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Abstract— To cope with varying conditions, motor primi-
tives (MPs) must support generalization over task parameters
to avoid learning separate primitives for each situation. In
this regard, deterministic and probabilistic models have been
proposed for generalizing MPs to new task parameters, thus
providing limited generalization. Although generalization of
MPs using probabilistic models has been studied, it is not clear
how such generalizable models can be learned efficiently.

Reinforcement learning can be more efficient when the ex-
ploration process is tuned with data uncertainty, thus reducing
unnecessary exploration in a data-efficient way. We propose an
empirical Bayes method to predict uncertainty and utilize it
for guiding the exploration process of an incremental learning
framework. The online incremental learning framework uses
a single human demonstration for constructing a database of
MPs. The main ingredients of the proposed framework are
a global parametric model (GPDMP) for generalizing MPs for
new situations, a model-free policy search agent for optimizing
the failed predicted MPs, model selection for controlling the
complexity of GPDMP, and empirical Bayes for extracting the
uncertainty of MPs prediction.

Experiments with a ball-in-a-cup task demonstrate that
the global GPDMP model generalizes significantly better than
linear models and Locally Weighted Regression especially in
terms of extrapolation capability. Furthermore, the model
selection has successfully identified the required complexity
of GPDMP even with few training samples while satisfying the
Occam Razor’s prinicple. Above all, the uncertainty predicted
by the proposed empirical Bayes approach successfully guided
the exploration process of the model-free policy search. The
experiments indicated statistically significant improvement of
learning speed over covariance matrix adaptation (CMA) with
a significance of p = 0.002.

I. INTRODUCTION

Learning a skill in a perturbed environment often
requires practising it under various conditions. For example,
to learn to score in basketball, an individual needs to
practice throwing from different locations. Subsequently,
generalizing to a new situation (e.g. location) becomes
easier as the individual learns incrementally the under-
lying regularities of the task. Incremental learning has
been studied in the context of iterative learning control
(ILC) where a desired trajectory is adapted to a known
reference trajectory in an online incrementally manner [1].
However, in this paper, we propose incremental learning
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Fig. 1: Ball-in-a-cup game with two different string lengths.

in the context of reinforcement learning (RL) where such
a reference trajectory is unknown. In fact, finding the
reference trajectory for the new perturbed environment is
our objective.

Recently a global parametric model (GPDMP) [2] has
been proposed for generalizing an imitated task to a new
situation characterized by a measurable task parameter.
GPDMP was found to perform better than local models
in terms of extrapolation. As an integral part of GPDMP,
its complexity has been controlled using a penalized
log-likelihood method outperforming traditional model
selection methods such as BIC, AIC, and cross validation.
GPDMP has been combined with reinforcement learning
(RL) in an incremental learning framework for constructing
a database (DB) of motor primitives (MPs) [2]. GPDMP
extracts the underlying regularities from the DB by map-
ping MPs to task parameters; GPDMP can then be utilized
for predicting MPs for a new situation. Next, RL optimizes
the predicted MPs which have led to unsuccessful re-
enactment of the task. In this case, the learning speed
was increased since the predicted MPs have been a better
guess than the original imitated MPs. However, RL can be
more efficient when the exploration process is tuned with
data uncertainty using a data-efficient way.

The main contribution of this paper is guiding the
exploration process of a model-free RL using uncertainty
predicted for a new task parameter. To our best knowledge,
this is the first paper proposing to utilize uncertainty
for enhancing incremental learning. First, the mapping
of task parameters to MPs is formulated as a proba-
bilistic multivariate regression problem. Next, the hyper-



parameters of the probability distribution provides us with
the prediction uncertainty. We have derived an empirical
Bayes (EB) method for extracting the hyper-parameter
of the probabilistic GPDMP from the DB of MPs while
considering their cross-correlation. To our best knowledge,
both the mathematical derivation of EB for a multivariate
regression problem and its application in guiding the
exploration of a model-free RL method are novel.

