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Abstract Thermal infrared sensing of evapotranspiration (E) through surface energy balance (SEB)
models is challenging due to uncertainties in determining the aerodynamic conductance (gA) and due to
inequalities between radiometric (TR) and aerodynamic temperatures (T0). We evaluated a novel analytical
model, the Surface Temperature Initiated Closure (STIC1.2), that physically integrates TR observations into a
combined Penman-Monteith Shuttleworth-Wallace (PM-SW) framework for directly estimating E, and over-
coming the uncertainties associated with T0 and gA determination. An evaluation of STIC1.2 against high
temporal frequency SEB flux measurements across an aridity gradient in Australia revealed a systematic
error of 10–52% in E from mesic to arid ecosystem, and low systematic error in sensible heat fluxes (H) (12–
25%) in all ecosystems. Uncertainty in TR versus moisture availability relationship, stationarity assumption in
surface emissivity, and SEB closure corrections in E were predominantly responsible for systematic E errors
in arid and semi-arid ecosystems. A discrete correlation (r) of the model errors with observed soil moisture
variance (r5 0.33–0.43), evaporative index (r5 0.77–0.90), and climatological dryness (r5 0.60–0.77)
explained a strong association between ecohydrological extremes and TR in determining the error structure
of STIC1.2 predicted fluxes. Being independent of any leaf-scale biophysical parameterization, the model
might be an important value addition in working group (WG2) of the Australian Energy and Water Exchange
(OzEWEX) research initiative which focuses on observations to evaluate and compare biophysical models of
energy and water cycle components.

Plain Language Summary Evapotranspiration modeling and mapping in arid and semi-arid eco-
systems are uncertain due to empirical approximation of surface and atmospheric conductances. Here we
demonstrate the performance of a fully analytical model which is independent of any leaf-scale empirical
parameterization of the conductances and can be potentially used for continental scale mapping of
ecosystem water use as well as water stress using thermal remote sensing satellite data.

1. Introduction

The determination of the aerodynamic temperature (T0) and conductance (gA) contributes to the principal
uncertainty in regional-scale evapotranspiration (E) mapping when using models based on thermal infrared
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sensing (Kustas et al., 2016; Paul et al., 2014, 2013). To reduce this uncertainty, there is either a sincere need
to accommodate and settle on a unified land surface parameterization for estimating T0 and gA; or use ana-
lytical models independent of any empirical parameterization of these variables.

Land surface temperature or radiometric surface temperature (TR) obtained through thermal infrared
remote sensing governs the land surface energy budget (Anderson et al., 2012; Kustas & Anderson, 2009),
and thermal E models principally focus on surface energy balance (SEB) approach in which TR represents
the lower boundary condition to constrain the energy-water fluxes (Anderson et al., 2008; Mallick et al.,
2014a, 2015; Norman et al., 1995). It satisfies the SEB equation (equations (1)–(3)) by altering T0 as well as by
imposing constraints arising due to water stress on the biophysical conductances (gA and gC) (a list of varia-
bles and symbols along with their units are given in Table A1).

RN5H1kE1G (1)
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State-of-the-art SEB models are based on estimating gA and sensible heat flux (H) while solving E (or latent
heat flux, kE) as a residual SEB component (given RN and G are known). However, the most serious assump-
tion in estimating H concerns the use of TR as a surrogate of T0 (Ch�avez et al., 2010; Colaizzi et al., 2004).
Major drawbacks in the explicit use of TR in SEB modeling are (a) the inequality between T0 and TR (T0 6¼ TR)
(Boulet et al., 2015; Ch�avez et al., 2010), (b) the unavailability of a universally agreed model to estimate T0,
which controls the transfer of sensible heat (Colaizzi et al., 2004), (c) nonunique relationship between T0
and TR due to differences between the effective source-sink height of momentum and heat within vegeta-
tion substrate complex (Ch�avez et al., 2010; Holwerda et al., 2012; Troufleau et al., 1997), (d) the lack of a
preeminent physically-based gA model (Holwerda et al., 2012), and (e) bypassing the role of TR on gC in kE
modeling.

Despite the aforementioned shortcomings, emphasis on estimating H is motivated by the broad acceptance
of the Monin-Obukhov Similarity Theory (MOST) or Richardson Number (Ri) criteria for estimating gA, and
the requirement of minimum inputs for solving both gA and H. However, estimating gA using MOST or Ri
approaches created further problems, particularly in relation to accommodating the inequalities between T0
and TR, as well as in adapting the differences between gA and the momentum conductance (gM) arising due
to the differences in the roughness length of heat and momentum (z0H and z0M) (Paul et al., 2014). The
effects due to inequality between T0 and TR were partially overcome by the inclusion of an ‘‘extra conduc-
tance’’ and the kB21 term as a fitting parameter that adjusts the difference between z0H and z0M (Boegh
et al., 2002; Su, 2002; Troufleau et al., 1997), and later through the inception of two-source soil-canopy
modeling schemes (Anderson et al., 2007; Boulet et al., 2015; Colaizzi et al., 2012; Norman et al., 1995). How-
ever, SEB-based predictions of H (and kE) are conditional to empirical response functions of gA (Ershadi
et al., 2015; Kustas et al., 2016; Liu et al., 2007; Morillas et al., 2013; Paul et al., 2014; Timmermans et al.,
2013) that have an uncertain transferability in space and time (Holwerda et al., 2012; van Dijk et al., 2015). In
contemporary SEB modeling, gA submodels are stand-alone, and lack the necessary physical feedback it
should provide to gC, T0, and vapor pressure deficit surrounding the evaporating surface (D0) (Cleverly et al.,
2013). The feedback of gA on gC is critical in arid and semi-arid ecosystems where reduced soil moisture
availability in conjunction with very high evaporative potential causes significant water stress in the soil-
vegetation-atmosphere system, thereby resulting discrepancy between TR and T0. Thermal-based kE model-
ing needs explicit consideration of such important biophysical feedbacks to reduce the existing uncertain-
ties in arid and semi-arid ecosystems (Kustas et al., 2016).

The Penman-Monteith (PM) and Shuttleworth-Wallace (SW) models are mutually related and two of the
most preeminent physical models for quantifying surface-to-air kE. They are fundamentally constrained to
account for the necessary feedbacks between kE, TR, D0, gA, and gC (Monteith, 1965; Shuttleworth & Wallace,
1985). The elemental connectivity of PM-SW with TR originates from the first-order dependence of gC and
gA on TR (through soil moisture and T0). Despite their theoretical integrity, the integration of TR into the PM-
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SW model was not yet well established. Although the perception of combining the PM model with TR was
initiated by Jackson et al. (1981) in the Crop Water Stress Index (CWSI) formulation, it had later been
acknowledged that using the PM method could produce large errors in kE due to the underlying uncertain-
ties in conductance estimates, particularly in sparsely vegetated and water-stressed ecosystems (Leuning
et al., 2008; Morillas et al., 2013), such as the majority of ecosystems in Australia (Beringer et al., 2016).

Invigorated by the potential of thermal infrared data, Mallick et al. (2014a, 2015) proposed an integration of
TR into the PM model to directly estimate the conductances, kE, and H, and to simultaneously overcome the
empirical uncertainties in estimating gA and T0. The Surface Temperature Initiated Closure (STIC) (Mallick
et al., 2014a, 2015) is a unique framework based on analytical solutions for gA, gC, and T0. Initial studies with
different versions of STIC primarily focused on validation of H, kE, and its partitioning, using moderate
(coarse) spatial (temporal) resolution remote sensing data (STIC1.0; Mallick et al., 2014a), and understanding
the impacts of thermal versus humidity based water stress constraints on kE (STIC1.1; Mallick et al., 2015).
However, the early versions of STIC could only partially bridge TR and SEB modeling due to structural inade-
quacies for establishing surface versus aerodynamic feedbacks (Mallick et al., 2015). A later version of STIC
(STIC1.2) (Mallick et al., 2016) integrates TR into the PM-SW system to establish the required feedback
between TR and kE, along with aerodynamic temperature, humidity, and conductances. In a recent study,
STIC1.2 was applied for evaluation of biophysical conductances and assessing their controls on evapotrans-
piration partitioning in the Amazon basin (Mallick et al., 2016). However, evaluating the performance of
STIC1.2 across an aridity gradient with data of high temporal resolution is on one hand essential to under-
stand the role of TR in STIC1.2 in hydrologically extreme natural ecosystems, and on the other to evaluate
the limitations of this analytical SEB model before extending its future applicability for regional-scale E
mapping.

The combination of prevailing arid/semi-arid ecosystems, ecohydrological heterogeneity, and the availabil-
ity of continuous SEB flux observations make Australia an excellent test bed. Present study reports an in-
depth evaluation of STIC1.2 by exploring eddy covariance (EC) observations from a range of diverse ecosys-
tems of the OzFlux network (Beringer et al., 2016) across a large aridity gradient in Australia as a way for-
ward to reduce T0 and gA uncertainties in regional-scale E mapping as well as to efficiently bridge TR and
SEB modeling. Our study addressed the following research questions:

1. What is the performance of STIC1.2 when evaluated with high temporal resolution data across an aridity
gradient in Australia?

2. How do TR and environmental variables affect the performance of STIC1.2 across ecohydrological
extremes from arid to mesic ecosystems?

3. Is there an association between ecohydrological conditions and TR in determining the errors and variabil-
ity of water and energy flux components predicted by STIC1.2?

The novelties of the present study are: (a) an extensive evaluation of STIC1.2 from dry to wet ecohydrologi-
cal extremes at multiple temporal scales (from half-hourly to annual), (b) intercomparison with previous ver-
sions of STIC, (c) analyzing the sensitivity of kE and conductances to TR, as well as application of multivariate
statistics (e.g., principal component analysis) to understand the impacts of TR and environmental variables
on the error characteristics of STIC1.2 derived kE from arid to mesic climate, and (d) identification of the
integrated role of ecohydrological conditions and TR on errors and variability of SEB flux predictions by
STIC1.2.

