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Abstract Thermal infrared sensing of evapotranspiration (E) through surface energy balance (SEB)
models is challenging due to uncertainties in determining the aerodynamic conductance (gA) and due to
inequalities between radiometric (TR) and aerodynamic temperatures (T0). We evaluated a novel analytical
model, the Surface Temperature Initiated Closure (STIC1.2), that physically integrates TR observations into a
combined Penman-Monteith Shuttleworth-Wallace (PM-SW) framework for directly estimating E, and over-
coming the uncertainties associated with T0 and gA determination. An evaluation of STIC1.2 against high
temporal frequency SEB �ux measurements across an aridity gradient in Australia revealed a systematic
error of 10�52% in E from mesic to arid ecosystem, and low systematic error in sensible heat �uxes (H) (12�
25%) in all ecosystems. Uncertainty in TR versus moisture availability relationship, stationarity assumption in
surface emissivity, and SEB closure corrections in E were predominantly responsible for systematic E errors
in arid and semi-arid ecosystems. A discrete correlation (r) of the model errors with observed soil moisture
variance (r 5 0.33�0.43), evaporative index (r 5 0.77�0.90), and climatological dryness (r 5 0.60�0.77)
explained a strong association between ecohydrological extremes and TR in determining the error structure
of STIC1.2 predicted �uxes. Being independent of any leaf-scale biophysical parameterization, the model
might be an important value addition in working group (WG2) of the Australian Energy and Water Exchange
(OzEWEX) research initiative which focuses on observations to evaluate and compare biophysical models of
energy and water cycle components.

Plain Language Summary Evapotranspiration modeling and mapping in arid and semi-arid eco-
systems are uncertain due to empirical approximation of surface and atmospheric conductances. Here we
demonstrate the performance of a fully analytical model which is independent of any leaf-scale empirical
parameterization of the conductances and can be potentially used for continental scale mapping of
ecosystem water use as well as water stress using thermal remote sensing satellite data.

1. Introduction
The determination of the aerodynamic temperature (T0) and conductance (gA) contributes to the principal
uncertainty in regional-scale evapotranspiration (E) mapping when using models based on thermal infrared
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sensing (Kustas et al., 2016; Paul et al., 2014, 2013). To reduce this uncertainty, there is either a sincere need
to accommodate and settle on a uni�ed land surface parameterization for estimating T0 and gA; or use ana-
lytical models independent of any empirical parameterization of these variables.

Land surface temperature or radiometric surface temperature (TR) obtained through thermal infrared
remote sensing governs the land surface energy budget (Anderson et al., 2012; Kustas & Anderson, 2009),
and thermal E models principally focus on surface energy balance (SEB) approach in which TR represents
the lower boundary condition to constrain the energy-water �uxes (Anderson et al., 2008; Mallick et al.,
2014a, 2015; Norman et al., 1995). It satis�es the SEB equation (equations (1)�(3)) by altering T0 as well as by
imposing constraints arising due to water stress on the biophysical conductances (gA and gC) (a list of varia-
bles and symbols along with their units are given in Table A1).
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State-of-the-art SEB models are based on estimating gA and sensible heat �ux (H) while solving E (or latent
heat �ux, kE) as a residual SEB component (given RN and G are known). However, the most serious assump-
tion in estimating H concerns the use of TR as a surrogate of T0 (Ch�avez et al., 2010; Colaizzi et al., 2004).
Major drawbacks in the explicit use of TR in SEB modeling are (a) the inequality between T0 and TR (T0 6… TR)
(Boulet et al., 2015; Ch�avez et al., 2010), (b) the unavailability of a universally agreed model to estimate T0,
which controls the transfer of sensible heat (Colaizzi et al., 2004), (c) nonunique relationship between T0

and TR due to differences between the effective source-sink height of momentum and heat within vegeta-
tion substrate complex (Ch�avez et al., 2010; Holwerda et al., 2012; Trou�eau et al., 1997), (d) the lack of a
preeminent physically-based gA model (Holwerda et al., 2012), and (e) bypassing the role of TR on gC in kE
modeling.

Despite the aforementioned shortcomings, emphasis on estimating H is motivated by the broad acceptance
of the Monin-Obukhov Similarity Theory (MOST) or Richardson Number (Ri) criteria for estimating gA, and
the requirement of minimum inputs for solving both gA and H. However, estimating gA using MOST or Ri

approaches created further problems, particularly in relation to accommodating the inequalities between T0