We selected the ball-in-a-cup task to assess how effective
our incremental learning framework is in boosting up the
learning speed when generalizing MPs to a new situation
using a model-free RL method. The kinematics of the task
are encoded using Dynamic Movement Primitives (DMPs).
Our experiments demonstrated that the proposed model
selection has correctly identified the required complexity
for GPDMP outperforming Locally Weighted Regression
(LWR) significantly. Above all, the proposed empirical Bayes
method has led to a statistically significant improvement
of model-free RL speed.

II. RELATED WORK

To adapt learning from demonstration (LfD) models
to new environments, the model parameters need to be
adjusted according to the task parameters characterizing
the new environment. Existing generalizable LfD models
can be categorized as (i) generalization by design where
the parameters are explicit in the model structure such
as the goal of a DMP; (ii) generalization based on local
models which uses a weighted combination of trained
models; and (iii) generalization by global models.

The task parameters can be mapped to model meta-
parameters such as DMP initial position, goal, amplitude,
and duration using regression [3]. The approach is suitable
for learning tasks where the DMPs are adapted spatially
and temporally without changing the overall shape of the
motion. However, the skills considered in this paper require
adjusting dynamics of motion which is not possibe using
this approach.

Researchers have recently shown interest also in gen-
eralizing DMP shape parameters to new situations using
local models such as support vector machines with local
Gaussian kernels [4], Gaussian kernels [5], and a linear
mixture of MPs [6]. Gaussian process regression (GPR)
[7] and Locally Weighted Regression (LWR) [8], [9] have
been the most popular regression models used for the
generalization. LWR has the advantage of lower, linear
computational complexity compared to the cubic com-
plexity of GPR. On the other hand, GPR is able to provide
estimates of prediction uncertainty.

Global parametric models have also been proposed.
Both linear [10], [11] and non-linear [2] global models
have been considered. The non-linear global models have
been shown to outperform local models and the global
linear models with respect to their extrapolation capability
[2] and their computational complexity is linear. The
choice of model order for non-linear parametric models is
challenging, but a method for the model choice based

on penalized log-likelihood was recently proposed [2].
However, the proposed global models do not provide
estimates of prediction uncertainty.

The main contribution of this paper is guiding the
exploration process of RL using the predicted uncertainty
which is reflected in a covariance matrix extracted from
the training samples. This covariance matrix is predicted
using empirical Bayes approach which we have derived for
multivariate regression case. Furthermore, unlike the basic
version of GPR [12], the proposed empirical Bayes approach
considers cross-correlation among multiple outputs. We
have compared our approach with covariance matrix
adaptation (CMA) [13] which updates the covariance matrix
by taking the sample covariance matrix. We have observed
that our approach outperforms CMA significantly.

III. METHOD

In this section, we review dynamic movement primi-
tives (DMPs). After that, we clarify the global parametric
dynamic movement primitives (GPDMPs) method which
incorporates both linear and non-linear parametric models.
Besides that, we review model selection approaches and
explain our penalized log-likelihood based model selection
method.

A. Incremental Learning

We propose an incremental learning framework for
constructing a database (DB) of MPs automatically and
generalizing an imitated skill to a new situation character-
ized by a measurable task parameter. The generalization is
achieved using a probabilistic model mapping a new task
parameter ln to the MPs wn . This probabilistic function
(33) provides us with not only a prediction of MPs for a
new situation, but also the uncertainty associated with that
prediction. The uncertainty is captured by a covariance
matrix Σ(ln) (34). We apply this information of uncertainty
in guiding the exploration process of a policy search based
RL. The main ingredients of our generalizable incremental
learning framework as shown in Fig. 2 are GPDMP, model
selection, empirical Bayes, model-free policy search, and
a DB of MPs.

GPDMP extracts the underlying regularities in the DB of
MPs. Such regularities are reflected in a global parametric
function (8). When we encounter a new situation charac-
terized by task parameter ln , new MPs wn are predicted.
If the prediction fails to reproduce the skill successfully,
we apply a policy search method such as PoWER [14] for
optimizing the predicted MPs wn .