2. Why Australia?

Australia is a predominantly dry continent with substantial fluctuations in precipitation and primary produc-
tion (Cleverly et al., 2016). Limited water resources, drought vulnerability, high evaporative demand, and
growing water requirements are continuously increasing pressure on sustainable management of water
resources. The Millennium Drought from 2001 to 2009 dramatically ended with a ‘‘big wet’’ in 2010–2012
coinciding with the largest La Ni~na in over 70 years (Cleverly et al., 2016; van Dijk et al., 2013). A major part
of the Australian continent is arid (38%) or semi-arid (36%) (Beringer et al., 2016) with canopy cover of less
than 50% across most of the continent (Glenn et al., 2011). In contrast, there are locations where annual
average precipitation exceeds 4,000 mm (Glenn et al., 2011). In most areas of the continent, potential evap-
oration (EP) exceeds precipitation (P), and approximately 90% of P returns back to the atmosphere as E
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(Glenn et al., 2011) with the residue generating surface and groundwater resources (Guerschman et al.,
2009). Strong land-atmosphere coupling in these regions makes the estimation of SEB fluxes very sensitive
to the boundary conditions and underlying assumptions of biophysical parameterization, a situation that is
often confounded by extreme heterogeneity in evaporation versus transpiration and their contrasting
responses to surface soil water content. Hence, observation, monitoring, and prediction of water and energy
flux components are imperative in these regions to meet the challenge of developing and implementing
sustainable water resource management decisions (Martens et al., 2016). Therefore, detailed evaluation of a
physically-based SEB model like STIC1.2 is the prerequisite before applying it for a reliable prediction and
management of water resources in Australia and globally.

3. Methodology

3.1. Theory
STIC (version STIC1.2) is a one-dimensional SEB model that treats soil-vegetation as a single unit (Figure 1).
The fundamental assumption in STIC is the first-order dependence of gA and gC on aerodynamic tempera-
ture (T0) and soil moisture (h) through TR, which allows direct integration of TR into the PM-SW system (Mal-
lick et al., 2016). The integration of TR into PM-SW system is done by first estimating aggregated surface
moisture availability (M) as a function of TR, followed by simultaneously constraining the two biophysical
conductances through M in an analytical framework. STIC1.2 exploits radiation (net radiation (RN), ground
heat flux (G)) and meteorological variables (air temperature (TA), relative humidity (RH) or vapor pressure (eA)

at the reference level) in conjunction with TR observations as external
inputs.

The expressions of kE and H according to the PM equation are as fol-
lows (Monteith, 1965):

kE5
s/1 qcPgADA

s1 c 11 gA
gC

� � (4a)

H5
c/ 11 gA

gC

� �
2 qcPgADA

s1 c 11 gA
gC

� � (4b)

For a full vegetation and (or) bare surface, gC represents the canopy
conductance and (or) bare surface conductance, respectively. In the
case of partial canopy cover, gC represents an aggregated surface con-
ductance of both canopy and soil. The effects of this simplified repre-
sentation of aggregated gC on the performance of STIC1.2 is
represented in Figures 9b, 9d, and 9f) which shows the residual kE
error (modeled minus observed kE) versus gC for different vegetation
types.

The two unknown ‘‘state variables’’ in equations (4a) and (4b) are gA
and gC, and the main goal of STIC1.2 is to find an analytical solution of
the two unobserved conductances from measurements of radiative,
meteorological, and radiometric conditions (Mallick et al., 2014a, 2015,
2016). This will simultaneously find a ‘‘closure’’ of the PM model. As
neither gA nor gC can be measured at the canopy-scale or at large spa-
tial scales (van Dijk et al., 2015), a ‘‘closure’’ of the PM equation is only
possible through an analytical estimation of the conductances. Conse-
quently, multiple ‘‘state equations’’ were formulated to obtain closed-
form expressions of gA and gC. In the state equations, a direct connec-
tion of TR (through M) is initiated in the expression of evaporative frac-
tion (K), which is simultaneously propagated into equations of gA, gC,
and T0 (equations (5)–(8)).

Figure 1. Schematic representation of one-dimensional description of STIC1.2.
In STIC1.2, a feedback is established between the surface layer evaporative
fluxes and source/sink height mixing and coupling, and the connection is
shown in dotted arrows between e0, e�0, gA, gC, and kE. Here rA and rC are the
aerodynamic and canopy (or canopy-substrate complex in case of partial vege-
tation cover) resistances, gA and gC are the aerodynamic and canopy conduc-
tances (reciprocal of resistances), e�S is the saturation vapor pressure at the
surface, e�0 is the saturation vapor pressure at the source/sink height, T0 is the
source/sink height temperature (i.e., aerodynamic temperature) that is respon-
sible for transferring the sensible heat (H), e0 is the source/sink height vapor
pressure, eS is the vapor pressure at the surface, z0H is the roughness length for
heat transfer, d0 is the displacement height, TR is the radiometric surface tem-
perature, T0D is the source/sink height dewpoint temperature, M is the surface
moisture availability or evaporation coefficient, RN and G are net radiation and
ground heat flux, TA, eA, and DA are temperature, vapor pressure, and vapor
pressure deficit at the reference height (zR), kE is the latent heat flux,
respectively.
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The functional forms of equations (5)–(8) and their detailed derivations are given in the supporting informa-
tion and in Mallick et al. (2014a, 2015, 2016). Given values of M, RN, G, TA, and RH or eA, the four state equa-
tions (equations (5)–(8)) can be solved simultaneously to derive analytical solutions for the four unobserved
state variables. However, the analytical solutions to the four state equations have three accompanying
unknowns; e0 (vapor pressure at the source/sink height), e�0 (saturation vapor pressure at the source/sink
height), and Priestley-Taylor coefficient (a) (Priestley & Taylor, 1972), and as a result there are four equations
with seven unknowns. Consequently, an iterative solution must be found to determine the three unknown
variables (as described in supporting information) (also in Mallick et al., 2016). For estimating source/sink
height vapor pressures we applied equation (8) from Shuttleworth and Wallace (1985), and thus STIC1.2
uniquely combines both the Penman-Monteith and Shuttleworth-Wallace (PM-SW) models (described in
supporting information) (also Mallick et al., 2016). In equation (8), the Priestley-Taylor coefficient (a)
appeared due to using the Advection-Aridity (AA) hypothesis (Brutsaert & Stricker, 1979) for deriving the
state equation of K (Mallick et al., 2016, 2015) (details in supporting information). However, instead of opti-
mizing a as a ‘‘fixed parameter,’’ a is dynamically estimated by constraining it as a function of M, conductan-
ces, aerodynamic vapor pressure, and temperature (Mallick et al., 2016). The derivation of the equation for a
is described in supporting information.

STIC1.2 consists of a feedback loop describing the relationship between TR and kE, coupled with canopy-
atmosphere components relating kE to T0 and e0 (Mallick et al., 2016). For estimating M, TR is extensively
used in a physical retrieval framework (detailed in SI) (also in Mallick et al., 2016), which allows an integra-
tion of TR into a physically-based SEB model. Upon finding analytical solution of gA and gC, both the varia-
bles are returned into equations (4a) and (4b) to directly estimate kE and H.

3.2. Estimation of TR
Estimation of TR was based on the observed upwelling longwave radiation (RL") and the Stefan-Boltzmann

equation TR5
RL"
dE

� �0:25
� 	

(Formetta et al., 2016; Park et al., 2008; Sun & Pinker, 2003) (E is the infrared surface

emissivity, d is the Stefan-Boltzmann constant). Upwelling longwave radiation was directly measured with
pyrgeometer in all the study sites. The Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) Global Emissivity Dataset (GED) land surface emissivity data product (G€ottsche & Hulley, 2012;
Hulley et al., 2015) (product name: AG100V003; spatial resolution: 100 m, temporal frequency: static)
(https://lpdaac.usgs.gov/dataset_discovery/community/community_products_table) was used in the
inverted Stefan-Boltzmann equation for estimating TR. This E database is developed by the National Aero-
nautics and Space Administration’s (NASA) Jet Propulsion Laboratory (JPL), California Institute of Technol-
ogy, and ASTER data from 2000 to 2008 are used to generate this infrared emissivity record. For every site,
the corresponding E is given in Table 1.

3.3. SEB Closure
The statistical intercomparisons of STIC1.2 results against SEB flux observations were performed by forcing
energy balance closure by adding energy to kE and H in proportion to the measured Bowen ratio (H/kE;
BREB-closure) (Bowen, 1926) as described by Ch�avez et al. (2005) and later adopted by Anderson et al.
(2008) and Mallick et al. (2014a, 2015, 2016). However, in order to understand the effects of SEB closure cor-
rection methods on the statistical error metric, residual SEB closure correction (RES-closure) was also tested
in which actual kE observations were neglected (Majozi et al., 2017), and kE was estimated as a residual of

Water Resources Research 10.1029/2017WR021357

MALLICK ET AL. 3413

https://lpdaac.usgs.gov/dataset_discovery/community/community_products_table


Ta
b
le

1
A
n
O
ve
rv
ie
w
of

Si
te
s,
Th
ei
r
A
rid

ity
In
de
x
(A
I)
Cl
as
s
an

d
Ch

ar
ac
te
ris
tic
s
(N
um

be
rs
in
th
e
Pa

re
nt
he
se
s
Re
pr
es
en
tt
he

Co
ef
fic
ie
nt

of
Va

ria
tio

n)

A
rid

ity
in
de

x
(A
I)
cl
as
s

Si
te

na
m
e

O
zF
lu
x

ID
Re

gi
on

La
tit
ud

e
(S
)

Lo
ng

itu
de

(E
)

W
or
ld

ec
or
eg

io
n

La
nd

co
ve
r

A
I

A
nn

ua
l

T A
(8
C
)

A
nn

ua
l

P
(m

m
yr

2
1
)

A
nn

ua
l

E
(m

m
yr

2
1
)