and TR, as well as in adapting the differences between gA and the momentum conductance (gM) arising due
to the differences in the roughness length of heat and momentum (z0H and z0M) (Paul et al., 2014). The
effects due to inequality between T0 and TR were partially overcome by the inclusion of an ��extra conduc-
tance�� and the kB21 term as a �tting parameter that adjusts the difference between z0H and z0M (Boegh
et al., 2002; Su, 2002; Trou�eau et al., 1997), and later through the inception of two-source soil-canopy
modeling schemes (Anderson et al., 2007; Boulet et al., 2015; Colaizzi et al., 2012; Norman et al., 1995). How-
ever, SEB-based predictions of H (and kE) are conditional to empirical response functions of gA (Ershadi
et al., 2015; Kustas et al., 2016; Liu et al., 2007; Morillas et al., 2013; Paul et al., 2014; Timmermans et al.,
2013) that have an uncertain transferability in space and time (Holwerda et al., 2012; van Dijk et al., 2015). In
contemporary SEB modeling, gA submodels are stand-alone, and lack the necessary physical feedback it
should provide to gC, T0, and vapor pressure de�cit surrounding the evaporating surface (D0) (Cleverly et al.,
2013). The feedback of gA on gC is critical in arid and semi-arid ecosystems where reduced soil moisture
availability in conjunction with very high evaporative potential causes signi�cant water stress in the soil-
vegetation-atmosphere system, thereby resulting discrepancy between TR and T0. Thermal-based kE model-
ing needs explicit consideration of such important biophysical feedbacks to reduce the existing uncertain-
ties in arid and semi-arid ecosystems (Kustas et al., 2016).

The Penman-Monteith (PM) and Shuttleworth-Wallace (SW) models are mutually related and two of the
most preeminent physical models for quantifying surface-to-air kE. They are fundamentally constrained to
account for the necessary feedbacks between kE, TR, D0, gA, and gC (Monteith, 1965; Shuttleworth & Wallace,
1985). The elemental connectivity of PM-SW with TR originates from the �rst-order dependence of gC and
gA on TR (through soil moisture and T0). Despite their theoretical integrity, the integration of TR into the PM-
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SW model was not yet well established. Although the perception of combining the PM model with TR was
initiated by Jackson et al. (1981) in the Crop Water Stress Index (CWSI) formulation, it had later been
acknowledged that using the PM method could produce large errors in kE due to the underlying uncertain-
ties in conductance estimates, particularly in sparsely vegetated and water-stressed ecosystems (Leuning
et al., 2008; Morillas et al., 2013), such as the majority of ecosystems in Australia (Beringer et al., 2016).

Invigorated by the potential of thermal infrared data, Mallick et al. (2014a, 2015) proposed an integration of
TR into the PM model to directly estimate the conductances, kE, and H, and to simultaneously overcome the
empirical uncertainties in estimating gA and T0. The Surface Temperature Initiated Closure (STIC) (Mallick
et al., 2014a, 2015) is a unique framework based on analytical solutions for gA, gC, and T0. Initial studies with
different versions of STIC primarily focused on validation of H, kE, and its partitioning, using moderate
(coarse) spatial (temporal) resolution remote sensing data (STIC1.0; Mallick et al., 2014a), and understanding
the impacts of thermal versus humidity based water stress constraints on kE (STIC1.1; Mallick et al., 2015).
However, the early versions of STIC could only partially bridge TR and SEB modeling due to structural inade-
quacies for establishing surface versus aerodynamic feedbacks (Mallick et al., 2015). A later version of STIC
(STIC1.2) (Mallick et al., 2016) integrates TR into the PM-SW system to establish the required feedback
between TR and kE, along with aerodynamic temperature, humidity, and conductances. In a recent study,
STIC1.2 was applied for evaluation of biophysical conductances and assessing their controls on evapotrans-
piration partitioning in the Amazon basin (Mallick et al., 2016). However, evaluating the performance of
STIC1.2 across an aridity gradient with data of high temporal resolution is on one hand essential to under-
stand the role of TR in STIC1.2 in hydrologically extreme natural ecosystems, and on the other to evaluate
the limitations of this analytical SEB model before extending its future applicability for regional-scale E
mapping.

The combination of prevailing arid/semi-arid ecosystems, ecohydrological heterogeneity, and the availabil-
ity of continuous SEB �ux observations make Australia an excellent test bed. Present study reports an in-
depth evaluation of STIC1.2 by exploring eddy covariance (EC) observations from a range of diverse ecosys-
tems of the OzFlux network (Beringer et al., 2016) across a large aridity gradient in Australia as a way for-
ward to reduce T0 and gA uncertainties in regional-scale E mapping as well as to ef�ciently bridge TR and
SEB modeling. Our study addressed the following research questions:

1. What is the performance of STIC1.2 when evaluated with high temporal resolution data across an aridity
gradient in Australia?

2. How do TR and environmental variables affect the performance of STIC1.2 across ecohydrological
extremes from arid to mesic ecosystems?

3. Is there an association between ecohydrological conditions and TR in determining the errors and variabil-
ity of water and energy �ux components predicted by STIC1.2?