The model-free RL approach updates the predicted MPs
wn iteratively. In each iteration, a noise vector is sampled
from a multivariate Gaussian distribution with zero-mean
and a covariance matrix. The structure of the covariance
matrix is a key factor influencing the convergence rate
of RL. We have already [15] proposed a pre-structured
covariance matrix from which a correlated smooth noise
vector is sampled providing safe exploration. In this paper,
the covariance is modelled as a hyper-parameter of the



Fig. 2: Incremental learning framework.

GPDMP instead. We apply empirical Bayes for learning
the covariance from the DB of MPs. This is achieved
by maximizing an evidence function (39) which we have
derived for multivariate normal distribution.

The optimized MPs wn leading to a successful re-
enactment of the skill will be added to the DB. As new MPs
are added to the DB, the underlying parametric model
of the GPDMP is updated using a novel penalized log-
likelihood based model selection method (9). We have
already shown [2] that this model selection method is
suitable for online incremental learning because it works
even with few training samples while traditional model
selection methods such as AIC and BIC fail.

To put it in a nutshell, GPDMP and empirical Bayes
are providing RL with a good starting point of both MPs
and covariance for a new situation; RL, on the other hand,
optimizes the predicted MPs in the new situation; thus,
providing GPDMP and the empirical Bayes with more
training samples enhancing their prediction accuracy. In
this way, a DB of MPs is built incrementally and in an
online manner.

B. Dynamic Movement Primitives

DMPs [16] encode a policy for a one-dimensional system
using two differential equations. The first differential
equation ż =−ταz z formulates a canonical system where
z denotes the phase of a movement; τ= 1

T represents the
time constant where T is the duration of a demonstrated
motion, and αz is a constant controlling the speed of
the canonical system. This first order system resembles
an adjustable clock driving the transform system 1

τ ẍ =
αx (βx (g − x) − ẋ) + f (z;w) consisting of a simple linear
dynamical system acting like a spring damper perturbed
by a non-linear component (forcing function) f (z;w). x
denotes the state of the system, and g represents the goal.
The linear system is critically damped by setting the gains
as αx = 1

4βx . The forcing function

f (z;w) = wT g (1)

controls the trajectory of the system using a time-
parameterized kernel vector g and a modifiable policy
parameter vector (shape parameters) w. Each element of
the kernel vector

[g]n = ψn(z)z∑N
i=1ψ

i (z)
(g −x0) (2)

is determined by a normalized basis function ψn(z)
multiplied by the phase variable z and the scaling factor
(g − x0) allowing for the spatial scaling of the resulting
trajectory.

C. Global Parametric Dynamic Movement Primitives

Using DMPs, a task can be imitated from a human
demonstration; however, the reproduced task cannot be
adapted to different environment conditions. To overcome
this limitation, we have integrated a parametric model
to DMPs capturing the variability of a task from multiple
demonstrations. We transform the basic forcing function
(3) into a parametric forcing function [2]

f (z, l;w) = w(l)T g (3)

where the kernel weight vector w is parametrized using a
parameter vector l of measurable environment factors.

We model the dependency of the weights with respect
to parameters as a linear combination of J basis vectors vi

with coefficients depending on parameters in a non-linear
fashion,

w(l) =
J−1∑
i=0

φi (l)vi = VTφ(l) (4)

where V is a J×N matrix of parameters with N referring to
the number of kernels g. φ(l) is a J dimensional column
vector with elements φ j (l). For example, the non-linear
basis φ j (l) for a polynomial model in one parameter is
φ j (l ) = l j . The formulation captures linear models such
as [11] as a special case. For a chosen non-linear basis
(known functions φi ), the basis vectors can be calculated
by minimizing the difference between modelled and initial
non-parametric DMP shape parameters,

argmin
V

K∑
k=1

‖w(lk )−wk‖2 (5)

where wk denotes the initial weight vector of a non-
parametric DMP optimized for parameter values lk . The
initial weights can be merely imitated from a human
demonstration using weighted linear regression [16] or
improved using a policy search method [17]. In either case,
reproducing an imitated task using wk should lead to a
successful performance in an environment parametrized
by lk .

In order to solve (5), one needs to construct the design
matrix

Φ=


φ1(l1) φ2(l1) . . . φJ (l1)
φ1(l2) φ2(l2) . . . φJ (l2)

...
...

