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Analytical Model Including Rotor Eccentricity for
Bearingless Synchronous Reluctance Motors

Seppo E. Saarakkala, Victor Mukherjee, Maksim Sokolov, Marko Hinkkanen, and Anouar Belahcen

Abstract—This paper deals with modelling of rotor eccen-
tricity in a dual three-phase winding bearingless synchronous
reluctance motors (BSyRMs). The motor includes two separate
sets of three-phase windings: one for torque production and
the other one for radial force production. For this motor, an
improved analytical model with linear magnetic material is
presented. The accuracy of the model depends on the accuracy
of the inverse-airgap function. Typically, a series expansion is
used for approximating the inverse-airgap function. In order
to make the main-winding inductances depend on the radial
position, at least the first two terms have to be included in the
expansion, enabling calculation of the radial forces caused by
unbalanced magnetic pull. The improved model is applicable,
e.g., for stability analysis, time-domain simulations, or developing
real-time control methods.

Index Terms—Dual-winding motor, eccentricity, inductance,
inverse-airgap function, open-loop stability, radial force, unbal-
anced magnetic pull

I. INTRODUCTION

Bearingless motors offer an attractive alternative to con-
ventional electrical machines equipped with mechanical bear-
ings or active-magnetic-bearings (AMBs), especially in high-
speed applications [1]. Bearingless drives integrate the func-
tionalities of active magnetic bearings and electrical machine
inside a single unit, which reduces the size, complexity and
price of the system [2]. Several motor topologies have been
proposed in the literature to be used as bearingless motors,
e.g., [2]–[5]. In this paper, a dual three-phase winding BSyRM
is considered. The first winding set is applied for production
of the shaft torque and is referred to as a main winding. The
second winding set is for production of the radial force for
stable levitation of the rotor and is referred to as a suspension
winding. The advantages of BSyRM are, e.g., that it neither
needs the permanent magnets (PMs) placed in the rotor, like
the PM machines do, nor it produces additional losses because
of the rotor currents, like the induction machines do.

In a conventional SyRM, the existence of magnetically
non-conducting flux barriers makes the reluctance vary inside
the rotor depending upon the total number and the shape
of the flux barriers [6]. The reluctance difference creates
the operational torque of the motor. The electromagnetic
torque may be calculated, if the terminal inductances and the
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currents of the motor are available. Similarly, in the case of
a BSyRM, the torque and the radial forces can be computed
analytically, when the terminal inductances and the currents
of both main and suspension windings are known [7]. When
a horizontally mounted BSyRM drive is started, the rotor
is initially resting on the safety bearing, meaning that the
rotor is radially significantly displaced from the center of
the stator (magnetic center position). The radial displacement
creates an unbalanced magnetic pull, when one of the two
windings is energized with current excitation. It is beneficial
to have an understanding of the radial forces caused by the
unbalanced magnetic pull, and possibly compensate them in
the levitation-control system [7], for a smoother operation
during the initial lift up of the rotor. Furthermore, the rotor
may be subjected to radial displacement variations even during
the normal operation, e.g., because of bending modes of the
shaft [8]. In addition to the effect of unbalanced magnetic pull,
the eccentric rotor position causes inductance variation, which
may deteriorate performance of model-based control systems
[9], [10] and even lead to instability in the worst case [11].

Typically, the inductances of the bearingless motors are
derived by first approximating the inverse-airgap length of
an eccentric rotor with a series expansion of cosine function
and using it further to define the permeance function of the
airgap. The permeance function is finally used to obtain the
inductances of the two windings sets [7]. An assumption of
cylindrical rotor surface is used in [7], when deriving the
inductances of the model. Furthermore, the obtained analytical
small-signal model is valid only in the vicinity of centric
operating point. On the other hand, the saliency of the rotor is
taken into account in [12] by using piecewise defined inverse-
airgap length, making it more elaborate way to derive the
inductances for motors with salient rotor structure (such as
BSyRMs). In both of these studies, only the first term is
included in the series expansion, making them inaccurate
approximations. The inaccuracy further results in an inability
to predict the radial force caused by the unbalanced magnetic
pull. To cope with the eccentric radial positions, additional
second order equations are introduced in [7] to make the main-
winding inductances dependent on the radial displacement of
the rotor. However, these additional equations complicates the
model and require extra parameters to be tuned.