The novelties of the present study are: (a) an extensive evaluation of STIC1.2 from dry to wet ecohydrologi-
cal extremes at multiple temporal scales (from half-hourly to annual), (b) intercomparison with previous ver-
sions of STIC, (c) analyzing the sensitivity of kE and conductances to TR, as well as application of multivariate
statistics (e.g., principal component analysis) to understand the impacts of TR and environmental variables
on the error characteristics of STIC1.2 derived kE from arid to mesic climate, and (d) identi�cation of the
integrated role of ecohydrological conditions and TR on errors and variability of SEB �ux predictions by
STIC1.2.

2. Why Australia?
Australia is a predominantly dry continent with substantial �uctuations in precipitation and primary produc-
tion (Cleverly et al., 2016). Limited water resources, drought vulnerability, high evaporative demand, and
growing water requirements are continuously increasing pressure on sustainable management of water
resources. The Millennium Drought from 2001 to 2009 dramatically ended with a ��big wet�� in 2010�2012
coinciding with the largest La Ni~na in over 70 years (Cleverly et al., 2016; van Dijk et al., 2013). A major part
of the Australian continent is arid (38%) or semi-arid (36%) (Beringer et al., 2016) with canopy cover of less
than 50% across most of the continent (Glenn et al., 2011). In contrast, there are locations where annual
average precipitation exceeds 4,000 mm (Glenn et al., 2011). In most areas of the continent, potential evap-
oration (EP) exceeds precipitation (P), and approximately 90% of P returns back to the atmosphere as E

Water Resources Research 10.1029/2017WR021357

MALLICK ET AL. 3411



(Glenn et al., 2011) with the residue generating surface and groundwater resources (Guerschman et al.,
2009). Strong land-atmosphere coupling in these regions makes the estimation of SEB �uxes very sensitive
to the boundary conditions and underlying assumptions of biophysical parameterization, a situation that is
often confounded by extreme heterogeneity in evaporation versus transpiration and their contrasting
responses to surface soil water content. Hence, observation, monitoring, and prediction of water and energy
�ux components are imperative in these regions to meet the challenge of developing and implementing
sustainable water resource management decisions (Martens et al., 2016). Therefore, detailed evaluation of a
physically-based SEB model like STIC1.2 is the prerequisite before applying it for a reliable prediction and
management of water resources in Australia and globally.

3. Methodology
3.1. Theory
STIC (version STIC1.2) is a one-dimensional SEB model that treats soil-vegetation as a single unit (Figure 1).
The fundamental assumption in STIC is the �rst-order dependence of gA and gC on aerodynamic tempera-
ture (T0) and soil moisture (h) through TR, which allows direct integration of TR into the PM-SW system (Mal-
lick et al., 2016). The integration of TR into PM-SW system is done by �rst estimating aggregated surface
moisture availability (M) as a function of TR, followed by simultaneously constraining the two biophysical
conductances through M in an analytical framework. STIC1.2 exploits radiation (net radiation (RN), ground
heat �ux (G)) and meteorological variables (air temperature (TA), relative humidity (RH) or vapor pressure (eA)

at the reference level) in conjunction with TR observations as external
inputs.

The expressions of kE and H according to the PM equation are as fol-
lows (Monteith, 1965):

kE5
s/1 qcPgADA

s1 c 11 gA
gC

� � (4a)

H5
c/ 11 gA

gC

� �
2 qcPgADA

s1 c 11 gA
gC

� � (4b)

For a full vegetation and (or) bare surface, gC represents the canopy
conductance and (or) bare surface conductance, respectively. In the
case of partial canopy cover, gC represents an aggregated surface con-
ductance of both canopy and soil. The effects of this simpli�ed repre-
sentation of aggregated gC on the performance of STIC1.2 is
represented in Figures 9b, 9d, and 9f) which shows the residual kE
error (modeled minus observed kE) versus gC for different vegetation
types.

The two unknown ��state variables�� in equations (4a) and (4b) are gA

and gC, and the main goal of STIC1.2 is to �nd an analytical solution of
the two unobserved conductances from measurements of radiative,
meteorological, and radiometric conditions (Mallick et al., 2014a, 2015,
2016). This will simultaneously �nd a ��closure�� of the PM model. As
neither gA nor gC can be measured at the canopy-scale or at large spa-
tial scales (van Dijk et al., 2015), a ��closure�� of the PM equation is only
possible through an analytical estimation of the conductances. Conse-
quently, multiple ��state equations�� were formulated to obtain closed-
form expressions of gA and gC. In the state equations, a direct connec-
tion of TR (through M) is initiated in the expression of evaporative frac-
tion (K), which is simultaneously propagated into equations of gA, gC,
and T0 (equations (5)�(8)).