. . .
...

φ1(lK ) φ2(lK ) . . . φJ (lK )

 (6)



where K denotes the number of initial DMPs weight vectors
which must be at least equal to or greater than the order of
the model J to avoid unconstrained optimization problems.
Furthermore, the rows of the target matrix

W =

wT
1
...

wT
K

 (7)

represent initial DMP weight vectors. We can minimize (5)
with respect to the matrix of basis vectors V, giving

V̂ = (ΦTΦ)−1ΦT W. (8)

D. Model selection

The best generalization using a parametric regression
model can be achieved by choosing an optimal order of
complexity for the model, which is addressed in a model
selection method such as cross validation, AIC, or BIC.
However, we have shown [2] that these traditional model
selection methods can fail when only few training sample
are available. Hence, we have derived a novel penalized
log-likelihood model selection method which chooses a
model by minimizing

BM = tr ((W−ΦV̂)T (W−ΦV̂)Σ−1
M )+ J logK (9)

where ΣM represents a constant covariance matrix which
needs to be determined prior to the model selection
process. In our experiments, we have selected a scaled
identity matrix sI as the constant covariance matrix where
s denotes the scale. The scale can be determined with
respect to the magnitude of the error (difference between
wk and V̂Tφ(lk )). A simple way to estimate the scale is to
look at the largest eigenvalue of the MLE estimate of the
covariance matrix with linear fitting. The first term in BM

favours better fitting higher order model while the second
term discourages a very high order; hence, it guarantees
best prediction while avoiding over-fitting.

E. Predictive distribution

Empirical Bayes can be utilized for estimating the hyper-
parameters such as the covariance of the noise of the
linear regression model. First, we derive the predictive
distribution and later an evidence function for multivariate
regression. We assume a linear regression model

W =ΦV+E . (10)

where E is the error matrix

E =

ε
T
1
...
εT

K

 (11)

with each row
εi = wi − V̂Tφ(li ) (12)

representing the difference between the i th training sample
wi and its prediction V̂Tφ(li ). Furthermore, we assume

that the targets (rows of (7)) are independent. Thus, the
likelihood of data is

p(W|V, l,Σ) =
K∏

i=1
N (wi |VTφ(li ),Σ)

= 1√
(2π)N K |Σ|N

×
K∏

i=1
exp{−1

2
(wi −VTφ(li ))TΣ−1(wi −VTφ(li ))}

= (2π)−
N K

2 |Σ|− K
2 ×

exp{−1

2

N∑
i=1

(wi −VTφ(li ))TΣ−1(wi −VTφ(li ))}

(13)

where N is the number of DMPs kernels (size of g in (2)).
After completing the square over V (see 1), one can write

N∑
i=1

(wi −VTφ(li ))TΣ−1(wi −VTφ(li )) =

tr{(W−ΦV)T (W−ΦV)Σ−1} = tr{(W−ΦV̂)T (W−ΦV̂)Σ−1}

+ vec{V− V̂}T (Σ−1 ⊗ΦTΦ)vec{V− V̂} (14)

where vec represents the vectorization operation; tr de-
notes the trace of a matrix; and ⊗ is the Kronecker product.
Using (14), the likelihood of target (13) can be rewritten
into

p(W|V, l,Σ) = (2π)−
N K

2 |Σ|− K
2 ×

exp(−1

2
tr{(W−ΦV̂)T (W−ΦV̂)Σ−1})×

exp(−1

2
vec{V− V̂}T (Σ−1 ⊗ΦTΦ)vec{V− V̂}).