The existing models for BSyRMs are improved in this
paper to inherently deal with the eccentric operation. In
accordance with [12], the rotor saliency is taken into account
by using piecewise defined inverse-airgap length. On the other
hand, the accuracy of the inverse-airgap length approximation
is increased by including more terms in the series expansion.
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Fig. 1. BSyRM studied in this paper. (a) Salient 4-pole rotor structure and the coordinate systems of the main and suspension windings, marked with (d, q)
and (x, y), respectively. (b) Geometry and the mesh used in FEA. The suspension winding can be seen at the bottom of the slots. (c) Magnetic flux density
at the rated torque and levitation forces.

To concentrate solely on the effects of rotor eccentricity,
a simple textbook-type salient-pole reluctance rotor is con-
sidered and the magnetic saturation is ignored. The main
contributions of this paper are:

1) It is demonstrated that the approximation of the inverse-
airgap length significantly influences the capability of
the resulting model to approximate the radial forces
of the motor. This is especially evident for larger
eccentricity values.

2) It is shown that at least the first two terms have to be
included in the series expansion for the inverse-airgap
function in order to make the main-winding inductances
dependent on the radial position and, further, to include
the effect of the unbalanced magnetic pull in the calcu-
lated radial forces.

3) It is demonstrated that the open-loop stability of a dual-
winding motor model depends not only on the model
structure, but also on its parameter values.

4) Unlike in the earlier works, a straightforward method
to find the parameter values of the models is presented
in this paper.

The improved model is applicable, e.g., for a stability
analysis, time-domain simulations, or developing real-time
control methods for BSyRMs. Unlike the earlier small-signal
models [7], [12], the improved model can be used with higher
rotor eccentricities (e.g., during the start up of a BSyRM
drive).

II. ANALYTICAL FLUX-LINKAGE MODELS INCLUDING
ROTOR ECCENTRICITY

As depicted in Fig. 1, the studied BSyRM has a salient
4-pole rotor. A 4-pole main winding for the torque production
and a 2-pole suspension winding for the radial-force produc-
tion are sinusoidally distributed in the stator. In the following,
the system model is analyzed in stationary coordinates, having
set the rotor angle ϑm = 0. Nevertheless, because sinusoidal
flux-linkage distributions are assumed, the presented models

are directly applicable in rotating dq-coordinates, after com-
pleting the necessary coordinate transformations. The flux
linkages of the BSyRM are analysed taking into account
variations in the radial position of the rotor. The analysis is
carried out by assuming linear magnetics both in the stator
and rotor iron. The nominal airgap length of the motor is
g0 = 1 mm.

When a cylindrical rotor surface is assumed and the rotor
is displaced to the positive x and y directions from its centric
point [cf. Fig. 1(a)], the airgap length can be given as a cosine
function within a complete revolution (θ = 0 . . . 2π)

g(θ, x, y) = g0 − x cos(θ) − y sin(θ) (1)

Then, the permeance function is given as

P (θ, x, y) = µ0Rlg
−1(θ, x, y) (2)

where R is the rotor radius and l is the axial length. Perme-
ability of the air is denoted by µ0. By using the permeance
function, the airgap flux distributions generated by the main
and suspension windings can be given in (α,β) and (x,y)
directions

φx = P

(
Ax

2
+ Vx

)
φy = P

(
Ay

2
+ Vy

)
(3)

φd = P

(
Ad

2

)
φq = P

(
Aq

2

)
(4)

where Ad, Aq and Ax, Ay are the magneto motive force
(MMF) space distributions of the main and suspension wind-
ings, respectively. The magnetic potentials of the rotor in the
x and y directions are denoted by Vx and Vy, respectively [7].

Under these assumptions, the flux linkages of the main
winding ψm and the suspension winding ψs can be presented
in matrix format [2]:[

ψm
ψs

]
=

[
Lm(x, y) M(x, y)

MT(x, y) Ls(x, y)

]
︸ ︷︷ ︸

LΣ(x,y)

[
im
is

]
(5)



g−1(θ, x, y) =
K(θ)

g(θ, x, y)
≈ K(θ)

g0

1 +

[
x

g0
cos(θ) +

y

g0
sin(θ)

]
︸ ︷︷ ︸

first term

+

[
x

g0
cos(θ) +

y

g0
sin(θ)

]2

︸ ︷︷ ︸
second term

+ · · ·

 (7)

where the current vectors are defined as im = [imd, imq]T and
is = [isx, isy]T. The flux-linkage vectors are defined similarly
and the inductance matrices in (5) are

Lm =

[
Ld Ldq
Ldq Lq

]
Ls =

[
Lx Lxy
Lxy Ly

]
M =

[
Mdx Mdy
Mqx Mqy

]
(6)

where the elements may depend on the radial position of the
rotor. As an example, the following elements are defined as

Ld =
1

2

∫ 2π

0

φdAddθ Mdx =
1

2

∫ 2π

0

φxAddθ (7)

and the remaining elements in (6) can be defined similarly
[7].