Figure 1. Schematic representation of one-dimensional description of STIC1.2.
In STIC1.2, a feedback is established between the surface layer evaporative
�uxes and source/sink height mixing and coupling, and the connection is
shown in dotted arrows between e0, e�

0, gA, gC, and kE. Here rA and rC are the
aerodynamic and canopy (or canopy-substrate complex in case of partial vege-
tation cover) resistances, gA and gC are the aerodynamic and canopy conduc-
tances (reciprocal of resistances), e�

S is the saturation vapor pressure at the
surface, e�

0 is the saturation vapor pressure at the source/sink height, T0 is the
source/sink height temperature (i.e., aerodynamic temperature) that is respon-
sible for transferring the sensible heat (H), e0 is the source/sink height vapor
pressure, eS is the vapor pressure at the surface, z0H is the roughness length for
heat transfer, d0 is the displacement height, TR is the radiometric surface tem-
perature, T0D is the source/sink height dewpoint temperature, M is the surface
moisture availability or evaporation coef�cient, RN and G are net radiation and
ground heat �ux, TA, eA, and DA are temperature, vapor pressure, and vapor
pressure de�cit at the reference height (zR), kE is the latent heat �ux,
respectively.
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The functional forms of equations (5)�(8) and their detailed derivations are given in the supporting informa-
tion and in Mallick et al. (2014a, 2015, 2016). Given values of M, RN, G, TA, and RH or eA, the four state equa-
tions (equations (5)�(8)) can be solved simultaneously to derive analytical solutions for the four unobserved
state variables. However, the analytical solutions to the four state equations have three accompanying
unknowns; e0 (vapor pressure at the source/sink height), e�

0 (saturation vapor pressure at the source/sink
height), and Priestley-Taylor coef�cient (a) (Priestley & Taylor, 1972), and as a result there are four equations
with seven unknowns. Consequently, an iterative solution must be found to determine the three unknown
variables (as described in supporting information) (also in Mallick et al., 2016). For estimating source/sink
height vapor pressures we applied equation (8) from Shuttleworth and Wallace (1985), and thus STIC1.2
uniquely combines both the Penman-Monteith and Shuttleworth-Wallace (PM-SW) models (described in
supporting information) (also Mallick et al., 2016). In equation (8), the Priestley-Taylor coef�cient (a)
appeared due to using the Advection-Aridity (AA) hypothesis (Brutsaert & Stricker, 1979) for deriving the
state equation of K (Mallick et al., 2016, 2015) (details in supporting information). However, instead of opti-
mizing a as a ���xed parameter,�� a is dynamically estimated by constraining it as a function of M, conductan-
ces, aerodynamic vapor pressure, and temperature (Mallick et al., 2016). The derivation of the equation for a
is described in supporting information.

STIC1.2 consists of a feedback loop describing the relationship between TR and kE, coupled with canopy-
atmosphere components relating kE to T0 and e0 (Mallick et al., 2016). For estimating M, TR is extensively
used in a physical retrieval framework (detailed in SI) (also in Mallick et al., 2016), which allows an integra-
tion of TR into a physically-based SEB model. Upon �nding analytical solution of gA and gC, both the varia-
bles are returned into equations (4a) and (4b) to directly estimate kE and H.

3.2. Estimation of TR

Estimation of TR was based on the observed upwelling longwave radiation (RL") and the Stefan-Boltzmann

equation TR5 RL"
dE

� �0:25
� 	

(Formetta et al., 2016; Park et al., 2008; Sun & Pinker, 2003) (E is the infrared surface

emissivity, d is the Stefan-Boltzmann constant). Upwelling longwave radiation was directly measured with
pyrgeometer in all the study sites. The Advanced Spaceborne Thermal Emission and Re�ection Radiometer
(ASTER) Global Emissivity Dataset (GED) land surface emissivity data product (G ottsche & Hulley, 2012;
Hulley et al., 2015) (product name: AG100V003; spatial resolution: 100 m, temporal frequency: static)
(https://lpdaac.usgs.gov/dataset_discovery/community/community_products_table) was used in the
inverted Stefan-Boltzmann equation for estimating TR. This E database is developed by the National Aero-
nautics and Space Administration�s (NASA) Jet Propulsion Laboratory (JPL), California Institute of Technol-
ogy, and ASTER data from 2000 to 2008 are used to generate this infrared emissivity record. For every site,
the corresponding E is given in Table 1.

3.3. SEB Closure
The statistical intercomparisons of STIC1.2 results against SEB �ux observations were performed by forcing
energy balance closure by adding energy to kE and H in proportion to the measured Bowen ratio (H/kE;
BREB-closure) (Bowen, 1926) as described by Ch�avez et al. (2005) and later adopted by Anderson et al.
(2008) and Mallick et al. (2014a, 2015, 2016). However, in order to understand the effects of SEB closure cor-
rection methods on the statistical error metric, residual SEB closure correction (RES-closure) was also tested
in which actual kE observations were neglected (Majozi et al., 2017), and kE was estimated as a residual of
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RN, G, and H. Caution in using RES-closure method has been previously given by Barr et al. (2012) because it
is very unlikely that measurements of RN, G or H are without error.

