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Abstract—Edge Cloud infrastructure will play a key role in
extending the range of supported real-time cloud applications, by
guaranteeing extremely fast response times. However, user
mobility requires fast relocation of service instances, which
represents an open challenge for resource-constrained cloudlets
interconnected by high-latency and low-bandwidth links. In this
paper, we investigate container-based virtualization techniques to
support dynamic Mobile Edge Computing (MEC) environments.
In particular, we design a framework to guarantee fast response
time, by proactively exploiting service replication. A preliminary
performance analysis is conducted to identify the possible
advantages introduced by the proposed approach compared to
classic migration procedures.

L INTRODUCTION

Cloud platforms have been receiving an ever-growing
attention over the last years as a means to support applications
belonging to a wide range of IT domains, such as multimedia,
online gaming, and [oT. In particular, by offering on-demand
processing and storage resources, the cloud environment
provides the underlying infrastructure to execute flexible
services and ease the deployment and updates of new IT
applications. However, remote centralized cloud datacenters
could suffer from limitations due to high latency and risk of
workload and network bottleneck [1].

To face these issues, both academic and industrial research
communities have focused on Mobile Edge Computing (MEC)
solutions to exploit processing and storage capabilities at the
edge of the network, as near as possible to the end-user [2]. In
this regard, the deployment of micro data centers in the network
access points, known as Cloudlets [1], can guarantee remarkable
benefits in terms of low latency interaction and scalability, by
balancing the workload over the distributed infrastructure.
Furthermore, bringing the cloudlet concept into the IoT scenario
results in the definition of the so-called Fog Computing
paradigm [3] [4], where specific IoT-related challenges are
considered. Not by chance, edge computing is considered one of
the enabling technologies to guarantee the 1ms latency dream
for the next-generation 5G networks.

On the other hand, MEC solutions introduce several
challenges. First, accounting for the resource constraints of
cloudlets, specific virtualization solutions and orchestration
features should be used to deploy services in the distributed
infrastructure. In this regard, container-based virtualization is
considered one of the most promising solutions for MEC
environments [5-8]. Containers implement isolation of
processes at the operating system level of the underlying host

machine, thus avoiding the overhead due to virtualized hardware
requested by hypervisor-based virtualization. This enables fast
initialization and dense deployment of services, as experimented
in [9]. All these features make containers extremely attractive
for usage not only in data-centers, but also in edge nodes, such
as cloudlets and IoT gateways [10]. Nevertheless, the limited
resource capabilities of these edge devices require exploring
new forms of cooperation between neighbor nodes, to better
meet peak service requests and to support load balancing [11].

Further challenging issues of MEC scenarios relate to user
mobility. To guarantee service continuity and to meet the strict
requirements of application latency, the MEC framework needs
to properly cope with service migration between edge nodes. In
this way, if a user moves out from the coverage/service area of
a specific cloudlet, then the MEC system is able to promptly
detect the user movement and relocate the user application by
deploying a new service instance, hosted on a cloudlet closer to
the end user. However, if this procedure involves time,
especially when large data volumes must be migrated, then the
user can experience degradation in the application performance.

In this paper, we focus on the investigation of novel
approaches to better support user mobility in a federated MEC
infrastructure. By exploiting the potential of emergent
container-based virtualization techniques, we design methods
based on lightweight service replication for stateless micro-
services. The proposed approach aims to reduce the service
migration time in comparison to traditional solutions and to
increase service resiliency in case of host failure. The
contributions of this paper can be summarized as follows: (i) we
analyze and identify the challenges to support mobile service
provisioning in a MEC environment; (i7) design a framework to
support efficient service relocation by exploiting instance
replication; and (ii7) present a preliminary analysis which
evaluates the possible benefits in comparison to classic reactive
migration approaches.

The paper is organized as follows. Section II provides an
overview of related research works. Section III illustrates the
reference scenario and the envisaged solutions for service
provisioning in MEC environments. Section IV introduces the
design of the proposed framework, by defining the core modules
and relevant functionalities. The performance evaluation is
reported in Section V. Manifold open challenges are discussed
in Section VI. Finally, conclusions are drawn in Section VIL



II.  RELATED WORK

A. Mobile edge computing and stateless applications

Edge micro-cloud infrastructure is an emerging paradigm to
support computation/storage near to the end-users. This
approach becomes unavoidable for real-time cloud applications
with extremely strict latency requirements, as it allows for
overcoming poor connectivity and long delay due to remote
datacenters. Two aspects play a key role in the deployment of
effective solutions for MEC scenarios: (i) virtualization
technologies and (ii) service continuity due to user mobility. For
the former point, hypervisor-based virtualization techniques
present remarkable overhead in terms of both processing and
storage capabilities. Furthermore, they involve high latency for
start-up activation and migration procedures. Container-based
virtualization enables high density deployment of services, but
presents limited features to support stateful service migration
between different host nodes.