It can be seen that the inverse-airgap function is required in
order to be able to use the permeance function for calculation
of the inductance matrices elements. The exact analytical
inverse-airgap function inside the integrals (7) would result
in complicated integration. Instead, the inverse-airgap function
can be approximated using series expansions [cf. (7) at the top
of the page]. The more terms are considered in the expansion,
the more accurately it models the actual inverse-airgap length.
For BSyRMs, it is unrealistic to assume cylindrical rotor
surface. Therefore, the rotor saliency is taken into account
by using a piecewise defined coefficient similarly to [12]

K(θ) =



0, γ < θ < π
2 − γ

0, π
2 + γ < θ < π − γ

0, π + γ < θ < 3π
2 − γ

0, 3π
2 + γ < θ < 2π − γ

1, otherwise

(8)

where the constant 0 < γ < π/4 defines the saliency of the
rotor. As an example, Fig. 2 shows the inverse-airgap length
within a complete revolution of θ, when x = y = 0.4 mm and
γ = 25◦. The inverse-airgap length is numerically calulated
as an inverse of (1) and compared with approximations from
(7). It can be seen that the accuracy of the series expansion
substantially increases when more terms are included.

A. Textbook Model [7]

In the textbook [7], the inductance matrices for BSyRMs
are derived from (2) by assuming a cylindrical rotor and
including the first term in the inverse-airgap function (7):

Lm =

[
Ld 0
0 Lq

]
Ls =

[
Ls 0
0 Ls

]
M(x, y) =

[
Mdx −Mdy
Mqy Mqx

]
(9)
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Fig. 2. Inverse-airgap length calculated numerically as an inverse of (1) and
approximated using (7). The nominal airgap length of the motor is g0 = 1
mm.

where Ld, Lq, Ls are inductances and Md, Mq are radial-force
constants. Moreover, the radial-force vector in xy coordinates
F s is [13]

F s =

[
Fx
Fy

]
=

[
imdisx imqisy
−imdisy imqisx

] [
Md
Mq

]
(10)

This textbook model is well known and will be used as a
benchmark model for comparisons in the following sections.

B. Improved Model

In this paper, the inductance matrices in (5) are pre-
sented as matrix products of inductance matrices and unit-
less displacement matrices, which describe the rotor radial-
displacement dependency. The following format of matrices
can be obtained by applying (2), (3), (7), and (7)

Lm(x, y) = Lm0Dm(x, y) Ls(x, y) = Ls0Ds(x, y)

M(x, y) = c0Lm0DM(x, y) Lm0 =

[
Ld0 0
0 Lq0

]
(11)

where Dm(x, y), Ds(x, y), and DM(x, y) are the displace-
ment dependency matrices. The self inductances of the main
winding are Ld0 and Lq0 and the self inductance of the
suspension winding is Ls0. Scalar valued coefficient c0 =√

2Ls0/(Ld0 + Lq0)/2 links these inductances to the mutual-
coupling elements [i.e., force constants in (9)]. Furthermore,
the saliency ratio is defined as

Ld0

Lq0
=

4γ + sin(4γ)

4γ − sin(4γ)
≈ 3

4γ2
− 2

5
(12)



It is important to notice that if the saliency is modelled
differently (e.g., by using trigonometric functions) or if more
than three first terms are considered in (7), the previous format
[(11) and (12)] may not be directly applicable.

1) Displacement Matrices: The First Term Considered in
the Inverse-Airgap Approximation: The inverse-airgap func-
tion (7) is approximated with its first term. This leads to the
following displacement matrices

Dm = I Ds =

 2γ(2g2
0−x

2)

πg2
0

− 2γxy
πg2

0

− 2γxy
πg2

0

2γ(2g2
0−y

2)

πg2
0


DM =

1

g0

[
x −y
y x

]
(13)

where I is a 2×2 identity matrix. An important special case is
obtained for a centric rotor, making the cross-coupling terms
between the main and suspension windings to disappear. In
this case, the displacement matrices reduce to

Dm = I Ds = I DM = 0 (14)

where 0 is a 2 × 2 null matrix. It is worth noticing that the
textbook model (9) is a combination of (13) and (14), where
Dm and Ds are selected from (14) and DM from (13), further
assuming that Ld/Lq = Md/Mq.