A
nn

ua
l

E/
R N

E
EB

C
%

D
at
a

av
ai
la
bi
lit
y

kE
&
H
(%

)

A
rid

(0
<
A
I<
0.
2)

A
lic
e
Sp

rin
gs

A
U
-A
SM

N
or
th
er
n

Te
rr
ito

ry

2
22

.2
88

13
3.
25

8

D
es
er
ts
an

d
Xe

ric

sh
ru
bl
an

ds

Se
m
i-a

rid
m
ul
ga

(A
ca
ci
a

an
eu

ra
)e

co
sy
st
em

0.
04

–0
.1
1

(2
4)

to
46

30
6

(5
8)

14
1

(1
00

)
0.
10

0.
80

0
60

–6
1

95

C
al
pe

ru
m

A
U
-C
pr

So
ut
h

A
us
tr
al
ia

2
34

.0
08

14
0.
59

8

M
ed

ite
rr
an

ea
n

w
oo

dl
an

ds

Re
co
ve
rin

g
m
al
le
e

w
oo

dl
an

d

0.
05

–0
.0
6

12
–4

5
24

0
(6
0)

25
7

(7
7)

0.
13

0.
80

0
72

–7
8

79

G
re
at

W
es
te
rn

W
oo

dl
an

ds

A
U
-G
W
W

W
es
te
rn

A
us
tr
al
ia

2
30

.1
98

12
0.
65

8

M
ed

ite
rr
an

ea
n

w
oo

dl
an

ds

Te
m
pe

ra
te

w
oo

dl
an

d,

sh
ru
bl
an

d
an

d
m
al
le
e

0.
05

–0
.1
4

5–
33

24
0

(4
1)

13
5

(7
7)

0.
17

0.
81

0
56

–5
8

85

Ti
Tr
ee

Ea
st

A
U
-T
TE

N
or
th
er
n

Te
rr
ito

ry

2
22

.2
98

13
3.
64

8

D
es
er
ts
an

d
Xe

ric

sh
ru
bl
an

ds

G
ra
ss
y
m
ul
ga

w
oo

dl
an

d

an
d
C
or
ym

bi
a/

Tr
io
di
a
sa
va
nn

a

0.
05

–0
.1
1

(2
4)

to
46

30
5

(8
0)

14
4

(1
00

)
0.
11

0.
83

5
72

–7
5

86

Se
m
i-a

rid

(0
.2
<
A
I<

0.
5)

G
in
gi
n

A
U
-G
in

W
es
te
rn

A
us
tr
al
ia

2
31

.3
88

11
5.
71

8

M
ed

ite
rr
an

ea
n

w
oo

dl
an

ds

C
oa

st
al
he

at
h
Ba

nk
si
a

w
oo

dl
an

d

0.
20

–0
.2
6

19
–3

0
64

1
(1
9)

48
6

(6
3)

0.
29

0.
80

5
77

–7
8

84

Ja
xa

(Y
an

co
)

A
U
-Y
nc

N
ew

So
ut
h

W
al
es

2
34

.9
98

14
6.
29

8

Te
m
pe

ra
te

gr
as
sl
an

d
G
ra
ss
la
nd

0.
30

–0
.4
1

12
–3

7
46

5
(3
4)

20
7

(1
00

)
0.
10

0.
80

0
57

–7
6

86

Ri
gg

s
C
re
ek

A
U
-R
ig

Vi
ct
or
ia

2
36

.6
58

14
5.
58

8

Pa
st
ur
e

D
ry
la
nd

ag
ric
ul
tu
re

0.
45

–0
.4
6

12
–2

6
65

0
(2
3)

29
7

(8
4)

0.
30

0.
91

0
80

–8
1

70

St
ur
t
Pl
ai
ns

A
U
-S
tp

N
or
th
er
n

Te
rr
ito

ry

2
17

.1
58

13
3.
35

8

Tr
op

ic
al
gr
as
sl
an

d
Lo

w
ly
in
g
pl
ai
n

do
m
in
at
ed

by

M
itc
he

ll
G
ra
ss

0.
22

–
0.
33

11
–3

9
64

0
(3
7)

45
4

(1
00

)
0.
28

0.
88

0
82

–9
3

90

W
hr
oo

A
U
-W

hr
Vi
ct
or
ia

2
36

.6
78

14
5.
03

8

Te
m
pe

ra
te

w
oo

dl
an

ds
Bo

x
w
oo

dl
an

d
0.
20

–0
.2
2

3–
30

55
8

(5
2)

44
3

(6
2)

0.
27

0.
81

0
93

–9
5

90

W
om

ba
t

A
U
-W

om
Vi
ct
or
ia

2
37

.4
28

14
4.
09

8

Te
m
pe

ra
te

br
oa

dl
ea
f

fo
re
st

D
ry

sc
le
ro
ph

yl
le
uc
al
yp

t

fo
re
st

0.
23

–0
.3
9

1–
30

65
0

(1
0)

65
3

(6
2)

0.
43

0.
92

5
71

–7
3

87

M
es
ic

(0
.5
<
A
I)

C
ow

ba
y

A
U
-C
ow

Q
ue

en
sl
an

d
2
16

.2
48

14
4.
09

8

Tr
op

ic
al
an

d
su
bt
ro
pi
ca
l

m
oi
st
br
oa

dl
ea
f

fo
re
st
s

C
om

pl
ex

m
es
op

hy
ll

vi
ne

fo
re
st

2.
30

–2
.9
0

11
–3

9
4,
00

0
(1
0)

74
5

(5
5)

0.
61

0.
95

5
89

–9
1

88

C
um

be
rla

nd

Pl
ai
ns

A
U
-C
um

N
ew

So
ut
h

W
al
es

2
33

.6
28

15
0.
72

8

Te
m
pe

ra
te

w
oo

dl
an

ds
D
ry

sc
le
ro
ph

yl
l

0.
56

–0
.7
6

3–
29

80
0

(2
4)

48
6

(6
6)

0.
43

0.
88

5
81

–9
1

85

D
ry

Ri
ve
r

A
U
-D
ry

N
or
th
er
n

Te
rr
ito

ry

2
15

.2
68

13
2.
37

8

Tr
op

ic
al
sa
va
nn

as
O
pe

n
fo
re
st
sa
va
nn

a
0.
50

–0
.7
3

14
–3

7
89

5
(3
6)

67
9

(7
3)

0.
47

0.
97

0
80

–8
1

92

H
ow

ar
d

Sp
rin

gs

A
U
-H
ow

N
or
th
er
n

Te
rr
ito

ry

2
12

.4
98

13
1.
15

8

Tr
op

ic
al
sa
va
nn

as
Tr
op

ic
al
sa
va
nn

a
(w

et
)

0.
53

–0
.6
4

20
–3

3
1,
70

0
(2
5)

1,
19

0
(6
0)

0.
56

0.
87

0
85

–9
1

96

Tu
m
ba

ru
m
ba

A
U
-T
um

N
ew

So
ut
h

W
al
es

2
35

.6
68

14
8.
15

8

Te
m
pe

ra
te

br
oa

dl
ea
f

an
d
m
ix
ed

fo
re
st

W
et

te
m
pe

ra
te

sc
le
ro
ph

yl
le
uc
al
yp

t

0.
65

–0
.7
7

(2
10

)t
o
30

1,
00

0
(1
5)

95
5

(9
0)

0.
68

0.
97

0
72

–7
5

89

Water Resources Research 10.1029/2017WR021357

MALLICK ET AL. 3414



RN, G, and H. Caution in using RES-closure method has been previously given by Barr et al. (2012) because it
is very unlikely that measurements of RN, G or H are without error.

4. Data Sets and Statistical Analysis

4.1. Eddy Covariance and Meteorological Quantities
In the present analysis, we have used data from the regional Australian and New Zealand EC flux tower net-
work, OzFlux (http://data.ozflux.org.au/portal/pub/listPubCollections.jspx). OzFlux EC stations are distributed
among ecohydrologically contrasting landscapes in Australia and New Zealand to provide national data of
energy, water, and carbon fluxes at a continental scale to improve our understanding of the responses of
these surface-atmosphere fluxes of Australian ecosystems to current climate as well as future climate
change (Beringer et al., 2016).

We explored the level-3 quality controlled and harmonized surface flux and meteorological data for the
years 2013 and 2014 from 15 (out of 26) active Australian OzFlux sites located across nine different ecore-
gions in Australia (Figure 2 and Table 1): deserts and xeric shrublands (AU-ASM, AU-TTE), pasture (AU-Rig),
Mediterranean woodlands (AU-Cpr, AU-Gin, AU-GWW), temperate broadleaf (and mixed) forest (AU-Tum,
AU-Wom), temperate grassland (AU-Ync), temperate woodlands (AU-Cum, AU-Whr), tropical and subtropical
moist broadleaf forest (AU-Cow), tropical grassland (AU-Stp), and tropical savannas (AU-How, AU-Dry). We
divided these sites into three broad aridity classes based on their aridity index (AI) (ratio of annual P and EP;
i.e., P/EP): arid (0<AI< 0.2, AU-ASM, AU-Cpr, AU-GWW, and AU-TTE); semi-arid (0.2<AI< 0.5, AU-Gin, AU-
Rig, AU-Stp, AU-Whr, AU-Wom, and AU-Ync); and mesic (subhumid and humid) (0.5<AI, AU-Cow, AU-Cum,
AU-Dry, AU-How, and AU-Tum) (http://www.bom.gov.au). In Table 1, annual values of P and TA are the clima-
tological averages of every site which are reported in http://www.ozflux.org.au/monitoringsites/. Annual E
and RN were computed from the available EC tower data sets for 2013 and 2014. Annual EP was computed
from FAO (Food and Agricultural Organisation) Penman-Monteith equation (Allen et al., 1998).

The main reason for selecting 2013 and 2014 was the rainfall deficit which followed the anomalously wet
period of 2010 and 2011 in Australia (Cleverly et al., 2016; Ma et al., 2016) and continued to worsen to
severe drought through 2014 across the continent (http://www.bom.gov.au/climate/drought/archive/).
According to these criteria, data availability in these 2 years coincided for the selected 15 sites.