Nevertheless, MEC-oriented application models have given
a considerable impetus towards the deployment of stateless
services. Whereas for stateful applications, the state of the
application and the network stack must be preserved in case of
migration or failure, stateless applications do not foresee
internal stored sessions and, instead, they rely on user inputs or
distributed shared storage. The stateless feature introduces
several advantages in terms of flexibility, scalability, and
reliability. Indeed, a stateless application could be replicated on
different worker nodes and, based on the specific offloading
request and the current connectivity quality, the most
appropriate instance could be selected. The concept of stateless
application is considered one of the pillars of the micro-service
architecture style [12], a novel paradigm which aims at
revolutionizing the coding development moving from a
monolithic application to the composition of multiple services.
Micro-services can be deployed independently of one another
and are loosely coupled. Each of these micro-services focuses
on completing a specific task and interacts with other micro-
services by using language-neutral interfaces, such as REST.
The REST APIs use HTTP interaction to perform operations on
resources and need to be stateless, because the requests might
travel through layered intermediaries between the original client
and the server. This involves that every request should contain
all the information to properly interpret and process that request.

Stateless approaches are testified by several research and
industrial solutions. In particular, Mobile Cloud Computing
(MCC) [13] [14] promotes the splitting of mobile applications
to offload compute and storage intensive tasks to available
cloudlet, as long as the latency requirement is preserved. This
allows users to achieve better performance and extend the
battery life of their personal devices. In [15], a framework to
design elastic and scalable edge-based mobile applications has
highlighted that most of the components are stateless and their
adoption is strongly recommended. Furthermore, the extremely
low response time enabled by MEC environments could notably
enhance the user experience also for advanced personal cloud
storage solutions and user multimedia applications. These
applications are typically referred to as stateless since the server
is agnostic of the client session state. Therefore, if the client
application on the mobile host implements features to recover

from server lost connection, without leveraging on session state
persistence at networking layers, then it will be able to natively
benefit from stateless solutions. Otherwise, specific proxy
server could be introduced to transparently preserve the network
connection in case of migration [16].

Instead of leveraging only information provided by the
client, which could increase the size of the request, stateless
applications can also show the ability to store their state in a
replicated distributed storage. In this regard, there is an
increasing trend to develop stateless network functions [17]
[18], which achieve more seamless elasticity and better tolerate
failures for the individual devices, while presenting acceptable
performance.

B. Service replication management

The challenges related to service replication have been well
investigated in the literature for VMs to support high availability
(HA). This feature implies the ability to perform continuous
failure detection, retrieve and save the state of a VM, and to
recover by relying on an existing replica. In particular, to
guarantee service continuity, the secondary replica must be
tightly coupled and consistent with the primary, such that in case
of failure, the replica is always ready to take over without
service interruption and data loss.

The approaches used to implement HA for VM can be
classified into two categories: (i) record-and-replay and (ii)
check-pointing. The former foresees the design of specialized
hypervisor which records all input data in the primary VM,
sends it over a dedicated link to the secondary replica, and then
replay it in the replica [19]. However, to correctly reproduce
machine state, this method requires determinism, which could
become extremely complex for multiprocessor systems, running
over commodity hardware. On the other hand, check-pointing
relies on the saving of the whole VM state after the inputs
happen, send it to the replica, and keeps the replica VM
consistently synchronized with the primary. Remus [20] follows
this approach, by implementing a high availability system on top
of Xen hypervisor for data center. SecondSite [21] extends this
solution to multi-cloud environment, by allowing groups of
VMs to be replicated across data centers over wide-area Internet
links. However, the performance of this approach heavily
depends on the check-pointing frequencies and high amount of
data need to be transferred to the replica side. Furthermore,
CloudSpider [22] proposes combining VM replication with VM
scheduling to reduce migration latencies due to the transfer of
large VM image over low bandwidth WAN (Wide Area
Network) links. Differently, our approach is focused on stateless
micro-services and container-based virtualization, which cope
better with the limitation of resource-constrained edge nodes.