2) Displacement Matrices: The First Two Terms Consid-
ered in the Inverse-Airgap Approximation: According to (11)
and (13), the radial displacement affects only the inductance
matrix Ls and the mutual-coupling matrix M . On the other
hand, according to findings in [7] for BSyRMs, the eccentric-
ity affects also the self inductances of the main winding. Thus,
the inverse-airgap function accuracy is increased by including
the second term in the series expansion (7). This modification
results in the following displacement matrices

Dm = dm =

(
1 +

x2 + y2

2g2
0

)
Ds =

[
dx dxy
dxy dy

]
(15)

DM =
1

g0

 2x(g2
0+y2)

2g2
0+x2+y2

−2y(g2
0+x2)

2g2
0+x2+y2

y(2g2
0−x

2+y2)

2g2
0+x2+y2

x(2g2
0+x2−y2)

2g2
0+x2+y2


where the elements of Ds are

dx =
sin(4γ)(x4 − y4 + 2g2

0x
2 − 2g2

0y
2)

4πg2
0(2g2

0 + x2 + y2)

+
4γ(8g4

0 + 3x4 + y4 + 6g2
0x

2 + 6g2
0y

2 + 4x2y2)

4πg2
0(2g2

0 + x2 + y2)

dy =
sin(4γ)(y4 − x4 − 2g2

0x
2 + 2g2

0y
2)

4πg2
0(2g2

0 + x2 + y2)

+
4γ(8g4

0 + x4 + 3y4 + 6g2
0x

2 + 6g2
0y

2 + 4x2y2)

4πg2
0(2g2

0 + x2 + y2)

dxy = −xy[sin(4γ)(2g2
0 + x2 + y2) − 4γ(x2 + y2)]

2πg2
0(2g2

0 + x2 + y2)
(16)

From (11) and (15), it is evident that also the elements of
inductance matrix Lm depend on x and y.

TABLE I
PARAMETER ESTIMATES OF THE TEXTBOOK MODEL (9)

Parameter set 1 Parameter set 2
(x = 0, y = −0.6 mm) (x = y = 0)

Ld (mH) 17 14.5
Lq (mH) 10.4 8.9
Ls (mH) 239 220
Md (H/m) 57 40
Mq (H/m) 34 22

TABLE II
PARAMETER ESTIMATES OF THE IMPROVED MODEL (11)

Parameter set 3 Parameter set 4
(x = 0, y = −0.6 mm) (x = y = 0)

Ld0 (mH) 14.4 14.5
Lq0 (mH) 8.8 8.9
Ls0 (mH) 281 284
c0 2.46 2.47
γ (deg) 34.7 34.9

C. Radial Forces

The stored magnetic co-energy of the system is

W ′m =
1

2

[
iTm iTs

] [ Lm0Dm c0Lm0DM

c0Lm0D
T
M Ls0Ds

] [
im
is

]
(17)

and the radial forces can be calculated as

Fx =
∂W ′m
∂x

=
1

2

(
iTmLm0

∂Dm

∂x
im + iTs Ls0

∂Ds

∂x
is

)
+
c0
2

(
iTmLm0

∂DM

∂x
is + iTsLm0

∂DT
M

∂x
im

)

Fy =
∂W ′m
∂y

=
1

2

(
iTmLm0

∂Dm

∂y
im + iTs Ls0

∂Ds

∂y
is

)
+
c0
2

(
iTmLm0

∂DM

∂y
is + iTsLm0

∂DT
M

∂y
im

)
(18)

It is worth noticing that the partial derivatives of the displace-
ment matrices in (18) define the x and y dependencies of the
radial forces.

III. COMPARISON BETWEEN STATIC FEA RESULTS AND
ANALYTICAL MODELS

Flux linkages of the studied BSyRM are solved as func-
tions of currents and radial positions, similarly as in [14]. The
calculation is based on static finite-element analysis (FEA)
in pre-selected operating points. The main-winding current
components (imd, imq) are varied between 0 and 20 A, the
suspension winding current components (isx, isy) are varied
between −2 and 2 A, and the radial displacements are varied
between −0.6 and 0.6 mm both in the x and y directions.
Together with the flux linkages, the FEA solver calculates
the radial forces and the motor torque at given operating
points. Fig. 1(b) shows the rotor geometry used in FEA. As
an example, Fig. 1(c) shows the magnetic-field solution at the
rated torque and rated radial force.