Figure 2. Climatic map of Australia with the distribution of 15 eddy covariance sites (source of the base map: http://
people.eng.unimelb.edu.au/mpeel/Koppen/Australia.jpg).
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The data are available at half-hourly temporal resolution, with an exception at AU-Tum where the temporal
resolution of the data is 1 h. Data used for this analysis included time series of surface energy balance fluxes
(RN, kE, H, G), shortwave and longwave radiation components (RS#, RS", RL#, RL"), and hydrometeorological
variables (e.g., TA, RH, u, u*, h, and P). A general description of the site characteristics can be found in Table 1
and also in Beringer et al. (2016). Daily SEB fluxes (in W m22) were computed by averaging half-hourly
(hourly for AU-Tum) observed fluxes and those predicted by STIC1.2. Monthly and annual E (in mm) and H
(converted to water equivalent in mm) (http://www.fao.org/docrep/x0490e/x0490e07.htm) were computed
by summing daily kE and H values. We did not perform any gap filling, which implies that missing observed
or estimated subdaily or daily kE and H values (for data availability see Table 1) were not included in the
computation.

Performance of STIC 1.2 was also evaluated for dry and wet seasons (Appendix A2), whereby the seasons
were defined based on monthly P and h. The timing and duration of the seasons varied between different
sites. A table of dry and wet seasons for the individual sites are given in Table A3.

4.2. Statistical Analysis
4.2.1. Multitemporal SEB Flux Assessment
In order to evaluate the performance of STIC1.2, we used different statistical metrics: root-mean-square
deviation (RMSD), relative root-mean-square deviation (RRMSD), the coefficient of determination (R2), mean
absolute percentage deviation (MAPD), and the ratio of squared systematic RMSD to squared RMSD
(RMSDs2/RMSD2) (equations (A1)–(A4) in Appendix). Predicted kE and H were compared with observed val-
ues for each study site at sub-daily, daily, and annual scales. Results and discussions on multitemporal SEB
flux estimation statistics are given in sections 5.1 and 6.1, respectively.
4.2.2. Assessing the Role of TR and Associated Environmental Variables on the Performance of
STIC1.2
A sensitivity analysis and a Principal Component Regression (PCR) analysis (Jolliffe, 2002) were performed to
assess the impact of TR and environmental variables on the relative change in kE error (in percent) and
residual error of kE (i.e., DkE5 difference between kE predicted by STIC1.2 and observed kE). Sensitivity of
kE to TR was tested by introducing random uncertainty in the surface emissivity to generate uncertain TR
scenarios at half-hourly time steps. The relative change in kE error due to the relative change in TR was esti-
mated for every time step and correlation between them was evaluated for different classes of h and EP//
ratios. PCR was performed on a correlation matrix of five variables which are: TR, DA, /, wind speed (u), and
DkE. The correlation between DkE and principal component (PC) is known as ‘‘loading.’’ Loadings close to 61
indicate that the variable has substantial impact on DkE. PCs with high loadings generally explain maximum
variances in DkE and are considered in evaluating the impacts on DkE. Results of the sensitivity analysis and
PCR are presented in section 5.2 with extended discussions in section 6.2.
4.2.3. Relationship Between Ecohydrological Factors and TR in Determining the Errors and Variability
of SEB Fluxes Predicted by STIC1.2
To examine the link between ecohydrological conditions and TR on the SEB flux predictions, we further
investigated the patterns of MAPD in daily kE and H in comparison to the coefficient of variation of
observed soil moisture (cVh), annual evaporative index (i.e., annual E/RN), climatic dryness (i.e., annual EP/P)
(Donohue et al., 2010), and emissivity (E), which are considered to represent the ecohydrological character-
istics of ecosystems that are intrinsically related to TR. Arid and semi-arid ecosystems generally have large
variations in E (Hulley et al., 2010; Masiello et al., 2014) which is mostly associated with high cVh, low E/RN,
and high EP/P (high evaporative demand and low precipitation). Therefore, assessing the effects of a single
value of E on the predictive capacity of STIC1.2 is crucial. Results of the correlation analysis between MAPD
of daily kE (and H) with E, annual cVh, annual E/RN, and annual EP/P of each site is presented in section 5.3
and discussions are elaborated in section 6.3.

5. Results

5.1. Performance of STIC1.2 Across an Aridity Gradient in Australia
The box-plots of statistical errors of half-hourly kE for three ecohydrologically contrasting ecosystem classes
revealed STIC1.2 to explain 60–85% of the observed kE variability (R2 0.60–0.85), with mean MAPD of 30–
50%, and mean RMSD 36–55 W m22 in the mesic and semi-arid sites (Figures 3a, 3c, and 3e, please see
Table 2 for site statistics). For the arid sites, STIC1.2 explained 40% of the observed kE variability, with RMSD
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of 26–46 W m22 (average 36 W m22) (78% of the observed mean) and relatively high MAPD (60%) (Figures
3a, 3c, and 3e). The average ratio of RMSD2

s /RMSD2 (i.e., systematic RMSD, %) was moderate to low in
Semi-arid (35%, range 24–48%) and mesic (10%, range 3–23%) ecosystems (Figure 3g), which increased to
45% (range 30–60%) in the arid ecosystems, thus revealing high systematic kE error (along with high per-
cent RMSD) in the water-limited ecosystems as compared to the radiation-limited ecosystems (Figure 3g).
The predictive accuracy of H followed the opposite pattern compared to kE, featuring maximum R2 (0.85–

Figure 3. (a) Boxplots and whiskers of R2, (b) MAPD, (c) RMSD, and (d) RMSD2
S/RMSD2 between kE and H predicted by

STIC1.2 versus observations in OzFlux ecosystems of contrasting aridity. The lower and upper bound of the box and the
red line inside represents the first and third quartiles, and median values. The lower and upper whiskers represent mini-
mum and maximum values of the statistics and the red line in the boxplot represent the mean values of the statistical
metrics.
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0.95) and minimum errors (10–25% MAPD and 35–50 W m22 RMSD) in the water-limited ecosystems as
compared to the wet ecosystems with R2 of 0.80, MAPD 37%, and RMSD 55 W m22, respectively (Figures
3b, 3d, and 3f). Interestingly, the average ratio of RMSD2

s /RMSD2 varied between 10% and 25% (Figure 3h),
thus revealing low systematic errors in H estimates for a broad spectrum of ecohydrologically contrasting
environments.

The statistical metrics of daily kE and H was better than the half-hourly error statistics in the semi-arid and
mesic ecosystems, with RMSD 11–18 W m22 (12–20 W m22 for H), MAPD of 20–39% (24–37% for H), R2 of
0.65–0.84 (0.73–0.87 for H), slope and offsets of regression to the order of 0.70–0.84 (0.67–0.79 for H) and 9–
10 W m22 (19–20 W m22 for H), respectively (Figures 4c–4f). As for subdaily statistics, the predictive errors
in daily H were lowest (12 W m22 RMSD and 12% MAPD) in the arid ecosystems, whereas percent kE errors
were highest (55% MAPD) (due to low mean kE) (Figures 4a and 4b). An evaluation of the annual SEB fluxes
revealed a very good agreement between observed and predicted E and H, where STIC1.2 explained 97% of
the measured variability, with MAPD and RMSD to the order of 10% and 55–84 mm, respectively (Figures 5a
and 5b).

An intercomparison of STIC1.2 half-hourly error statistics with the two previous versions (STIC1.0 and
STIC1.1) revealed maximum improvement in the performance of STIC1.2 for arid and semi-arid ecosystems
(as compared to the mesic ecosystems) (Figure A1). Among the different model versions, notable differ-
ences in MAPD (20–60%, 8–40%, and 5–30%) and RMSD (25–50 W m22, 20–40 W m22, and 18–60 W m22)

Table 2
Error Statistics of Sub-daily kE and H Derived With STIC1.2 on 15 EC Sites Covering Three Ecohydrologically Contrasting
OzFlux Ecosystems of Different Aridity Classes as Defined in Table 1

kE H

Aridity class Site name Year
RMSD
(W m22) R2

MAPD
(%)

RMSD2
S/

RMSD2 (%)
RMSD

(W m22) R2
MAPD
(%)

RMSD2
S/

RMSD2 (%)

Arid
(0<AI< 0.2)

AU-ASM 2013 26 0.31 73 25 25 0.99 9 2
2014 39 0.63 52 52 35 0.97 14 14

AU-Cpr 2013 30 0.39 58 34 30 0.97 15 11
2014 25 0.36 58 37 25 0.96 14 6

AU-GWW 2013 34 0.54 47 60 34 0.94 19 7
2014 34 0.60 43 42 34 0.96 15 11

AU-TTE 2013 26 0.40 100 48 26 0.97 11 10
2014 46 0.68 60 76 41 0.91 19 3

Semi-arid
(0.2<AI<0.5)

AU-Gin 2013 53 0.55 50 34 53 0.90 25 17
2014 54 0.54 54 24 54 0.91 24 20

AU-Ync 2013 39 0.27 65 77 39 0.94 16 2
2014 31 0.20 88 45 31 0.97 13 3

AU-Rig 2013 60 0.48 57 51 61 0.86 29 21
2014 59 0.40 76 45 60 0.87 43 38

AU-Stp 2013 44 0.76 51 38 44 0.88 24 13
2014 50 0.82 51 42 52 0.88 25 9

AU-Whr 2013 43 0.56 51 21 43 0.94 21 18
2014 46 0.58 50 32 47 0.94 21 19

AU-Wom 2013 40 0.85 26 3 40 0.95 19 19
2014 54 0.82 30 31 54 0.89 28 19

Mesic
(0.5<AI)

AU-Cow 2013 38 0.91 24 9 38 0.82 46 23
2014 47 0.85 31 5 46 0.82 44 40

AU-Cum 2013 51 0.81 41 25 51 0.89 36 14
2014 52 0.77 40 8 52 0.90 31 22

AU-Dry 2013 54 0.88 25 21 54 0.80 34 12
2014 64 0.80 38 26 64 0.82 30 30

AU-How 2013 55 0.89 24 7 55 0.82 38 42
2014 59 0.87 26 16 59 0.79 38 25

AU-Tum 2013 56 0.87 27 6 56 0.87 37 2
2014 53 0.88 27 3 53 0.88 35 2
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were found between STIC1.2 and STIC1.0, whereas the differences were relatively lower (5–40%, 3–22%,
and 5–18% in MAPD; 3–10 W m22, 2–8 W m22, and 4–18 W m22 in RMSD) between STIC1.2 and STIC1.1
(Figure A1). Statistical metrics of individual site-year is given in Table A2 with description in Appendix A1.