4. Data Sets and Statistical Analysis
4.1. Eddy Covariance and Meteorological Quantities
In the present analysis, we have used data from the regional Australian and New Zealand EC �ux tower net-
work, OzFlux (http://data.oz�ux.org.au/portal/pub/listPubCollections.jspx). OzFlux EC stations are distributed
among ecohydrologically contrasting landscapes in Australia and New Zealand to provide national data of
energy, water, and carbon �uxes at a continental scale to improve our understanding of the responses of
these surface-atmosphere �uxes of Australian ecosystems to current climate as well as future climate
change (Beringer et al., 2016).

We explored the level-3 quality controlled and harmonized surface �ux and meteorological data for the
years 2013 and 2014 from 15 (out of 26) active Australian OzFlux sites located across nine different ecore-
gions in Australia (Figure 2 and Table 1): deserts and xeric shrublands (AU-ASM, AU-TTE), pasture (AU-Rig),
Mediterranean woodlands (AU-Cpr, AU-Gin, AU-GWW), temperate broadleaf (and mixed) forest (AU-Tum,
AU-Wom), temperate grassland (AU-Ync), temperate woodlands (AU-Cum, AU-Whr), tropical and subtropical
moist broadleaf forest (AU-Cow), tropical grassland (AU-Stp), and tropical savannas (AU-How, AU-Dry). We
divided these sites into three broad aridity classes based on their aridity index (AI) (ratio of annual P and EP;
i.e., P/EP): arid (0 < AI < 0.2, AU-ASM, AU-Cpr, AU-GWW, and AU-TTE); semi-arid (0.2 < AI < 0.5, AU-Gin, AU-
Rig, AU-Stp, AU-Whr, AU-Wom, and AU-Ync); and mesic (subhumid and humid) (0.5 < AI, AU-Cow, AU-Cum,
AU-Dry, AU-How, and AU-Tum) (http://www.bom.gov.au). In Table 1, annual values of P and TA are the clima-
tological averages of every site which are reported in http://www.oz�ux.org.au/monitoringsites/. Annual E
and RN were computed from the available EC tower data sets for 2013 and 2014. Annual EP was computed
from FAO (Food and Agricultural Organisation) Penman-Monteith equation (Allen et al., 1998).

The main reason for selecting 2013 and 2014 was the rainfall de�cit which followed the anomalously wet
period of 2010 and 2011 in Australia (Cleverly et al., 2016; Ma et al., 2016) and continued to worsen to
severe drought through 2014 across the continent (http://www.bom.gov.au/climate/drought/archive/).
According to these criteria, data availability in these 2 years coincided for the selected 15 sites.

Figure 2. Climatic map of Australia with the distribution of 15 eddy covariance sites (source of the base map: http://
people.eng.unimelb.edu.au/mpeel/Koppen/Australia.jpg).
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The data are available at half-hourly temporal resolution, with an exception at AU-Tum where the temporal
resolution of the data is 1 h. Data used for this analysis included time series of surface energy balance �uxes
(RN, kE, H, G), shortwave and longwave radiation components (RS#, RS", RL#, RL"), and hydrometeorological
variables (e.g., TA, RH, u, u*, h, and P). A general description of the site characteristics can be found in Table 1
and also in Beringer et al. (2016). Daily SEB �uxes (in W m22) were computed by averaging half-hourly
(hourly for AU-Tum) observed �uxes and those predicted by STIC1.2. Monthly and annual E (in mm) and H
(converted to water equivalent in mm) (http://www.fao.org/docrep/x0490e/x0490e07.htm) were computed
by summing daily kE and H values. We did not perform any gap �lling, which implies that missing observed
or estimated subdaily or daily kE and H values (for data availability see Table 1) were not included in the
computation.

Performance of STIC 1.2 was also evaluated for dry and wet seasons (Appendix A2), whereby the seasons
were de�ned based on monthly P and h. The timing and duration of the seasons varied between different
sites. A table of dry and wet seasons for the individual sites are given in Table A3.

4.2. Statistical Analysis
4.2.1. Multitemporal SEB Flux Assessment
In order to evaluate the performance of STIC1.2, we used different statistical metrics: root-mean-square
deviation (RMSD), relative root-mean-square deviation (RRMSD), the coef�cient of determination (R2), mean
absolute percentage deviation (MAPD), and the ratio of squared systematic RMSD to squared RMSD
(RMSDs2/RMSD2) (equations (A1)�(A4) in Appendix). Predicted kE and H were compared with observed val-
ues for each study site at sub-daily, daily, and annual scales. Results and discussions on multitemporal SEB
�ux estimation statistics are given in sections 5.1 and 6.1, respectively.
4.2.2. Assessing the Role of TR and Associated Environmental Variables on the Performance of
STIC1.2
A sensitivity analysis and a Principal Component Regression (PCR) analysis (Jolliffe, 2002) were performed to
assess the impact of TR and environmental variables on the relative change in kE error (in percent) and
residual error of kE (i.e., DkE 5 difference between kE predicted by STIC1.2 and observed kE). Sensitivity of
kE to TR was tested by introducing random uncertainty in the surface emissivity to generate uncertain TR