A. Parameters of the Textbook Model (9)
The textbook flux-linkage model (9) contains five param-

eters to be decided. Furthermore, it would be easy to interpret
these parameters being fully independent from each other.
Thus, in order to define the values of the parameters, it is not
enough to solve them from (5) and (9) at a given operating
point. Instead, also the force equation (10) is needed when
solving all the parameters. When the flux linkages, currents,
and radial forces are obtained from FEA in different operating
points, the parameter values can be easily obtained by two
consecutive linear least squares (LLS) fits. The LLS method
provides a unique solution and neither initial values nor cost
functions are needed.

First, the force coefficients are solved by using (10):
Fx(1)
Fy(1)

...
Fx(N)
Fy(N)


︸ ︷︷ ︸

yF

=


imd(1)isx(1) imq(1)isy(1)
−imd(1)isy(1) imq(1)isx(1)

...
...

imd(N)isx(N) imq(N)isy(N)
−imd(N)isy(N) imq(N)isx(N)


︸ ︷︷ ︸

XF

[
Md
Mq

]

(19)
where N is the total number of operating points used for the
parameter fitting. The parameter vector [Md,Mq]T can be then
solved from [

Md
Mq

]
=
(
XT

FXF
)−1

XT
FyF (20)

The main and suspension winding inductances can be then
solved from (5) and (9) by using the known force coefficients.
The parameters are solved again by using LLS method

 ψm(1) −Mis(1)
...

ψm(N) −Mis(N)

 =


imd(1) 0

0 imq(1)
...

...
imd(N) 0

0 imq(N)


[
Ld
Lq

]

 ψs(1) −MTim(1)
...

ψs(N) −MTim(N)

 =

 is(1)
...

is(N)

Ls (21)

As examples, the parameters of the textbook flux-linkage
model are solved in two different radial-position operating
points. The first operating point is chosen to resemble the
start-up of the motor, meaning that the rotor would rest on
the safety bearings and the y-direction radial position has a
high value: x = 0 and y = −0.6 mm. In the second operating
point, a centric rotor is assumed, meaning that x = y =
0. The resulting parameter values are given in Table I and
referred to as parameter sets 1 and 2, respectively. Table I
demonstrates that when the textbook model is used, the radial-
position operating point clearly affects to the results of the
LLS parameter fit.

B. Parameters of the Improved Model (11)
When using the inductance matrices (11), all the necessary

parameters can be solved at any operating point just by using

(5), (11) and (15), without having to know the calculated
radial forces from FEA. The data received from FEA is
now used in two consecutive LLS fits, as explained in the
following. First, only the main-winding is supplied with
current, having set the suspension-winding current to zero.
The elements of the main-winding inductance matrix can be
solved from

D
−1
m ψm(1)

...
D−1

m ψm(N)

 =


imd(1) 0

0 imq(1)
...

...
imd(N) 0

0 imq(N)


[
Ld0
Lq0

]
(22)

using the LLS method, similarly as in (19) and (20). The
main-winding inductances are then used to calculate γ from
(12).

In the next stage, the main-winding current is set to zero
having non-zero values in the suspension winding current. The
elements of the suspension-winding inductance matrix can be
solved from D

−1
s ψs(1)

...
D−1

s ψs(N)

 =

 is(1)
...

is(N)

Ls0 (23)

by using the LLS method. Finally, the scalar valued coefficient
c0 can be solved as c0 =

√
2Ls0/(Ld0 + Lq0)/2.

As examples, the parameters of the improved model are
solved in the same radial-position operating points as with the
textbook model in the previous section. The obtained param-
eter values are given in Table II and referred to as parameter
sets 3 and 4. Table II shows that when the improved model
is used, the fitted parameter values are almost independent of
the radial-position operating point.

C. Flux Linkages and Radial Forces as a Function of Radial
Position

Once the parameters of the models are defined, the flux
linkages and the radial forces are calculated using (9), (10),
(11), and (18). The values are defined by using parameter set 2
for the textbook model and parameter set 4 for the improved
model. The flux linkages and currents are calculated in the
same current and radial position operating points, which were
defined when calculating the FEA results.