(15)

The last term in (15) can be converted into a normal mul-
tivariate Gaussians PDFs over basis vectors (V) multiplied
by a constant. Therefore, (15) can be reduced to:

p(W|V, l,Σ) = cl N (vec(V)|vec(V̂),S) (16)

where

cl = (2π)−
(J−K )N

2 |Σ|− K
2 |S|

×exp(−1

2
tr{(W−ΦV̂)T ((W−ΦV̂))Σ−1}) (17)

denotes the constant coefficient of the likelihood and

S = (Σ−1 ⊗ΦTΦ)−1 (18)

represents the covariance of the estimated basis vectors
V̂ (8). Furthermore, we consider a zero-mean isotropic
Gaussian as the prior distribution over basis vectors (rows
of V)

p(V|α) =N (vec(V)|0,α−1I ) (19)

1available at http://irobotics.aalto.fi/pdfs/
empirical_Bayes_for_multivariate_regression.pdf



which is governed by a single precision parameter α. We
can now derive the posterior probability over basis vectors
V by applying (16) and (19) and using Bayes formula

p(V|W, l,Σ,α) = p(W|V, l,Σ)p(V|α)∫
p(W|V, l,Σ)p(V|α)dV

= cl N (vec(V)|vec(V̂),S)N (vec(V)|0,α−1I )∫
cl N (vec(V)|vec(V̂),S)N (vec(V)|0,α−1I )dV

. (20)

Both the nominator and the denominator of (20) involve
the product of two multivariate Gaussian PDFs leading to
another normal PDF (see 1 for a proof)

N (vec(V)|vec(V̂),S)N (vec(V)|0,α−1I )

= cpN (vec(V)|uN ,MN ) (21)

where the covariance

MN = (αI +S−1)−1 (22)

the mean
uN = MN (S−1vec(V̂)) (23)

and the constant coefficient of this product is

cp = exp(−1

2
{N Jlog (2π)− l og (|S−1|)−N Jlog (α)

+ vec(V̂)T S−1vec(V̂)+ l og (|M−1
N |)

− vec(V̂)T S−1MN S−1vec(V̂)}).

(24)

Next we use the result in (21) for rewriting the posterior
distribution of V (20) into

p(V|W, l,Σ,α) = cl cpN (vec(V)|uN ,MN )

cl cp
∫

N (vec(V)|uN ,MN )dV

=N (vec(V)|uN ,MN ).

(25)

Now that we have the posterior distribution over basis
vectors V, we can make prediction of DMP shape parame-
ters wn for new values of task parameter ln . This requires
evaluating the predictive distribution

p(wn |W,α,Σ, ln , l) =
∫

p(wn |V,Σ, ln)p(V|W, l,Σ,α)dV (26)

where the posterior distribution of V is given by (25) and
the conditional distribution of DMP shape parameters (w)
is given by

p(wn |V,Σ, ln) =N (wn |VTφ(ln),Σ). (27)

Since VTφ(ln) is a vector, we can write

VTφ(ln) = vec(VTφ(ln))

= vec(φ(ln)T V) = vec(φ(ln)T VI )

= (I ⊗φ(ln)T )vec(V)

(28)

because vec(ABC ) = (C T ⊗ A)vec(B). Using the result in
(28), we can rewrite the conditional distribution of DMP
shape parameters (27) into

p(wn |V,Σ, ln) =N (wn |Ac vec(V),Σ) (29)

where Ac = (I ⊗φ(ln)T ). One can see that (26) involves
the convolution of two Gaussian distributions (29) and

(25). We utilize the result (2.115) in [18] for evaluating the
marginal distribution of new DMP shape parameters wn

(26). Given a marginal Gaussian distribution for x

p(x) =N (x|µ,Λ−1) (30)

and a conditional Gaussian distribution for y given x in
the form

p(y|x) =N (y|Ax+b,L−1) (31)

one can show (see [18]) that the marginal distribution of
y is given by

p(y) =N (y|Aµ+b,L−1 +AΛAT ). (32)

We can now derive the predictive distribution (26) using
the result in (32)

p(wn |W,α,Σ, ln , l) =N (Ac uN ,ΣN (ln)) (33)

where the covariance ΣN (ln) of the predictive distribution
is given by

ΣN (ln) =Σ+Ac MN AT
c . (34)

The first term in (34) represents the noise on the DMP
shape parameters, and the second term reflects the
uncertainty associated with the basis vectors V. Both α

and Σ are referred to as the hyper-parameters of the
predictive distribution and can be estimated by adopting
the empirical Bayes framework.