scenarios at half-hourly time steps. The relative change in kE error due to the relative change in TR was esti-
mated for every time step and correlation between them was evaluated for different classes of h and EP//
ratios. PCR was performed on a correlation matrix of �ve variables which are: TR, DA, /, wind speed (u), and
DkE. The correlation between DkE and principal component (PC) is known as ��loading.�� Loadings close to 61
indicate that the variable has substantial impact on DkE. PCs with high loadings generally explain maximum
variances in DkE and are considered in evaluating the impacts on DkE. Results of the sensitivity analysis and
PCR are presented in section 5.2 with extended discussions in section 6.2.
4.2.3. Relationship Between Ecohydrological Factors and TR in Determining the Errors and Variability
of SEB Fluxes Predicted by STIC1.2
To examine the link between ecohydrological conditions and TR on the SEB �ux predictions, we further
investigated the patterns of MAPD in daily kE and H in comparison to the coef�cient of variation of
observed soil moisture (cVh), annual evaporative index (i.e., annual E/RN), climatic dryness (i.e., annual EP/P)
(Donohue et al., 2010), and emissivity (E), which are considered to represent the ecohydrological character-
istics of ecosystems that are intrinsically related to TR. Arid and semi-arid ecosystems generally have large
variations in E (Hulley et al., 2010; Masiello et al., 2014) which is mostly associated with high cVh, low E/RN,
and high EP/P (high evaporative demand and low precipitation). Therefore, assessing the effects of a single
value of E on the predictive capacity of STIC1.2 is crucial. Results of the correlation analysis between MAPD
of daily kE (and H) with E, annual cVh, annual E/RN, and annual EP/P of each site is presented in section 5.3
and discussions are elaborated in section 6.3.

5. Results
5.1. Performance of STIC1.2 Across an Aridity Gradient in Australia
The box-plots of statistical errors of half-hourly kE for three ecohydrologically contrasting ecosystem classes
revealed STIC1.2 to explain 60�85% of the observed kE variability (R2 0.60�0.85), with mean MAPD of 30�
50%, and mean RMSD 36�55 W m22 in the mesic and semi-arid sites (Figures 3a, 3c, and 3e, please see
Table 2 for site statistics). For the arid sites, STIC1.2 explained 40% of the observed kE variability, with RMSD
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of 26�46 W m22 (average 36 W m22) (78% of the observed mean) and relatively high MAPD (60%) (Figures
3a, 3c, and 3e). The average ratio of RMSD2

s /RMSD2 (i.e., systematic RMSD, %) was moderate to low in
Semi-arid (35%, range 24�48%) and mesic (10%, range 3�23%) ecosystems (Figure 3g), which increased to
45% (range 30�60%) in the arid ecosystems, thus revealing high systematic kE error (along with high per-
cent RMSD) in the water-limited ecosystems as compared to the radiation-limited ecosystems (Figure 3g).
The predictive accuracy of H followed the opposite pattern compared to kE, featuring maximum R2 (0.85�

Figure 3. (a) Boxplots and whiskers of R2, (b) MAPD, (c) RMSD, and (d) RMSD2
S/RMSD2 between kE and H predicted by

STIC1.2 versus observations in OzFlux ecosystems of contrasting aridity. The lower and upper bound of the box and the
red line inside represents the �rst and third quartiles, and median values. The lower and upper whiskers represent mini-
mum and maximum values of the statistics and the red line in the boxplot represent the mean values of the statistical
metrics.
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0.95) and minimum errors (10�25% MAPD and 35�50 W m22 RMSD) in the water-limited ecosystems as
compared to the wet ecosystems with R2 of 0.80, MAPD 37%, and RMSD 55 W m22, respectively (Figures
3b, 3d, and 3f). Interestingly, the average ratio of RMSD2

s /RMSD2 varied between 10% and 25% (Figure 3h),
thus revealing low systematic errors in H estimates for a broad spectrum of ecohydrologically contrasting
environments.

The statistical metrics of daily kE and H was better than the half-hourly error statistics in the semi-arid and
mesic ecosystems, with RMSD 11�18 W m22 (12�20 W m22 for H), MAPD of 20�39% (24�37% for H), R2 of
0.65�0.84 (0.73�0.87 for H), slope and offsets of regression to the order of 0.70�0.84 (0.67�0.79 for H) and 9�
10 W m22 (19�20 W m22 for H), respectively (Figures 4c�4f). As for subdaily statistics, the predictive errors
in daily H were lowest (12 W m22 RMSD and 12% MAPD) in the arid ecosystems, whereas percent kE errors
were highest (55% MAPD) (due to low mean kE) (Figures 4a and 4b). An evaluation of the annual SEB �uxes
revealed a very good agreement between observed and predicted E and H, where STIC1.2 explained 97% of
the measured variability, with MAPD and RMSD to the order of 10% and 55�84 mm, respectively (Figures 5a
and 5b).