Fig. 3(a) shows the flux-linkage component ψmd as a
function of radial position x at y = 0, imd = 20 A, and
imq = isx = isy = 0. Fig. 4(a) shows the corresponding radial
force Fx. It is evident that the textbook model fails to take into
account the main-winding flux-linkage variation, caused by
the radial displacement. This results in an inability to predict
the radial force caused by the unbalanced magnetic pull as
can be seen in Fig. 4(a). On the other hand, the improved
model can inherently take into account the main-winding flux-
linkage variation and, thus, improve the accuracy of the radial
force calculation without a need to use additional functions
to deal with the eccentric rotor positions.

Figs. 3(b), 3(c), and 4(b) show the flux-linkage compo-
nents ψmd, ψsx, and the radial force Fx, respectively, as a
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Fig. 3. Flux linkages as a function of radial position x at y = 0: (a) ψmd at imd = 20 A and imq = isx = isy = 0; (b) ψmd at imd = 20 A, imq = 0, and
isx = isy = 2 A; (c) ψsx at imd = 20 A, imq = 0, and isx = isy = 2 A.
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Fig. 4. Radial force Fx as a function of radial position x at y = 0: (a)
imd = 20 A and imq = isx = isy = 0; (b) imd = 20 A, imq = 0, and
isx = isy = 2 A.

function of radial position x, at y = 0, imd = 20 A, imq = 0,
and isx = isy = 2 A. Similar behaviour as in the previous
example can be observed also in this case.

If more than three terms are included in (7), the radial
force calculation using (18) can be improved. This comes at
the price of significant increase in complexity of the model.
Thus, the selected analytical model is always a compromise
between the complexity and accuracy.

IV. APPLICATION EXAMPLE: STABILITY OF AN
OPEN-LOOP DUAL-WINDING MOTOR MODEL

The voltage equations of the main winding (marked with
subscript m) and the suspension winding (marked with sub-
script s) can be given as a state-space representation [2]

d
dt

[
ψm
ψs

]
︸ ︷︷ ︸
ψ

=

[
um
us

]
︸ ︷︷ ︸
u

−
[
RmI 0
0 RsI

]
︸ ︷︷ ︸

R

[
im
is

]
︸︷︷︸
i

(24)

where the voltage vectors are defined as um = [umd, umq]T

and us = [usx, usy]T. The resistances of the windings are Rm
and Rs. The current vector i can be solved from (5) and
substituted to (24), leading to

dψ
dt

= u−RLΣ(x, y)−1ψ (25)

The open-loop stability of a dual-winding motor model can
be now analyzed by calculating the eigenvalues of the matrix
−RLΣ(x, y)−1. If all the eigenvalues have negative real parts,
the system is stable, otherwise the system is unstable.

The stability of the system is studied by varying the rotor
displacements in x and y directions between −1 mm and 1
mm. The elements of LΣ(x, y) are defined by using (9) and
the resistance of the windings are Rm = 0.1 Ω and Rs = 2.9
Ω. Fig. 5(a) shows the stability regions when parameter set 1
from Table I is applied. Fig. 5(b) shows the stability regions
when parameter set 2 from Table I is applied. The available
radial direction movement is limited inside the circle marked
with black dashed line (because the nominal airgap of the
motor is 1 mm). It is evident from Fig. 5(a) that the open-
loop motor model does not remain stable within the whole
operation region. Thus, the combination of the textbook model
with parameters set 1 from Table I does not represent a
physically consistent system.

When the improved model is applied, a stable system is
obtained for the whole operating region regardless of which
parameter set is selected from Table II.

V. CONCLUSIONS

An improved analytical model for BSyRMs is proposed.
The model is applicable, e.g., for a stability analysis, time-
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Fig. 5. Dual-winding motor model (25) open-loop stability, when the
textbook model (9) is applied and the rotor displacement is varied: (a)
parameter set 1; (b) parameter set 2. The light gray area represents a stable
system, whilst the white area represents an unstable system.

domain simulations, or developing real-time control methods.
The paper shows that the rotor eccentricity has a significant
effect on the inductances and the model accuracy depends
on of the inverse-airgap length approximation accuracy. It is
shown that at least the first two terms have to be included in
the inverse-airgap length series expansion in order to be able
to make the main-winding inductances depend on the radial
positions, and consequently, see the effect of unbalanced
magnetic pull on the calculated radial forces. By examining
the open-loop system pole locations, it is shown that the
stability of a dual-winding motor model depends not only on
the model structure, but also on its parameter values. Finally,
a straightforward LLS method, to fit the parameter values of
the models, is proposed.
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