5.2. Effects of TR and Environmental Variables on the Performance of STIC1.2 in Different Ecosystems
Sensitivity analysis revealed that the relative change in kE error is inversely related to the relative change in TR,
thus a 10% reduction in TR can lead up to 50% increase in percent kE error for these ecosystems (Figures 6a,
6c, and 6e) (Table 3). Maximum sensitivity of kE to TR was found for arid and semi-arid ecosystems with signifi-
cant correlations of (20.35) to (20.92) and (20.30) to ( 20.35) (p< 0.05) for soil moistures above 0.05 m3 m23

and 0.10 m3 m23 (Table 3), respectively. In the mesic ecosystems, the sensitivity of kE errors to TR was relatively
uniform across all the ranges of soil moisture (r5 (20.26) to (20.29), p< 0.05) and EP// (r5 (20.27) to (20.31),
p< 0.05) (other than conditions of extremely high evaporative potential) (Table 3). In arid and semi-arid ecosys-
tems, the sensitivity of the kE error to TR was confounded due to EP// (Figures 6a and 6c) (also evident from
the principal component analysis described below).

Figure 4. Comparison of daily (a, c, and e) kE and (b, d, and f) H predicted by STIC1.2 with measured SEB flux components
in ecohydrologically contrasting OzFlux ecosystems of three aridity classes (as defined in Table 1). Data from the sites fall-
ing under same aridity class are combined together.
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Principal component regression (PCR) of DkE versus TR and environmental variables (/, DA, and u) revealed TR,
DA, and / to be the first principal component (PC1) affecting DkE variance in all the ecosystems (Figures 6b, 6d,
and 6f). However, the relative effect of TR in conjunction with different environmental factors in controlling the
variance of DkE varied among ecosystems. Maximum PC1 loading was found for TR and DA followed by / in
arid and semi-arid ecosystems (Figures 6b and 6d) where their correlation with DkE varied between 0.70 and
0.75 (TR), 0.65 and 0.70 (DA) and 0.50 and 0.55 (/), respectively (Figures 6b and 6d). Contrarily, in the mesic eco-
system, all the three variables had equal loadings (correlation 0.50) with DkE variance in PC1 axis (Figure 6f).
The effects of wind speed (u) on the DkE variance was reflected in the second principal component (PC2) axis
with correlation varying from 0.55 to 0.75. The residual errors in sensible heat flux (DH) showed similar behavior
of the DH variance as the variance of DkE against TR and environmental variables (not shown).

5.3. Relationship between Ecohydrological Conditions and TR in Determining Errors and Variability
of SEB Flux Components Predicted by STIC1.2
The scatter between MAPD and ecohydrological indicators in Figure 7 shows opposite relationships for kE
and H. Annual E/RN ratio and E had the strongest impacts on the MAPD of both fluxes. As evident from the
slopes of the regression lines, 1% increase in E was found to cause approximately 17% decrease (15%
increase) in MAPDkE (MAPDH) (Figure 7a). An increase of 10% in E/RN would cause a 76% decrease and 55%
increase in MAPDkE and MAPDH, respectively (Figure 7c). A systematic increase in MAPDkE was found with
increasing cVh, where a 10% increase in cVh resulted in 34% increase in MAPDkE (Figure 7b). However, the
impact of variation in h was approximately 50% less for the accuracy of predicted H, as evident from the
slope of the regression line (slope5 0.19) (Figure 7b). Interestingly, a logarithmic increase in MAPDkE was
found with increasing climatic dryness (Figure 7d). MAPDkE varied from 18 to 30% for EP/P ratio of 0 to 2.5
and it progressively increased from 55% to 100% when EP/P ratio exceeded 5 (Figure 7d).

The scatter plots of monthly variances in predicted versus observed kE and H (r2kE and r2H) revealed the capac-
ity of STIC1.2 to explain 88–90% of the observed flux variances in a broad range of aridity conditions (Figures 8a
and 8b). The correlation matrix of the residual variance in the fluxes (Dr2kE5r2kE STIC1.22 r2kE observed and
Dr2H5r2H STIC1.22 r2H observed) against a host of ecohydrological and meteorological variables revealed the
absence of any strong systematic relationship between Dr2kE and r2TR, r

2
h, r

2
P (r560.2) (Figure 8c). For H, the

similar analysis revealed 20–40% correlation between Dr2H and r2TR, r
2
TA (Figure 8d).

6. Discussion

Section 6.1 describes SEB flux prediction errors for STIC1.2 in the context of uncertainty in the relationship
between TR and aggregated moisture availability by evaluating the relationship between M, TR, and the con-
ductances, and thereby assessing the role of conductances estimates on residual kE error. This section also
highlights the impact of SEB closure correction errors in MAPD and systematic RMSD of the predicted fluxes.

Figure 5. (a and b) Validation of STIC1.2 estimates of annual E and H against EC tower measurements. These are the annual sum
of E and H for years 2013 and 2014 at each of the flux tower sites categorized according to their aridity class as defined in Table 1.
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Section 6.2 discusses how the collective role of TR and environmental variables affect the predictive errors
in STIC1.2. Lastly, section 6.3 discusses the link between TR and ecohydrological conditions in determining
the error and variability of STIC1.2-based SEB flux predictions.

6.1. What is the Performance of STIC1.2 When Evaluated With High Temporal Resolution Data Across
an Aridity Gradient in Australia?
6.1.1. Role of Uncertain Relationship Between M and TR
Evaluation of STIC1.2-derived SEB fluxes at 15 Ozflux sites of broad aridity classes revealed relatively large
differences between predicted and observed kE in the arid ecosystems as compared to the semi-arid and

Figure 6. (a, c, and e) Scatter plots showing relative change in kE errors due to relative change in TR in three ecosystems
of contrasting aridity. (b, d, and f) Loadings of Principal Component Regression (PCR) between residual error in STIC1.2 kE
(DkE) with TR and environmental variables showing the contribution of each principal component in explaining the
variance of the residual kE error. Half-hourly data are used for this analysis.
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mesic ecosystems. Uncertainty in the relationship between TR and
aggregated moisture availability (M) could be a considerable source
of error in the predictive power of STIC1.2 in the water-limited eco-
systems. In STIC1.2, M is modeled as a fraction of the dewpoint tem-
perature difference between evaporating front and atmosphere
(T0D2 TD) and of infrared temperature—dewpoint differences
between surface to atmosphere (TR2 TD). These two factors were
weighted by two different slopes of saturation vapor pressure-
temperature relationships (s1 and s2; equation (S26)) (Mallick et al.,
2016). This implies that for constant available moisture, this fraction
is constant. However, even for varying /, DA, and TA, constant mois-
ture availability does not imply invariant (T0D2 TD)/(TR2 TD) because
a wet surface has a different sensitivity to these variables than a dry
surface with limited surface conductance. Due to /2DA2 TR feed-
backs (Zhang et al., 2014), T0D2 TD can actually decrease with
increasing TR, /, and DA, whereas TR2 TD would increase. In this con-
text, estimation of T0D plays a critical role in arid and semi-arid envi-
ronments, which further requires sound estimation of s1. From the
definition of s1 [(e02 eA)/(T0D2 TD)], e0 ! eA and s1 ! 0 for an
extremely dry surface with insignificant evaporation. In the present

case, the estimates of s1 as a function of TD tend to be higher than the possible s1-limits in water-limited
environments, which is likely to introduce errors in T0D estimation (through supporting information equa-
tion (S27)). Overestimation of s1 would also lead to an overestimation of M (through the denominator in
supporting information equation (S26)), thus leading to overestimation of the conductances and kE. As
seen in Figuers 9a, 9c, and 9d), the relationship between M and TR is very strong for low magnitudes of M
(M< 0.025 for arid ecosystem; M< 0.10 for semi-arid and mesic ecosystems), and a significantly strong

Table 3
Sensitivity of kE Error to TR in Three Different Types of OzFlux Ecosystems, as
Shown by the Cross Correlation Between the Change in % kE Error and %
Change in TR for a Range of Soil Moisture and Potential Evaporation-Net
Available Energy Ratio

Correlation between relative
change in kE error (%) and
relative change in TR (%)

h and EP// criteria Class Arid Semi-arid Mesic

h (m3 m23) 0< h< 0.05 20.17 20.14 20.29
0.05< h< 0.10 20.38 20.18 20.29
0.10< h< 0.15 20.35 20.30 20.23
0.15<h 20.92 20.36 20.29

EP// ratio 3< EP// 20.16 20.10 20.09
2< EP//< 3 20.18 20.19 20.27
1< EP//< 2 20.17 20.17 20.28
0< EP//< 1 20.14 20.14 20.31

Note. The bold values are moderate to high correlation and highly
significant (p<< 0.05), whereas the non-bold values are low correlation and
significant (p< 0.05).