Due to the growing interest of lightweight virtualization
technologies, remarkable efforts have been addressed to enable
high availability also for containers. However, only system-
level container, such as OpenVZ and LXC, currently support
features of live migration and checkpoint/restore [23]. By
relying on this functionality, in [24] a system to support high
availability for containers has been developed. However, due to
the long duration of check-pointing operations, this mechanism
is suitable only for delay tolerant applications. With regard to
application containers, such as Docker, the Kubernetes



orchestration tool [25] allows to manage stateless replication by
distributing service instance among multiple nodes of the
cluster. However, the framework has not been designed for
MEC environment and to support service relocation according
to user mobility.

III.  SERVICE PROVISIONING IN MEC SCENARIO

In this section, we describe the investigated approaches to
support service provisioning and continuity in distributed cloud
edge nodes, by highlighting requirements and challenges.

A. Reactive Migration

A first classic approach foresees the migration of a service
instance between edge nodes according to user mobility. In
particular, when a user moves out from the coverage area of a
serving cloudlet, the MEC framework needs to first locate the
most suitable node (i.e., both in terms of geographical proximity
and resource availability) to accommodate the migrating
service. Once the node has been selected, the procedure of
migration (Fig. 1) requires:

1. Creating a new service instance at the destination node;

2. Moving persistent data to the new application instance

(possibly before starting the instance);

3. Switching user traffic to the new instance;

4.  Turning down the original application instance.

Different parameters impact the efficiency of service
migration and determine its suitability for specific application
scenario. The main relevant metrics are: (i) Downtime, i.e., the
time during which the migrating instance is not running and the
user experiences service interruption; (i) Total Migration Time,
which refers to the overall time for performing the whole
migration procedure and includes preparation phase, downtime
and resume phase; (iii) Amount of transferred data, which
accounts for both memory and disk data transfer and is
fundamental to evaluate the network requirements between
hosting nodes.

Accounting for the strict requirements of latency and user
mobility, in MEC environment, service continuity is not only
related to downtime, but the total migration time also plays a key
role to guarantee the user’s desired Quality of Service (QoS).
Indeed, before the completion of the migration process, the user
needs to interact with the instance running in the original serving
edge node and the relevant roundtrip time could exceed the
tolerable delay. Therefore, the procedure of service migration
should be performed within extremely short time intervals, so to
preserve low end-to-end latency.
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Fig. 1. Example of a reactive service migration in a MEC environment.

B. Proactive Migration

This approach foresees to proactively deploy multiple
instances of the user service in neighboring edge nodes. In this
way, the long migration time required by service migration
could be drastically reduced. In particular, when the event of
user movement from a specific service zone is detected, the
system needs to select which of the existing replicas is most
suitable for the user. The procedure involves the transition of the
current serving instance from primary to secondary state, the
corresponding transition of another service replica from
secondary to primary, and the switching of user traffic from the
original replica to the destination replica. Besides, the user
movement to the new serving area could trigger the need to
relocate some of the remaining existing replicas accordingly.

This approach is also motivated by the reduced overhead
deriving from the container-based virtualization, which allows
for having high density of service deployment in comparison to
VM-based solutions. In this way, the additional cost related for
overprovisioning service replicas to guarantee fast response
time could be acceptable for delay-sensitive applications in
MEC environments.
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Fig. 2. Example of a proactive service migration approach in a MEC
environment by exploiting service replication.

In case of a storage-dependent application, the different
replicas should have immediate access to up-to-date stored
information. Therefore, the system has to provide a data
synchronization system, which manages the periodical
propagation of data storage, in order to keep data volume
coherency. Accounting also that edge nodes are typically inter-
connected with low-bandwidth high-latency links, the data
replication mechanism should properly select the update
frequency to minimize data traffic and avoid network
congestion.

IV. DESIGN OVERVIEW

The proposed framework aims to support low latency
service provisioning by deploying container-based instances at
the network edge. The approach relies on maintaining replicas
of specific services to reduce the overall service migration in
case of user mobility. This involves the proactively activation of
service instances in multiple edge nodes and, for storage-
dependent applications, the synchronization of the data among
the different replicas. As sketched in Fig. 3, we define the
fundamental components and relevant functionalities of our
framework. The proposed core functionalities could be also
integrated with the ETSI MEC architecture [2].
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Fig. 3. Architecture of the replication-based MEC framework.