F. Empirical Bayes

In the Empirical Bayes framework, the hyper-parameters
of a predictive distribution are found by maximizing the
marginal likelihood function achieved by integrating over
basis vectors V

p(W|α,Σ) =
∫

p(W|V,Σ, l)p(V|0,α)dV. (35)

Using (16), (19) and the result in (21), marginal likelihood
function (35) can be rewritten to

p(W|α,Σ) = cl × cp

∫
N (vec(V)|uN ,MN )dV

= cl × cp .
(36)

Furthermore, we set a gamma prior for α

p(α|a,b) = g a(α|a,b)

= baαa−1e−bα

Γ(a)

(37)

and a Wishart prior for Σ

p(Σ|Λ,ν) =W i (Σ|Λ,ν)

= |Σ| ν−N−1
2 e−

1
2 tr (Λ−1Σ)

2
νN

2 |Λ|νΓp (ν2 )

(38)

since they are the conjugate priors of the corresponding
distributions. Next, we include the hyperpriors over α and
Σ in the evidence function

Ev(α,Σ) = log p(W|α,Σ)+ l og p(α|a,b)+ log p(Σ|Λ,ν)

= l og (cl )+ l og (cp )+ (a −1)log (α)−bα

+ ν−N −1

2
log |Σ|− 1

2
tr (ΣΛ−1).

(39)



ba from gamma distribution (37) and all the terms in the
denominators of (37) and (38) are behaving as constant
when maximizing the evidence function (39) with respect
to hyper-parameters α and Σ; thus, they are not considered
in the evidence function (39). The evidence function (39)
is governed by four free parameters a, b, ν, Λ. In our
experiments, we have selected non-informative hyperprior
for α by setting a = 0.001 and b = 0.001 to small numbers.
Furthermore, the degree of freedom ν in the Wishart
distribution should be bigger than the number of DMPs
kernels (ν> N +1); the higher the degree of freedom ν, the
more we believe in the scale matrix Λ; however, we set it to
ν= N +2 where N is the number of DMP kernels (size of g
in (2)). In this case, the hyper-prior is as weak as possible.
One can set the scale matrix Λ which is the initial guess of
the covariance matrix to an identity matrix; however, we
selected a structured covariance matrix Λ = sp (HT

2 H2)−1

where H2 is a second-order finite difference matrix (see
[2]) and the scale sp for the prior is set to 0.2 percent of
the variance of imitated DMP shape parameters. We have
already shown [15] that the correlated noise sampled from
this structured covariance matrix sp (HT

2 H2)−1 is smooth
and leads to safe exploration with a faster convergence
rate. Hence, it is a good initial guess for the scale matrix Λ.
Finally, we utilize numerical optimization for maximizing
the evidence function (39) with respect to the hyper-
parameters α and Σ. Once, these hyper-parameters are
found, we can predict the covariance for any new task
parameter using (34). We expect that sampling from this
predicted covariance matrix leads to a faster convergence
rate in a policy search based reinforcement learning (RL).

G. Reinforcement Learning

Executing a DMP with predicted shape parameters might
not lead to a successful reproduction of a task. One way
to refine the shape parameters is to learn them using
policy search reinforcement learning (RL). In this paper,
PoWER [14] is utilized updating the DMP shape parameters
w iteratively. In each iteration, stochastic roll-outs of the
task are performed, each of which is achieved by adding
Gaussian random noise to the DMP shape parameters.
Each noisy vector is weighted by the returned accumu-
lated reward. Hence, the higher the returned reward, the
more the noisy vector contributes to the updated policy
parameters. This exploration process continues until the
algorithm converges to the optimal policy. Our complete
setup of the PoWER is elaborated in [15].

IV. EXPERIMENTAL EVALUATION

We studied experimentally the generalization perfor-
mance of the proposed incremental learning framework
using a ball-in-a-cup task taught to KUKA LBR 4+ initially
using kinesthetic teaching. In this section, we explain the
ball-in-a-cup task, incremental learning scenario, and the
effect of empirical Bayes on speeding up the learning
process.