Figure 7. (a–d) Scatters between MAPD in daily kE and H versus ecohydrological and land surface variables combining
data from 15 OzFlux ecosystems representing three broad aridity classes as described in Table 1.
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relationship is also evident between gC/gA versus M (r5 0.81–0.88; p< 0.05) in all the ecosystems when
the surface is substantially dry (M< 0.15). gC/gA ratios tend to be invariant with increasing moisture
availability in the mesic ecosystems (M> 0.25; Figure 9e). Therefore, critical errors could be introduced
in kE retrieval under dry surface conditions due to the strong association between M and TR, and depen-
dence of the conductances on M. Residual error analysis of kE versus both the conductances revealed
kE error to be fairly correlated with gA and gC in the sparsely vegetated arid and semi-arid ecosystems
(Figures 9b and 9d) (r5 0.30–0.40, p< 0.05; r5 0.28–0.32, p< 0.05). There was a general tendency to
overestimate kE when gC was very low, which was eventually reduced with increasing gC. Residual kE
error appears to be heteroscedastic with gA, which signifies unequal variability of kE error across a range
of gA. A weak relationship between residual kE error and conductances was found in the mesic ecosys-
tem (Figure 9f), resulting in small predictive errors in kE for this ecosystem.

Significantly lower errors in predicting H than kE might be the result of partial compensation of gA/gC in
both numerator and denominator of the PM formulation for H (equation (4b)) (Winter & Eltahir, 2010). In
our study, gC showed much more variability as a function of TR (r5 0.72–0.74; 1% change in TR would lead
to 5.2–7.5% change in gC) than did gA with TR (r5 0.26–0.65; 1% change in TR would lead to 1.6–2%
change in gA) (Figure 10), suggesting that error in gC was larger than error in gA. Compensation of conduc-
tance errors in computing H (equation (4b)) might have resulted in substantial compensation of H errors
in all the ecosystems. By contrast, combined uncertainty due to gA in the numerator of equation (4a) with
uncompensated gA/gC in the denominator of equation (4a) (Mallick et al., 2015; Winter & Eltahir, 2010)
resulted large disagreements in measured and modeled kE for the arid and semi-arid ecosystems where
kE was small.

Figure 8. (a and b) Scatters of monthly variance of STIC1.2 versus observed kE (r2kE) and H (r2H) in contrasting OzFlux
ecosystems representing three broad aridity classes as defined in Table 1. (c and d) Correlation matrix showing the
relationship between the residual variances in kE (@r2kE5 r2kE STIC1.22 r2kE observed) and H (@r2H5 r2H STIC1.22

r2H observed) versus ecohydrological and meteorological variables.
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6.1.2. Role of SEB Closure on Statistical Metrics
Differences between STIC1.2 versus observed kE may be partly attributed to the BREB-closure correction of
kE observations. Although Bowen ratio correction forces SEB closure, in the arid and semi-arid ecosystems
major corrections are generally observed in H, whereas kE is negligibly corrected (Ch�avez et al., 2005). Sig-
nificant correlations are found between the kE error statistics and BREB-closure corrections (r5 0.60 for
MAPD in Figure 11a, r5 0.66 for RMSDs2/RMSD2 in Figure 11b). In majority of the arid and semi-arid sites,
high MAPD and RMSDs2/RMSD2 in kE (>50%) was associated with low percent of closure correction in kE
(12–20%) (Figures 11a and 11b). Both the error metrics were relatively high when modeled kE was com-
pared against RES-closure-based kE observations; however, RES-closure revealed a substantially weaker rela-
tionship between errors and percent closure corrections than in BREB-closure (Figures 11c and 11d).

Figure 9. (a, c, and e) Scatter plots showing the relationship between gC/gA versus M and M versus TR as modeled in
STIC1.2 for different ecosystem types. (b, d, and f) Scatter plots showing how the residual kE error in STIC1.2 is affected by
gC and gA for different types of aridity classes.
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BREB-closure correction was found to fail under hot, dry conditions in some previous studies. This is due to
the combination of extremely high evaporative potential and sensible heat entrainment from boundary
layer desaturating the surface and causing the surface-to-air vapor pressure gradient to reverse (Mallick
et al., 2014b; McHugh et al., 2015; Perez et al., 1999), a condition that prevails in the arid and semi-arid eco-
systems during most part the year. The assumption of scalar similarity for heat and water vapor is violated
in these conditions and gA of heat flux can be two to three times higher than gA of the water vapor flux
(Katul et al., 1995). For the RES-closure, additional uncertainty in kE might be introduced due to neglecting
subsurface heat sink in G measurements (Heitman et al., 2010), which themselves can have errors of 18–
66% (Ochsner et al., 2006). Similar analysis of H revealed relatively low overall correlation (r5 0.41) between
MAPD of predicted H and SEB closure (Figures 11e and 11f), with a tendency of high MAPD in mesic sites
due to overcorrection of H. This is due to the fact that gA responsible for H might be lower than gA of kE in
mesic ecosystems and the assumption of scalar similarity for heat and water vapor may not be true. For a
similar reason, the use of Bowen ratio approximations in the state equation of T0 in STIC1.2 might also be
responsible for additional error propagation in all the three ecosystems.

6.2. How Do TR and Associated Environmental Variables Affect the Performance of STIC1.2 in
Different Ecosystems?
The relationship between the relative change in kE error with the relative change in TR above a threshold
soil moisture content in arid and semi-arid ecosystems (Figures 6a, 6c, and 6e; Table 3) indicates the critical

Figure 10. Scatter plots showing the sensitivity of gC and gA to TR as modeled in STIC1.2 in three different classes of eco-
systems. This shows the relative change in the individual conductances due to the relative change in TR.
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role of uncertainty in TR-soil moisture relationship in STIC1.2 and the role of M in controlling gC/gA and resul-
tant kE errors in the water-limited ecosystems, as discussed previously. As further evident from Figures 6b,
6d, and 6f), while the accumulated effects of TR and DA were predominant in explaining DkE variance in arid
and semi-arid ecosystems, the influence of / was comparable to TR and DA in explaining DkE variance in the
mesic ecosystems. Since TR controls the atmospheric humidity profile by constraining soil moisture, gC and
transpiration; TR and DA have stronger autocorrelation in arid and semi-arid ecosystems as compared to the
mesic ecosystems (Abdi et al., 2017; Crago & Qualls, 2014); and kE is mainly limited by combination of these
two surface and atmospheric moisture variables. This explains the dominant role of TR and DA in controlling
the maximum DkE variance as reflected in the high correlation (0.65–0.75) in the first principal component
(PC1) axis of arid and semi-arid ecosystems (Figures 6b and 6d). In contrast, E in mesic ecosystems is con-
strained by TR, /, and DA; and all the three variables had accumulated impact in explaining the relative error

Figure 11. (a–d) Scatters of MAPD and RMSDs2/RMSD2 in half-hourly kE predicted by STIC1.2 versus average percent of
BREB-closure corrected kE and RES-closure corrected kE measured with the EC method. (e and f) Scatters of MAPD and
RMSDs2/RMSD2 in half-hourly H predicted by STIC1.2 versus average percent of BREB-closure corrected Hmeasured with
the EC method. Data from 15 OzFlux sites falling under three classes of contrasting aridity (as in Table 1) are grouped.
Relative kE and H correction (in percent) is computed as, %kE correction5 100 * (kEcorrected2 kEuncorrected)/kEuncorrected
and %H correction5 100 * (Hcorrected2Huncorrected)/Huncorrected. Here kEcorrected and Hcorrected are the Bowen ratio corrected
kE (kEuncorrected) and H (Huncorrected) observations.
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change in kE (Table 3 and Figure 6e) and DkE variance as seen in the PC1 axis in this ecosystem (Figure 6f).
Since PC1 had the highest total variance in all the ecosystems, its variables are the most important in deter-
mining the predictive errors in kE. The effects of wind speed (u) in explaining DkE variance (as seen in PC2)
might originate from some collinearity of u with net radiative heating, TR and DA as earlier reported by Mal-
lick et al. (2016).

6.3. Is There an Association between Ecohydrological Conditions and TR in Determining the Errors
and Variability of SEB Flux Components Predicted by STIC1.2?
Given the critical role of TR in STIC1.2, the estimate of TR is an additional source of error (through E) in pre-
dicted kE and H for the individual study sites (Figure 7a) and the error is consequently propagated into the
MAPD of kE and H versus cVh, annual E/RN, and EP/P relationships (Figures 7b–7d). Low annual E/RN and high
annual EP/P are the indicators of water limitations, where low E is the result of low P and h despite an abun-
dance of available energy in conjunction with high potential evaporative demand. Such water limitations
make E very sensitive to soil moisture variations (Jarvis & McNaughton, 1986), thereby accelerating biophysical
feedbacks on E (Mallick et al., 2016; Siqueira et al., 2008), and the rate of change of E becomes directly propor-
tional to the canopy (or surface) conductance (gC) (Jarvis & McNaughton, 1986). Since our gC estimates are
inevitably constrained by TR (through M), accuracy of TR is a key factor for enhancing E retrievals under these
conditions.

Given E appears in the denominator of the TR retrieval equation, TR is extremely sensitive to the uncertain-
ties in E (Hulley et al., 2012). Underestimation (overestimation) of TR would lead to overestimation (underes-
timation) of M, which further leads to underestimation (overestimation) of gA/gC in the denominator of the
PM model, causing the resultant SEB flux estimations to become uncertain. Careful handling of diurnal var-
iations of infrared E is therefore essential for deriving accurate surface skin temperature (Hulley et al., 2012;
Li et al., 2007). Substantial diurnal variations in E are found in arid and semi-arid ecosystems due to the
influence of soil moisture (h) (Hulley et al., 2010; Masiello et al., 2014). For low values of h, the rate of change
of E per unit change of h (i.e., @E/@h), at wave numbers of reststrahlen absorption is considerably large
(Masiello et al., 2014; Mira et al., 2007); @E � 0.05 per @h of 0.01 kg kg21. Consequently, exclusion of sub-
daily and seasonal variation of E in the TR estimation is evident in MAPD of kE versus E scatter plots
(Figure 7a).

