size of videos handled

by all flavors for a cache or a transcoder image must be

higher than or equal to the total size of user’s videos.

• Constraint 3 ensures that the QoE of streaming desired

by the user must be respected. Hence, the number of

subscribers handled by all flavors for a streamer image

and by all physical links must be higher than or equal to

the number of subscribers defined by the user.

• Constraint 4 ensures that the number of VMs is valid.

• Constraint 5 ensures that the matrix P is binary.

• Constraint 6 ensures that the total size of videos, the

number of subscribers, the QoE of the streaming service,

and the capacities of the transcoder and the cache are

valid.

We define the matrix N (F,Ml). If and only if a flavor

i handles a number of subscribers n in a location l, then

N (i, n) = 1, otherwise N (i, n) = 0. Knowing that j = S
and l ∈ V2, the total QoE of all flavors hosting a streamer

image is calculated as follows:

QTOTAL(S,N) =
∑

i∈F

∑

k∈V1

∑

n∈Ml

q(i, n, λkl)S
k
ijPikNin (5)

Assuming that the CDN owner can define a maximum total

cost denoted as CostMax, the aggregate utility maximization

problem is shown as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

maxmin
l∈V2

QTOTAL(S,N)

s. t.
∑

k∈V1

∑
i∈F

∑
j∈K Sk

ijPikci ≤ CostMax

j = C :
∑

k∈V1

∑
i∈F h−1(i, ρ)Sk

ijPik ≥ YTOTAL

j = T :
∑

k∈V1

∑
i∈F g−1(i, σ)Sk

ijPik ≥ YTOTAL

j = S, l ∈ V2 :
∑

k∈V1

∑
i∈F

∑
n∈Ml

n Sk
ijPikNin ≥ Ml

∀i ∈ F, ∀j ∈ K,∀k ∈ V1 : Sk
ij ∈ N

∀i ∈ F,∀k ∈ V1 : Pik ∈ {0, 1}
∀i ∈ F, ∀n ∈ Ml : Nin ∈ {0, 1}
YTOTAL,Ml, CostMax, ρ, σ > 0

(6)

The objective in linear programming (6) aims at maximizing

as much as possible QoE of the streaming service while

respecting the total cost paid by the user. Constraints in (6)

are explained as follows:

• Constraint 1 ensures that the total cost desired by the user

must be respected. The total cost of all flavors for caches,

transcoders and streamers must be less than or equal to

the total cost defined by the user.

• Constraints 2, 3, 5 and 6 are the same as in (4)

• Constraint 4 ensures that the total number of subscribers

must be greater than or equal to the total number of

subscribers defined by the user.

• Constraint 7 ensures that the matrix N is binary.

• Constraint 8 ensures that the total size of videos, the num-

ber of subscribers, the maximum cost, and the capacities

of the transcoder and the cache are valid.

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1 2 3 4 5 6 7 8 9 10

C
o
st

 p
er

 h
o
u
r

($
)

Number of location

ECS
EQS

(a) The cost of virtual machines.

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

 4.2

 1 2 3 4 5 6 7 8 9 10

Q
u
al

it
y

o
f

E
xp

er
ie

n
ce

Number of location

ECS
EQS

(b) The QoE of streaming.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1 2 3 4 5 6 7 8 9 10

E
xe

cu
ti
o
n
 t

im
e

(s
)

Number of location

ECS
EQS

(c) The operation time.

Fig. 5. Performance evaluation by increasing the number of locations.

IV. SIMULATION RESULTS

To simulate our proposed solutions, a simulator was de-

veloped using the Python programming language. The two

linear integer problem solutions are implemented using Gurobi

optimization tool [22] and are evaluated through the following

metrics: (i) the paid cost of virtual machines; (ii) the QoE

of the streaming service; and (iii) the operation time. In the

simulations, the linear programming (4) is dubbed Efficient

Cost Solution (ECS), whereas the second one (6) is named

Efficient QoE Solution (EQS). The optimization problems are

solved by varying: (i) the number of data centers’ locations;

and (ii) the number of flavors per location. In the first scenario,

we vary the number of locations of data centers and fix the

number of flavors to 8 in each location. While in the second

scenario, we vary the number of flavors in each location and fix

the number of locations of data centers to 10. Flavors and their

respective costs are obtained after examining the prices of 87

flavors offered by Amazone AWS service [4], Microsoft Azure

[17], and Rackspace [18]. For both cases, the total number of

subscribers, the total size of videos, and the capacities of the

cache and the transcoder remain unchanged. For the sake of

simplicity, we consider only one location of subscribers in

V2. In the simulation results, each plotted point represents the

average of 35 times of executions. The plots are presented

with 95 % confidence interval.