28 29 30 31 32 33 34 35 36 37 38 39 40 41
Task parameter (string length (cm))

a)

b)

c)

d)

e)

f)

g)

Fig. 3: Validity ranges (red lines) of models learned from
database of different sizes. (a) zero order (model selection)
global model trained only on one MP. (b) zero order model
trained on 2 MPs. (c) linear model (indicated by model
selection) trained on the same 2 MPs as in (b). (d), (e) and
(f) represent zero, first, and second order models trained
on the same DB of 3 MPs.The second order model (f) with
the highest extrapolation capability was indicated by the
proposed model selection method. (g) Locally weighted
regression trained on the same DB of 3 MPs as in (d), (e)
and (f).

A. Ball-in-a-Cup Task

The ball-in-a-cup game consists of a cup, a string, and
a ball; the ball is attached to the cup by the string (see Fig.
1). The objective of the game is to get the ball in the cup by
moving the cup in a suitable fashion. We chose the ball-in-
a-cup game because variation in the environment can be
generated simply by changing the string length. The string
length is observable and easy to evaluate, thus providing
a suitable task parameter representing the environment
variation. Nevertheless, changing the length requires a
complex change in the motion to succeed in the game.
Hence, the generalization capability of a parametric LfD
model can be easily assessed using this game. Similar to
our previous set-up in [2], the trajectories along y and z
were encoded using separate DMPs. However, in this paper,
we utilize 20 kernels. Thus, in total, N = 40 parameters need
to determined when generalizing to a new task parameter.

B. Incremental Learning

We studied first the generalization performance of global
models with different complexities and compared them
with LWR. The results are depicted in Fig. 3 where X
denotes training samples in the database, and red line
the validity region of the model.

We started the incremental learning process in a ball-
in-a-cup game with a string length of 34 cm. Using a
zero-order global model (Fig. 3.a), the game could be re-
enacted successfully for string lengths of 34 to 36 cm.
Next, we used the model for predicting an initial policy
for string length of 32 cm and optimized it using RL.
This newly optimized MP was added to the database, and
subsequently the global model and its complexity were
updated. This time, the model selection indicated first
order for the complexity of the global model. This linear
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Fig. 4: RL convergence rate of different exploration strate-
gies (EB=Empirical Bayes, UN=unstructured noise with
a scaled diagonal matrix sI , CMA=Covariance Matrix
Adaptation, PN=Pre-structured Noise). (a) Distribution of
indexes of first successful RL roll-out. (b) The average
reward is displayed here, while the variance is depicted by
a vertical bar.

model (Fig. 3.c) works successfully for string lengths of
31 to 35 cm. We can see here that a zero-order model
(Fig. 3.b) is incapable of interpolating to string length of
32 cm, indicating the necessity of model selection.

Next, an initial policy for string length of 30 cm was
estimated using the model learned from the current
database, optimized using PoWER, and then added to
the database. With this database of three MPs, the model
selection indicated a second order model. After that, the
generalization capability of a constant, linear, second order
and LWR model was tested while fitted to the DB of
same three MPs. Both the constant (Fig. 3.d) and LWR
(Fig. 3.g) models were not sufficient as they could not
even interpolate in the whole range; although, the linear
model (Fig. 3.e) could interpolate successfully within the
range of training samples, it could not extrapolate at all.
The second-order model (Fig. 3.f) could achieve the best
extrapolation performance generalizing the task for string
length of 29 cm up to 40 cm. This indicates superior
generalization capabilities of global models in this task.
Furthermore, it indicates that the proposed model selection
is able to identify the required complexity.

C. Convergence rate

We next studied the effect of predicted uncertainty on
the convergence rate of RL when optimizing the policy
parameters for a new task parameter. As a starting point, we
utilized the second order model (Fig. 3.f) for predicting MPs
for the string length of 28 cm, which led to an unsuccessful
re-enactment; thus, we utilized PoWER for optimizing the
predicted MPs.