Despite the absolute differences between the predicted and observed SEB fluxes, very good agreement
between the flux variances (Figures 9a and 9b) indicates the ability of STIC1.2 to capture the radiation and
water driven variabilities in SEB fluxes from mesic to arid ecosystems. The correlation of 612–15% between
Dr2kE and r2h, r

2
P, and r2TR (Figure 9c) is a result of aforementioned (section 6.1) TR uncertainties, in conjunc-

tion with SEB closure correction errors of EC kE observations in arid and semi-arid environments. Besides, the
negative relationship (r520.20) between Dr2kE (r

2
kE STIC1.22r2kE observed) versus r

2
u* is most likely associated

with the collinearity between wind shear and TR, DA, and / (also reported in Mallick et al., 2016) as described in
section 6.2. Nearly zero correlation between Dr2H with ecohydrological variances further indicates that H was
predominant in water-limited regions, and sensible heat flux is the primary pathway by which ecohydrological
variances induces variations in atmospheric variables and consequently affects the boundary layer growth (Kos-
ter et al., 2015). This was also supported by 40% correlation between Dr2H and r2TA. Also the absence of a rela-
tionship between Dr2H and r2u indicates that the exclusion of wind speed from STIC1.2 (see equations (5)–(8))
does not significantly affect the SEB flux estimates. This error characterization in a broad range of ecohydrologi-
cal conditions also indicated that in the ecosystems with low annual evaporative index (E/RN) and very high cli-
matic dryness index (EP/P), the thermal component of the SEB fluxes (i.e., H) is dominant and should be given
emphasis to assess model performance (Dirmeyer, 2011; Garc�ıa et al., 2008).

The overall RMSD of 25–61 and 11–37 W m22 in half-hourly and daily SEB fluxes and the associated statisti-
cal metrics are comparable with the results reported in a host of SEB modeling studies that uses empirical
sub-models to parameterize the conductances. Using the two-source energy balance model (TSEB) (Norman
et al., 1995), some recent studies have reported RMSD to the order of 72–135 and 52–131 W m22 in hourly
kE and H for a semi-arid grassland in Spain (Kustas et al., 2016), 95–166 W m22 in hourly kE (Song et al.,
2016) to 45–50 W m22 in daily kE for semi-arid irrigated cotton in Texas and Arizona (Colaizzi et al., 2014;
French et al., 2015), and 50–59 W m22 in hourly kE for irrigated maize in China (Song et al., 2016). A variant
of TSEB model (SPARSE model) is found to produce 43–47 W m22 in instantaneous kE and 50–80 W m22 in
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hourly kE in Tunisia and Morocco (Boulet et al., 2015; Saadi et al., 2017). Considering the error statistics of
state-of-the-art SEB models and their parameterization uncertainties (Timmermans et al., 2013); the perfor-
mance of STIC1.2 indicates substantial potential of this model towards bridging thermal infrared sensing
and physically-based evapotranspiration modeling. An intercomparison of STIC1.2 with other SEB models is
beyond the scope of this manuscript. However, a recent study on regional evapotranspiration mapping
demonstrated a comprehensive intercomparison of STIC1.2 with two other global models across an aridity
gradient in the conterminous United States for contrasting rainfall years as well as on a wide variety of bio-
mes (Bhattarai et al., 2018). The study revealed better performance of STIC1.2 as compared to the other
models and also demonstrated the critical role of conductances and associated land surface parameteriza-
tions on the model errors, intermodel agreements, and disagreements.

A host of literatures reported measurement uncertainties in H and kE to the order of 615–20 and 635–50 W
m22 (Masseroni et al., 2014; Wang et al., 2015). These uncertainties are associated with high magnitude of net
radiation (Hollinger & Richardson, 2005), and with stochastic nature of turbulence (Hollinger & Richardson,
2005; Wang et al., 2015). Landscape heterogeneity may induce large scale turbulence which consequently
leads to large H and kE uncertainty in arid and semi-arid ecosystems (Wang et al., 2015). However, it is unlikely
that the entire RMSD in kE and H is attributable solely to the EC measurement uncertainties (Foken, 2008). As
a result, the range of RMSD obtained between STIC1.2 and tower H and kE is likely to be determined by the
combination of structural uncertainties in STIC1.2 and SEB flux measurement uncertainties in the EC towers.

7. Conclusions

By integrating thermal infrared temperature into a combined structure of Penman-Monteith and Shuttleworth-
Wallace framework we show the promise of a single-source box modeling approach towards bridging thermal
infrared sensing and physically-based model to retrieve the energy-water fluxes. Analysis of STIC1.2 results in 15
eddy covariance sites across an aridity gradient in Australia led us to the following conclusions.

1. STIC1.2 overcomes the uncertainties in aerodynamic temperature and biophysical conductances parame-
terizations, and establishes a direct feedback of TR on SEB fluxes, source/sink height temperature and
vapor pressures, and the conductances. The efficiency of STIC1.2 to explain the variances of half-hourly
to annual SEB fluxes across diverse biomes and ecohydrological settings in Australia indicates the skill of
the model to capture the water-energy flux variabilities in hydrological extremes.

2. Uncertainty in the relationship between TR and moisture availability (M) is a considerable source of
error in the predictive power of STIC1.2 in the water-limited ecosystems. Use of differential TR obser-
vations (between sunrise and noontime) as a water stress constraint could potentially diminish the
uncertainty in M and eventually SEB flux prediction errors in STIC1.2. Besides, the performance of
STIC1.2 depends on rigorous surface emissivity (E) corrections, particularly in arid and semi-arid eco-
systems. Since E is sensitive to the soil water content variations, assuming a constant surface emissiv-
ity for retrieving TR significantly affects the predictive skills of STIC1.2 in those ecosystems where
substantial variations in soil moisture are observed. Spectrometer-based measurements representing
appropriate footprint area around EC sites are needed to capture the diurnal variations in E for an
improved TR retrieval.

3. Disparities between predicted and observed kE in arid semi-arid ecosystems also emerged due to the
surface energy balance closure (SEB) correction errors of kE observations. A robust SEB closure correction
is needed for better interpretation of the predictive capacity of STIC1.2 in water-limited ecosystems.

4. In the arid ecosystems where evapotranspiration (E) signal is small, the thermal component of the
energy-water fluxes is predominant and sensible heat flux (H) tends to be a better metric to test the skill
of any physically-based model, and might be a favored water stress indicator. Simultaneously, in the
semi-arid and mesic ecosystems, both E and H appear to be the better metric in detecting the water
cycle variability, and STIC1.2 showed substantial promise to capture the magnitude and variabilities of
these two most important energy-water cycle components across these broad aridity classes.

5. TR is the most critical variable explaining the error variance of E in arid and semi-arid ecosystems, while
both net available energy and TR explain the error variance of E in mesic ecosystems. Effects of ecohydro-
logical conditions in determining the predictive capacity of STIC1.2 are also associated with TR and radia-
tion driven SEB flux variability in the two ecohydrological extremes.
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STIC1.2 is independent of any biome specific or leaf-scale empirical parameterizations of the conductances,
which implies that it does not require any data on plant functional types or vegetation structure. This model
is a valuable addition to the recent Australian energy and water exchange research initiative (OzEWEX), in
particular to the WG2 (working group 2) that focuses on observations to evaluate and compare biophysical
models and data products describing energy and water cycle variables. Given the significance of aerody-
namic and canopy conductances in characterizing the land-atmosphere interactions, STIC1.2 can be used to
study the ecohydrological feedbacks on land surface versus boundary layer interactions. With the availabil-
ity of accurate TR information from new MOD21 land surface temperature (Hulley et al., 2015), LANDSAT,
recently launched Sentinel-3, or future missions with thermal sensors like HyspIRI, a successful application
of STIC1.2 is expected for mapping regional-scale vegetation water use with special emphasis in the water-
limited ecosystems.

Appendix A

A1. Intercomparison of STIC1.2 With STIC1.0 and STIC1.1

An intercomparison of STIC1.2 error statistics with the previous two versions of STIC (STIC1.0 and STIC1.1)
revealed maximum improvement in the performance of STIC1.2 in arid and semi-arid ecosystems (as

Figure A1. (a) Difference in MAPD (%) in kE between STIC1.2 versus STIC1.1 and STIC1.0 for the 15 OzFlux sites, (b) Differ-
ence in RMSD (W m22) in kE between STIC1.2 versus STIC1.1 and STIC1.0 for the 15 OzFlux sites.

Figure A2. Taylor diagram of daily error statistics showing the normalized RMSD and correlation coefficient between
observed and predicted kE and H during (a) dry and (b) wet seasons of 2013–2014 in ecohydrologically contrasting
OzFlux ecosystems of three aridity classes as defined in Table 1. Data from the sites falling under same aridity class are
combined.
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Table A1
Variables and Symbols and Their Description Used in the Present Study

Variables and
symbol Description

kE Evapotranspiration (evaporation1 transpiration) as latent heat flux (W m22)
H Sensible heat flux (W m22)
RN Net radiation (W m22)
G Ground heat flux (W m22)
/ Net available energy (W m22) (i.e., RN2G)
RS# Downwelling shortwave radiation (W m22)
RS" Upwelling shortwave radiation (W m22)
RL# Downwelling longwave radiation (W m22)
RL" Upwelling longwave radiation (W m22)
E Thermal infrared surface emissivity
TA Air temperature (8C)
TD Dewpoint temperature (8C)
TR Radiometric surface temperature (8C)
T0 Aerodynamic temperature or source/sink height temperature (8C)
T0D Dew-point temperature at the source/sink height (8C)
RH Relative humidity (%)
eA Atmospheric vapor pressure at the level of TA measurement (hPa)
DA Atmospheric vapor pressure deficit at the level of TA measurement (hPa)
eS vapor pressure at surface (hPa)
e�S Saturation vapor pressure at surface (hPa)
e0 Vapor pressure at the source/sink height (hPa)
e�0 Saturation vapor pressure at the source/sink height (hPa)
D0 Vapor pressure deficit at the source/sink height (hPa)
u Wind speed (m s21)
u* Friction velocity (m s21)
s Slope of saturation vapor pressure versus temperature curve (hPa K21) (estimated at TA)
s1 Slope of the saturation vapor pressure and temperature between (TSD2 TD) versus