An intercomparison of STIC1.2 half-hourly error statistics with the two previous versions (STIC1.0 and
STIC1.1) revealed maximum improvement in the performance of STIC1.2 for arid and semi-arid ecosystems
(as compared to the mesic ecosystems) (Figure A1). Among the different model versions, notable differ-
ences in MAPD (20�60%, 8�40%, and 5�30%) and RMSD (25�50 W m22, 20�40 W m22, and 18�60 W m22)

Table 2
Error Statistics of Sub-daily kE and H Derived With STIC1.2 on 15 EC Sites Covering Three Ecohydrologically Contrasting
OzFlux Ecosystems of Different Aridity Classes as De�ned in Table 1

kE H

Aridity class Site name Year
RMSD
(W m22) R2

MAPD
(%)

RMSD2
S/

RMSD2 (%)
RMSD

(W m22) R2
MAPD

(%)
RMSD2

S/
RMSD2 (%)

Arid
(0 < AI < 0.2)

AU-ASM 2013 26 0.31 73 25 25 0.99 9 2
2014 39 0.63 52 52 35 0.97 14 14

AU-Cpr 2013 30 0.39 58 34 30 0.97 15 11
2014 25 0.36 58 37 25 0.96 14 6

AU-GWW 2013 34 0.54 47 60 34 0.94 19 7
2014 34 0.60 43 42 34 0.96 15 11

AU-TTE 2013 26 0.40 100 48 26 0.97 11 10
2014 46 0.68 60 76 41 0.91 19 3

Semi-arid
(0.2<AI<0.5)

AU-Gin 2013 53 0.55 50 34 53 0.90 25 17
2014 54 0.54 54 24 54 0.91 24 20

AU-Ync 2013 39 0.27 65 77 39 0.94 16 2
2014 31 0.20 88 45 31 0.97 13 3

AU-Rig 2013 60 0.48 57 51 61 0.86 29 21
2014 59 0.40 76 45 60 0.87 43 38

AU-Stp 2013 44 0.76 51 38 44 0.88 24 13
2014 50 0.82 51 42 52 0.88 25 9

AU-Whr 2013 43 0.56 51 21 43 0.94 21 18
2014 46 0.58 50 32 47 0.94 21 19

AU-Wom 2013 40 0.85 26 3 40 0.95 19 19
2014 54 0.82 30 31 54 0.89 28 19

Mesic
(0.5 < AI)

AU-Cow 2013 38 0.91 24 9 38 0.82 46 23
2014 47 0.85 31 5 46 0.82 44 40

AU-Cum 2013 51 0.81 41 25 51 0.89 36 14
2014 52 0.77 40 8 52 0.90 31 22

AU-Dry 2013 54 0.88 25 21 54 0.80 34 12
2014 64 0.80 38 26 64 0.82 30 30

AU-How 2013 55 0.89 24 7 55 0.82 38 42
2014 59 0.87 26 16 59 0.79 38 25

AU-Tum 2013 56 0.87 27 6 56 0.87 37 2
2014 53 0.88 27 3 53 0.88 35 2
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were found between STIC1.2 and STIC1.0, whereas the differences were relatively lower (5�40%, 3�22%,
and 5�18% in MAPD; 3�10 W m22, 2�8 W m22, and 4�18 W m22 in RMSD) between STIC1.2 and STIC1.1
(Figure A1). Statistical metrics of individual site-year is given in Table A2 with description in Appendix A1.

5.2. Effects of TR and Environmental Variables on the Performance of STIC1.2 in Different Ecosystems
Sensitivity analysis revealed that the relative change in kE error is inversely related to the relative change in TR,
thus a 10% reduction in TR can lead up to 50% increase in percent kE error for these ecosystems (Figures 6a,
6c, and 6e) (Table 3). Maximum sensitivity of kE to TR was found for arid and semi-arid ecosystems with signi�-
cant correlations of (20.35) to (20.92) and (20.30) to ( 20.35) (p < 0.05) for soil moistures above 0.05 m3 m23

and 0.10 m3 m23 (Table 3), respectively. In the mesic ecosystems, the sensitivity of kE errors to TR was relatively
uniform across all the ranges of soil moisture (r 5 (20.26) to (20.29), p < 0.05) and EP// (r 5 (20.27) to (20.31),
p < 0.05) (other than conditions of extremely high evaporative potential) (Table 3). In arid and semi-arid ecosys-
tems, the sensitivity of the kE error to TR was confounded due to EP// (Figures 6a and 6c) (also evident from
the principal component analysis described below).