Figs. 5 and 6 show the performance of the two proposed

solutions when the number of flavors and the number of

data centers’ locations increase. In the ECS algorithm, the

minimum acceptable QoE of the streaming service μ is set to

2.5, while in the EQS algorithm, CostMax is set to 1$. In the

two figures, QoE in the EQS algorithm is presented through

the average of the QoE values of all virtual machines hosting

a streamer image but not by QTOTAL. Fig. 5 (a) and 5 (b)

show the total cost of virtual machines by varying the number

of locations and by varying the number of flavors per location,

respectively. In both figures, it is apparent that regardless the

number of data centers’ locations and the number of flavors

per location, the ECS algorithm exhibits the best performance

in terms of minimizing the total cost. When just one or two

locations are considered, the cost in case of the ECS algorithm

is high, and this also applies when the number of flavors per

location is small in Fig. 6 (a). This is attributable to the fact

that there is not much choice of flavors, then the cost could

be high. Hence, the total cost decreases when the number of

locations and the number of flavors increase. It can be noticed

that the total cost in case of the EQS algorithm can be lower

than that in case of the ECS solution and this is due to the fixed

value of CostMax. Furthermore, a difference in the maximum

cost is noticed between the two figures: when the number of

data centers’ locations is low, the cost is higher. Figs. 5 (b) and

6 (b) show the QoE of the streaming service while varying the

number of data centers’ locations and the number of flavors

per location, respectively. As depicted in these two figures, the

QoE of the streaming service in case of the EQS algorithm

increases when the number of data centers’ locations and the

number of flavors per location become higher. That is tied to

the great number of choices of flavors. The EQS algorithm

exhibits the best performance in terms of maximizing QoE. In

Figs. 5 (c) and 6 (c), the execution time of the two solutions

is presented. As observed from the figures, the ECS algorithm

exhibits better performance than the EQS algorithm in terms

of time, regardless the number of data centers and the number

of flavors per location.

V. CONCLUSION

In this paper, the study focused on virtual machine place-

ment and flavors selection for different images in a CDNaaS

platform. The platform manages a high number of videos

deploying virtualized caches, transcoders, and streamers. A

CDN slice owner can add videos specifying their resolutions

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1 2 3 4 5 6 7 8

C
o
st

 p
er

 h
o
u
r

($
)

Number of flavors per location

ECS
EQS

(a) The cost of virtual machines.

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

 4.2

 1 2 3 4 5 6 7 8

Q
u
al

it
y

o
f

E
xp

er
ie

n
ce

Number of flavors per location

ECS
EQS

(b) The QoE of the streaming service.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 2 3 4 5 6 7 8

E
xe

cu
ti
o
n
 t

im
e

(s
)

Number of flavors per location

ECS
EQS

(c) The operation time.

Fig. 6. Performance evaluation by increasing the number of flavors per
location.

and these videos are streamed to the end-users, consumers

of the CDN slice. To create an efficient CDN slice, virtual

machines hosting cache functions, transcoder functions, and

streamer functions must be assigned adequate flavors and must

instantiated at adequate locations. Similarly, the total cost

to be paid by the CDN slice owner must be efficient and

fair. For this purpose, two solutions were proposed. The first

one aims at minimizing the incurred total cost, whereas the

second one aims at maximizing QoE. The results obtained

from the conducted simulations demonstrate the efficiency of

each proposed solution in achieving its key design goals.

ACKNOWLEDGMENT

This work was partially supported by the European Union’s

Horizon 2020 research and innovation programme under the

5G!Pagoda project with grant agreement No. 723172.

REFERENCES

[1] S. Gadde, J. Chase, and M. Rabinovich, “Web caching and content
distribution: A view from the interior,” Computer Communications,
vol. 24, no. 2, pp. 222–231, 2001.

[2] B. Krishnamurthy, C. Wills, and Y. Zhang, “On the use and performance
of content distribution networks,” in Proceedings of the 1st ACM
SIGCOMM Workshop on Internet Measurement, Burlingame, CA, USA,
2001, pp. 169–182.

[3] A. Vakali and G. Pallis, “Content delivery networks: Status and trends,”
IEEE Internet Computing, vol. 7, no. 6, pp. 68–74, 2003.