Service Manager (SM): this module constantly monitors the
run-time execution of the associated application. Based on the
predefined Service Level Agreement (SLA), SM guarantees that
sufficient computational and storage resources are allocated to
the active replicas, by sending periodical status update to the
relevant edge. Besides, this module verifies that existing replicas
are coherently synchronized.

Edge Manager (EM): EM is responsible for the management
and placement of containers inside a specific cloudlet site.
Accounting for the workload and status requirements of the
available nodes, it decides how to deploy service instances
inside the edge cluster. EM could directly interact with the SMs
which are in charge of the services deployed in the edge.
Different service criteria could be defined, such as load
balancing or energy consumption.

Edge Orchestrator (EO): EO plays a key role in the overall
framework by orchestrating the service provisioning over the
distributed cloud infrastructure. It comprises the following
components:

1. Scheduler: it is responsible for the efficient selection of
service replicas and their relevant locations. In
particular, the scheduler is continuously updated with
the users’ location (i.e., access points users connect to)
and the edge nodes status, and verifies that current
service provisioning is coherent with the predefined
SLA. Otherwise, it computes the number of replicas to
be deployed for matching application requirements and
selects the optimal hosting edge nodes.

2. Network Manager: this module interfaces with the
network infrastructure to receive real-time information
regarding users’ location. When a service migration is
required, the existing connections must be preserved to
guarantee service continuity. The issue of service
migration over WAN is a well investigated topic in the
literature and some solutions, such as [26], could be
adopted. Moreover, the module needs to carefully check
and update the status of connections between federated
nodes, in order to guarantee the proper data propagation
between primary and relevant replicas.

3. Migration and Replica Controller: This module
manages the deployment of the replicas between the
different cloudlet sites, based on the decisions provided
by the scheduler. The module guarantees that only one
of the replicas is active and it acts as primary. Among

the remaining replicas, one is also labeled as backup
copy for fault tolerance purpose. The state propagation
from the primary to the secondary replicas could be
performed in  synchronous/asynchronous mode,
according to the implemented replication technology.
When a service migration is requested, this module
interacts with the involved EMs to issue the service
migration to a different replica. After this process, the
flows of state propagation among the replicas need to be
updated, modifying the role of primary/secondary role.
Moreover, according to the scheduling decision,
additional replicas could be instantiated or existing
replicas could be relocated between federated edges.

V.  PERFORMANCE EVALUATION

A preliminary evaluation of the benefits envisaged by the
proposed proactive service replication is provided in this
Section. In a system based only on migration strategy, when a
user moves to a different access point, he is forced to access the
service instance deployed in the previous serving edge node for
the Total Migration Time, i.e., the time required to activate a
new instance in the current edge node. On the other hand, a
proactive service replication guarantees no QoE degradation by
providing ready replicas in the new serving edge node.
Therefore, we aim to assess the time interval to perform service
activation in case of a classic service migration in a MEC
environment.

In order to estimate the Total Migration Time for stateless
applications, we analyze the time required for container startup.
In particular, accounting for an application container, the startup
time includes the time to pull the relevant image from the service
registry (i.e., Docker registry), and the time to launch the
container in the edge node. In case of storage-dependent
application, the activation time also includes the mounting of
additional directories with service files. If these files are not
immediately available on the serving node, they are required to
be retrieved and migrated from the previous edge node.

The tests have been conducted on a server equipped with an
Intel Xeon 3.40 GHz and 8 GB RAM. Docker (version 1.11) is
running on top of the operating system (Ubuntu 14.04.3 LTS)
allowing the execution of application containers. Each test is
repeated 30 times and all the results are shown with a 95%
confidence interval. For this preliminary analysis, we select
some popular images from the Docker Hub registry and we
evaluate the relevant startup time. In Fig. 4, we measure the
startup times, in case of precached images and image pulling
from the public Docker Hub registry. When images are locally
available in the edge node, the startup times present low latency
values, around 1 second. However, requesting the container
image from the public registry could involve a significant delay.
In this case, the service startup time depends on the size of the
relevant container image and the connectivity between the edge
and the Docker Hub. For large container images, such as a
stateless server Httpd and Debian OS respectively of 204 and
125 MBs, the measured startup times are over 15 seconds. Also
for small image, like Busybox (2 MBs), the activation time is
remarkable and requires around 3 seconds.
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In a second analysis, we consider the scenario where
container images are not available in public repository, but the
container image is exchanged between edge nodes. When an
edge node is issued to execute a service, it retrieves the relevant
image on-demand from the previous serving edge node. The
image is stored and compressed in an archive and, once its
transfer is completed, it is loaded locally. For this analysis, we
assume another edge node with equivalent hardware and
software configuration. In our experiments, we emulate WAN-
like conditions using the Linux Traffic Control (tc [27] tool), on
physical machines that are connected by Ethernet connection. In
particular, we consider a 100 Mbps link for cloud data center
interconnectivity, whereas for a MEC environment we
configure bandwidth and latency equal to 25 Mbps and 50 ms,
respectively, as reported in [28]. The data transfer is performed
using scp tool and we use the Httpd container image. The
measured values are shown in Fig. 5 and present the different
time contributions to: (i) transfer image, (i) load in the local
repository, and finally (7ii) launch the relevant containerized
service. The main time contribution deals with the image
transfer and the overall startup time overcomes 20 and 70
seconds, for both considered configurations.
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Fig. 5. Httpd container startup with image transfer across edges.