(e02 eA) (approximated at TD) (hPa K
21)

s2 Slope of the saturation vapor pressure and temperature between (TR2 TD) versus
(e�S 2 eA) (hPa K

21)
s3 Slope of the saturation vapor pressure and temperature between (TR2 TSD) versus

(e�S 2 eS) (approximated at TR) (hPa K
21)

s0 Slope of the saturation vapor pressure and temperature between (T02 TA) versus
(e�0 2 e�A) (approximated as s) (hPa K21)

j Ratio between (e�0 2 eA) and (e�S 2 eA)
E Evapotranspiration (evaporation1 transpiration) as depth of water (mm)
kEP Potential evaporation as flux (W m22)
kE�T Potential transpiration as flux (W m22)
kEW Wet environment evaporation as flux (W m22)
kE�P Potential evaporation as flux according to Penman (W m22)
kE�PM Potential evaporation as flux according to Penman-Monteith (W m22)
kE�PT Potential evaporation as flux according to Priestley-Taylor (W m22)
EP Potential evaporation as depth of water (mm)
E�P Potential evaporation as depth of water according to Penman (mm)
E�PM Potential evaporation as depth of water according to Penman-Monteith (mm)
E�PT Potential evaporation as depth of water according to Priestley-Taylor (mm)
EW Wet environment evaporation as depth of water (mm)
gA Aerodynamic conductance (m s21)
gM Momentum conductance (m s21)
gC Canopy (surface) conductance (m s21)
gCmax Maximum canopy (surface) conductance (m s21) (5 gC/M)
M Aggregated surface moisture availability (0–1)
k Latent heat of vaporization of water (j kg21 K21)
zR Reference height (m)
z0M Effective source-sink height (roughness length) of momentum (m)
z0H Effective source-sink height (roughness length) of heat (m)
d0 Displacement height (m)
c Psychrometric constant (hPa K21)

Water Resources Research 10.1029/2017WR021357

MALLICK ET AL. 3430



compared to mesic ecosystems) for both the SEB fluxes (Table A2). Statistical metrics of STIC1.0 and STIC1.1
(Table A2) revealed substantially higher RMSD (53–90 W m22 and 36–49 W m22) and MAPD (91–100% and
60–100%), and lower R2 (0.23–0.64 and 0.28–0.67) as compared to STIC1.2 in arid ecosystems. In the semi-
arid ecosystems, these statistics were 59–91 W m22 and 43–73 W m22 (RMSD); 31–100% and 28–100%
(MAPD); and 0.19–0.84 and 0.21–0.84 (R2), respectively.

A2. Dry Season Versus Wet Season Statistics in SEB Fluxes

The Taylor diagram (Figure A2) reveals overall lower percentage errors in H as compared to kE in arid and
semi-arid ecosystems during both dry and wet seasons (please see Table A3 for dry and wet season), with

Table A1. (continued)

Variables and
symbol Description

q Density of air (kg m23)
cp Specific heat of dry air (MJ kg21 K21)
K Evaporative fraction (unitless)
b Bowen ratio (unitless)
a Priestley-Taylor parameter (unitless)
. Stefan-Boltzmann constant (5.6703733 1028 W m22 K24)

Table A2
Error Statistics of Sub-daily kE and H Derived With STIC1.0 and STIC1.1 in 15 EC Sites Covering Three Ecohydrologically Contrasting OzFlux Ecosystems of Different
Aridity Classes as Defined in Table 1

kE H

Aridity class Site name
STIC

versions
RMSD

(W m22) R2 MAPD (%)
RMSDs2/
RMSD2 (%)

RMSD
(W m22) R2 MAPD (%)

RMSDs2/
RMSD2 (%)

Arid
(0<AI<0.2)

AU-ASM STIC1.0 76–90 0.23–0.54 98–100 38–39 76–96 0.96–0.97 31–37 80–87
STIC1.1 36 0.28–0.62 70–100 20–40 36 0.97–0.98 14–15 11–60

AU-Cpr STIC1.0 58–76 0.29–0.30 97–100 32–34 58–76 0.95–0.96 31–34 87–90
STIC1.1 26–32 0.36–0.38 70–74 25–38 26–32 0.96–0.97 14–15 21–28

AU-GWW STIC1.0 53–66 0.46–0.56 91–100 19–35 53–66 0.92–0.95 28–30 69–82
STIC1.1 33–35 0.53–0.60 60–67 37–59 33–35 0.94–0.96 14–20 6–8

AU-TTE STIC1.0 57–71 0.26–0.64 97–100 33–46 57–71 0.90–0.95 32–35 68–89
STIC1.1 31–49 0.35–0.67 68–100 37–77 31–49 0.88–0.97 15–23 4–42

Semi-arid (0.2<AI<0.5) AU-Gin STIC1.0 77–83 0.50–0.51 66–77 16–20 77–83 0.86–0.89 33–34 71–77
STIC1.1 54–55 0.53–0.55 53–54 40–53 54–55 0.90–0.91 24–26 14–15

AU-Ync STIC1.0 73–76 0.19–0.26 95–100 35–40 73–76 0.90–0.95 33–34 79–85
STIC1.1 35–41 0.21–0.25 97–100 36–57 35–41 0.93–0.97 15–19 19–25

AU-Rig STIC1.0 89–91 0.30–0.33 89–100 22–29 89–91 0.78–0.81 46–60 76–77
STIC1.1 61–63 0.35–0.43 59–79 59–65 61–63 0.85–0.86 30–45 23–37

AU-Stp STIC1.0 70–85 0.65–0.69 82–85 36–50 70–85 0.86–0.89 38–41 86–87
STIC1.1 46–53 0.75–0.78 52–56 54–60 46–53 0.86–0.87 24–26 6–13

AU-Whr STIC1.0 66–84 0.49–0.54 73–88 14–22 66–84 0.90–0.91 30–35 72–80
STIC1.1 43–44 0.56–0.58 52–53 30–50 43–44 0.93–0.94 21–22 15–21

AU-Wom STIC1.0 59–72 0.83–0.84 31–45 9–39 59–72 0.90–0.93 30–32 56–81
STIC1.1 43–73 0.78–0.84 28–40 39–67 43–73 0.89–0.94 20–38 16–35

Mesic
(0.5<AI)

AU-Cow STIC1.0 44–59 0.84–0.90 28–37 3–13 44–59 0.77–0.78 44–52 56–78
STIC1.1 43–47 0.86–0.92 28–29 12–49 43–47 0.81–0.82 43–53 14–20

AU-Cum STIC1.0 87–135 0.71–0.78 60–63 28–54 87–135 0.85–0.86 46–53 86–94
STIC1.1 49–71 0.76–0.84 34–37 5–26 49–71 0.90–0.91 25–33 40–62

AU-Dry STIC1.0 93–101 0.70–0.73 57–61 28–29 93–101 0.80–0.81 46–47 83–87
STIC1.1 65–69 0.77–0.81 41–42 48–59 65–69 0.81–0.82 33–34 9–11

AU-How STIC1.0 77–80 0.84–0.85 29–30 13–20 77–80 0.77–0.78 45–50 83–87
STIC1.1 60–72 0.86–0.88 26–33 27–54 60–72 0.78–0.80 40–49 9–19

AU-Tum STIC1.0 63–64 0.86–0.87 28–29 4–8 63–64 0.85–0.86 37–38 52–56
STIC1.1 58–62 0.85–0.86 26–27 10–14 58–62 0.84–0.86 35–37 13–15
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normalized RMSD (RMSD/standard deviation) and correlation between observed and modeled H of 27–60%
and 0.78–0.95, respectively. Notable differences in kE errors between wet and dry seasons for arid and
semi-arid ecosystems (normalized RMSD 90–100%) were not found, but the error in kE was lower (52%) dur-
ing the wet season as compared to the dry seasons (75%) in the mesic ecosystems. This further highlights
the fact that the high errors in kE for dry seasons in arid semi-arid ecosystems are associated with uncertain-
ties in TR and SEB closure corrections, respectively.

A3. Statistical Analysis

Total RMSD is the sum of RMSDS and nonsystematic RMSD (RMSDU), and according to Willmott (1982)
RMSDs should be less than RMSDU. The proportion of the total RMSD arising from systematic biases is
reflected in the quantity RMSDs2/RMSD2 (Willmott, 1982).
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Table A3
Dry and Wet Seasons of the 15 OzFlux EC Sites Used in the Present Study

Aridity class Site name Season (months)

Wet Dry Wet
Arid (0<AI< 0.2) AU-ASM Jan to Apr May to Oct Nov to Dec

AU-GWW Jan to May Jun to Oct Nov to Dec
AU-TTE Jan to Feb Mar to Oct Nov to Dec

Dry Wet Dry
AU-Cpr Jan to Mar Apr to Sep Oct to Dec

Semi-arid (0.2<AI< 0.5) Wet Dry Wet
AU-Stp Jan to Mar Apr to Oct Nov to Dec

Dry Wet Dry
AU-Gin Jan to Apr May to Oct Nov to Dec
AU-Ync Jan to Mar Apr to Sept Oct to Dec
AU-Rig Jan to Mar Apr to Sept Oct to Dec
AU-Whr Jan to May Jun to Sept Oct to Dec
AU-Wom Jan to Apr May to Oct Nov to Dec

Mesic (0.5<AI) Wet Dry Wet
AU-Cow Jan to May Jun to Oct Nov to Dec
AU-Cum Jan to Apr May to Oct Nov to Dec
AU-Dry Jan to Mar Apr to Oct Nov to Dec
AU-How Jan to Mar Apr to Oct Nov to Dec

Dry Wet Dry
AU-Tum Jan to Mar Apr to Oct Nov to Dec
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where Oi represents observed value, Pi is the model-predicted value, N number of observations, P̂ i esti-
mated value based on the ordinary least square regression (P̂ i5 c1mOi); where m and c are the slope and
intercept of linear regression between P on O, and �O is the mean of observed values.
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