Figure 4. Comparison of daily (a, c, and e) kE and (b, d, and f) H predicted by STIC1.2 with measured SEB �ux components
in ecohydrologically contrasting OzFlux ecosystems of three aridity classes (as de�ned in Table 1). Data from the sites fall-
ing under same aridity class are combined together.
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Principal component regression (PCR) of DkE versus TR and environmental variables (/, DA, and u) revealed TR,
DA, and / to be the �rst principal component (PC1) affecting DkE variance in all the ecosystems (Figures 6b, 6d,
and 6f). However, the relative effect of TR in conjunction with different environmental factors in controlling the
variance of DkE varied among ecosystems. Maximum PC1 loading was found for TR and DA followed by / in
arid and semi-arid ecosystems (Figures 6b and 6d) where their correlation with DkE varied between 0.70 and
0.75 (TR), 0.65 and 0.70 (DA) and 0.50 and 0.55 (/), respectively (Figures 6b and 6d). Contrarily, in the mesic eco-
system, all the three variables had equal loadings (correlation 0.50) with DkE variance in PC1 axis (Figure 6f).
The effects of wind speed (u) on the DkE variance was re�ected in the second principal component (PC2) axis
with correlation varying from 0.55 to 0.75. The residual errors in sensible heat �ux (DH) showed similar behavior
of the DH variance as the variance of DkE against TR and environmental variables (not shown).

5.3. Relationship between Ecohydrological Conditions and TR in Determining Errors and Variability
of SEB Flux Components Predicted by STIC1.2
The scatter between MAPD and ecohydrological indicators in Figure 7 shows opposite relationships for kE
and H. Annual E/RN ratio and E had the strongest impacts on the MAPD of both �uxes. As evident from the
slopes of the regression lines, 1% increase in E was found to cause approximately 17% decrease (15%
increase) in MAPDkE (MAPDH) (Figure 7a). An increase of 10% in E/RN would cause a 76% decrease and 55%
increase in MAPDkE and MAPDH, respectively (Figure 7c). A systematic increase in MAPDkE was found with
increasing cVh, where a 10% increase in cVh resulted in 34% increase in MAPDkE (Figure 7b). However, the
impact of variation in h was approximately 50% less for the accuracy of predicted H, as evident from the
slope of the regression line (slope 5 0.19) (Figure 7b). Interestingly, a logarithmic increase in MAPDkE was
found with increasing climatic dryness (Figure 7d). MAPDkE varied from 18 to 30% for EP/P ratio of 0 to 2.5
and it progressively increased from 55% to 100% when EP/P ratio exceeded 5 (Figure 7d).

The scatter plots of monthly variances in predicted versus observed kE and H (r2
kE and r2

H) revealed the capac-
ity of STIC1.2 to explain 88�90% of the observed �ux variances in a broad range of aridity conditions (Figures 8a
and 8b). The correlation matrix of the residual variance in the �uxes (Dr2

kE 5 r2
kE STIC1.2 2 r2

kE observed and
Dr2

H 5 r2
H STIC1.2 2 r2

H observed) against a host of ecohydrological and meteorological variables revealed the
absence of any strong systematic relationship between Dr2

kE and r2
TR, r2

h, r2
P (r 5 60.2) (Figure 8c). For H, the

similar analysis revealed 20�40% correlation between Dr2
H and r2

TR, r2
TA (Figure 8d).

6. Discussion
Section 6.1 describes SEB �ux prediction errors for STIC1.2 in the context of uncertainty in the relationship
between TR and aggregated moisture availability by evaluating the relationship between M, TR, and the con-
ductances, and thereby assessing the role of conductances estimates on residual kE error. This section also
highlights the impact of SEB closure correction errors in MAPD and systematic RMSD of the predicted �uxes.

Figure 5. (a and b) Validation of STIC1.2 estimates of annual E and H against EC tower measurements. These are the annual sum
of E and H for years 2013 and 2014 at each of the �ux tower sites categorized according to their aridity class as de�ned in Table 1.
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Section 6.2 discusses how the collective role of TR and environmental variables affect the predictive errors
in STIC1.2. Lastly, section 6.3 discusses the link between TR and ecohydrological conditions in determining
the error and variability of STIC1.2-based SEB �ux predictions.

6.1. What is the Performance of STIC1.2 When Evaluated With High Temporal Resolution Data Across
an Aridity Gradient in Australia?
6.1.1. Role of Uncertain Relationship Between M and TR

Evaluation of STIC1.2-derived SEB �uxes at 15 Oz�ux sites of broad aridity classes revealed relatively large
differences between predicted and observed kE in the arid ecosystems as compared to the semi-arid and

Figure 6. (a, c, and e) Scatter plots showing relative change in kE errors due to relative change in TR in three ecosystems
of contrasting aridity. (b, d, and f) Loadings of Principal Component Regression (PCR) between residual error in STIC1.2 kE
(DkE) with TR and environmental variables showing the contribution of each principal component in explaining the
variance of the residual kE error. Half-hourly data are used for this analysis.
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