The experimental results highlight that the classic reactive
migration approach requires remarkable times to relocate
service instances between different edge nodes. Since the traffic

forwarding to another edge node increases application response
time, the end user can experience QoE degradation during the
migration. The integrated use of lightweight virtualization
techniques and proactive replication approach seems promising
to support next-generation delay-sensitive cloud applications at
the network edge, as further investigated in [29].

VI. CHALLENGES AND FUTURE WORK

The proposed proactive approach raises several research
questions and different aspects require further investigation.

A. Replica scheduling policies

To guarantee the desired user QoE, while minimizing the
cost deriving by the replication approach, appropriate analytical
models should be defined to optimize the number of service
replicas. The scheduler of MEC framework should be able to:

(i) Identify the list of eligible cloudlets to host service
instances: the list of available edge nodes should be filtered
based on both the requirements of the application and the status
of nodes. In particular, the framework should carefully evaluate
the user perceived latency for service instance hosted on a
specific cloudlet. Furthermore, the requirements in terms of
processing, storage, and networking should be considered, for
both primary and secondary service instances.

(i) Select the appropriate number of replicas: the framework
should carefully evaluate the number of replicas in order to
minimize the cost of replication management, while
guaranteeing user QoS in case of user location change. This
choice could be also dynamical to fit the user mobility and the
available network/cloud infrastructure.

(iii) Identify the efficient placement of the replicas at
different edge nodes: the selection of the hosting sites is
essential to meet application SLA and to minimize the cost of
the replication management. This phase could be also enhanced
by including prediction of user mobility pattern [30] [31].

B. Data management techniques

Accounting for the limited storage and network capabilities
of edge nodes, data management techniques play a remarkable
role. As showed by our preliminary results, the availability of
container images drastically impacts on the service activation
time. Research efforts should be addressed to determine the
caching of the more utilized images and to evaluate if the
container image layering could be exploited to perform efficient
data deduplication and thus to save storage resources.
Furthermore, for storage-dependent applications, distributed
shared file systems will be required to enable the
synchronization of data volumes among different replicas
deployed in different edges. In particular, appropriate solutions
for data replication should be designed to cope with latency and
bandwidth constraints in MEC environment.

C. Support for stateful applications

Finally, the management of stateful applications could
extend the possible range of scenarios supported by the
proposed framework. However, to support stateful service
migration and replication, the underlying container technology
should provide appropriate features to manage the state of the
hosting applications. To this aim, the efforts performed by the



CRIU project [32] to implement checkpoint features for
application containers seem promising. Nonetheless, specific
procedures should be designed to propagate the state of the
containers among the replicas, while minimizing the overhead
of periodical check-pointing. Furthermore, accounting that a
new user position can trigger a different deployment of the
relevant replicas, the MEC system should be able to perform the
migration of several tightly coupled replicas and to keep their
coherent synchronization.

VII. CONCLUSIONS

In this paper, we have proposed a novel approach for ultra-
short latency service provisioning in mobile MEC
environments. By leveraging the potential of container
technologies and the novel micro-service paradigm, a
framework to support proactive service replication for stateless
applications has been designed. Accounting for the limitations
of current reactive migration strategies, our approach seems
promising to support delay-sensitive cloud applications at the
network edge, as further investigated in [29]. Future works aim
at defining analytical models to optimize proactive service
migration among federated edge nodes.
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