[4] Amazon, “Amazon ec2 - virtual server hosting,” 2016. [Online].
Available: https://aws.amazon.com/ec2/

[5] S. Dutta, T. Taleb, and A. Ksentini, “Qoe-aware elasticity support
in cloud-native 5g systems,” in IEEE International Conference on
Communications (ICC), Kuala Lumpur, Malaysia, 2016, pp. 1–6.

[6] S. Dutta, T. Taleb, P. A. Frangoudis, and A. Ksentini, “On-the-fly
qoe-aware transcoding in the mobile edge,” in Proc. IEEE Globecom,
Washington, DC USA, 2016.

[7] P. A. Frangoudis, L. Yala, A. Ksentini, and T. Taleb, “An architecture for
on-demand service deployment over a telco cdn,” in IEEE International
Conference on Communications (ICC), Kuala Lumpur, Malaysia, 2016,
pp. 1–6.

[8] B. Li, M. J. Golin, G. F. Italiano, X. Deng, and K. Sohraby, “On the
optimal placement of web proxies in the internet,” in INFOCOM’99.
Eighteenth Annual Joint Conference of the IEEE Computer and Com-
munications Societies. Proceedings. IEEE, vol. 3, New York, USA, 1999,
pp. 1282–1290.

[9] L. Qiu, V. N. Padmanabhan, and G. M. Voelker, “On the placement
of web server replicas,” in INFOCOM 2001. Twentieth Annual Joint
Conference of the IEEE Computer and Communications Societies.
Proceedings. IEEE, vol. 3, Anchorage, USA, 2001, pp. 1587–1596.

[10] Y. Chen, R. H. Katz, and J. D. Kubiatowicz, “Dynamic replica placement
for scalable content delivery,” in International Workshop on Peer-to-Peer
Systems. Springer, 2002, pp. 306–318.

[11] T. Taleb, “Toward carrier cloud: Potential, challenges, and solutions,”
IEEE Wireless Communications, vol. 21, no. 3, pp. 80–91, 2014.

[12] T. Taleb, M. Corici, C. Parada, A. Jamakovic, S. Ruffino, G. Karagiannis,
and T. Magedanz, “Ease: Epc as a service to ease mobile core network
deployment over cloud,” IEEE Network, vol. 29, no. 2, pp. 78–88, 2015.

[13] T. Taleb and A. Ksentini, “Gateway relocation avoidance-aware network
function placement in carrier cloud,” in Proceedings of the 16th ACM
international conference on Modeling, analysis & simulation of wireless
and mobile systems, Barcelona, Spain, 2013, pp. 341–346.

[14] M. Bagaa, T. Taleb, and A. Ksentini, “Service-aware network function
placement for efficient traffic handling in carrier cloud,” in IEEE Wire-
less Communications and Networking Conference (WCNC), Istanbul,
Turkey, 2014, pp. 2402–2407.

[15] S. Clayman, E. Maini, A. Galis, A. Manzalini, and N. Mazzocca, “The
dynamic placement of virtual network functions,” in IEEE network
operations and management symposium (NOMS), Krakow, Poland, 2014,
pp. 1–9.

[16] T. Taleb, M. Bagaa, and A. Ksentini, “User mobility-aware virtual
network function placement for virtual 5g network infrastructure,” in
IEEE International Conference on Communications (ICC), London, UK,
2015, pp. 3879–3884.

[17] Microsoft, “Create linux and windows virtual machines in
minutes,” 2016. [Online]. Available: https://azure.microsoft.com/en-
us/services/virtual-machines/

[18] Rackspace, “The industry leading open source technology,” 2016.
[Online]. Available: https://www.rackspace.com/cloud

[19] Openstack, “Open source software for creating private and public
clouds.” 2016. [Online]. Available: https://www.openstack.org/

[20] A. Nakao, P. Du, Y. Kiriha, F. Granelli, A. A. Gebremariam, T. Taleb,
and M. Bagaa, “End-to-end network slicing for 5g mobile networks,”
Journal of Information Processing, vol. 25, pp. 153–163, 2017.

[21] F. Z. Yousaf and T. Taleb, “Fine-grained resource-aware virtual network
function management for 5g carrier cloud,” IEEE Network, vol. 30, no. 2,
pp. 110–115, 2016.

[22] Gurobi, “Gurobi optimization.” 2016. [Online]. Available:
http://www.gurobi.com/