We applied four different approaches for generating the
noise in order to provide a testbed for empirical Bayes
by comparing their learning speed. In approach PN, we
generated the noise samples from a pre-structured covari-
ance matrix (Λ= sp (HT

2 H2)−1). In EB, the pre-structured
covariance was exploited as a prior, and a covariance
matrix (Σ(ln)) was predicted by the proposed empirical
Bayes approach (34). It took 20 seconds to estimate the
covariance components on a Linux machine equipped
with an Intel(R) Core(TM) i7-4800MQ CPU @ 2.70GHz.
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Fig. 5: Variance (shown for every kernel separately) of
sampled noise for 10 RL roll-outs at iteration 14th
of different exploration strategies (EB=Empirical Bayes,
UN=unstructured noise with a scaled diagonal matrix sI ,
CMA=Covariance Matrix Adaptation, PN=Pre-structured
Noise).

In UN, an unstructured covariance matrix formed by a
diagonal matrix sI was applied and the scale s was fine-
tuned specifically for the new task parameter; in fact, the
scale parameter s in the diagonal covariance matrix was set
equal to 20 percent of the trace of the predicted covariance
matrix s = 0.2tr{Σ(ln)}. Changing the scale parameter s to
another value did not lead to a better performance. In
CMA, covariance matrix adaptation [13] was exploited for
updating the fine-tuned diagonal covariance matrix sI .

10 RL roll-outs were performed for each one of these
four exploration strategies. The result is displayed in Fig. 4a
where the lines show the average reward, while the vertical
bars represent the variance of the achieved rewards. We
stopped the RL after 50 iterations where some of the
roll-outs (yellow line in Fig. 4a) generated by the CMA
approach failed to optimize the predicted MPs. This is
mainly because CMA is approximating the covariance
of the noise using the sample covariance matrix. In this
case, a matrix of size (20×20) is approximated by a few
samples(7 noise vectors), which is an ill-posed problem.
At least 20 samples would be required to get a full rank
covariance matrix; this required updating the covariance
matrix after every 20 iterations; however, CMA would be
totally unnecessary in this case since most of the RL roll-
outs performed by the fine-tuned diagonal matrix (orange
line in Fig. 4a) converged after approximately 20 iterations.

The unstructured noise is a blind exploration strategy
which explores evenly each policy parameter as can be
seen from the orange vertical bars in Fig. 5; besides that,
we have recently observed that a large scale parameter
s was required for optimizing the initial imitated shape
parameters, which has led to unsafe exploration with
too high acceleration [15]. On the other hand, the pre-
structured covariance matrix explore less in the beginning
and end, but more in between (where active kernels
reside) providing safe exploration trajectories. Nevertheless,
neither the fine-tuned unstructured noise nor the pre-
structured noise could outperform the empirical Bayes
approach (blue line in Fig. 4a).

The proposed empirical Bayes approach has exploited
the pre-structured covariance as a prior and by fitting to



the DB of MPs, it found that some kernels such as 11 to
15th (see blue vertical bar in Fig. 5) need to be explored
more than the prior indicates (the purple vertical bar in
Fig. 5), while some other kernels such as 6th to 10th need
to be explored less. This indicates that the structure of the
predicted covariance matrix has been effective in speeding
up the learning process.

In order to study whether the empirical Bayes increases
learning speed, we collected the first successful iteration of
every approach in a separate vector which is displayed as a
box plot in Fig. 4b. Next, we tested three hypotheses using
the Mann-Whitney U test. Under the first null hypothesis,
both empirical Bayes and unstructured noise have the same
distribution of first successful iteration, which was rejected
with a significance of p = 0.0149, indicating the superiority
of empirical Bayes over unstructured noise. Under the
second null hypothesis, empirical Bayes and CMA follow
the same distribution, which was also rejected with a
significance of p = 0.002. The third null hypothesis says that
empirical Bayes and the pre-structured approach have the
same distribution, which was also rejected with significance
of p = 0.00016. Hence, the proposed empirical Bayes
approach has led to statistically significant improvement
in speeding up the convergence rate of RL for the ball-in-
a-cup task.

V. CONCLUSION

In this paper, we proposed an incremental learning
framework in the context of RL. The main ingredients of
this framework are a global parametric model mapping
a task parameter to policy parameters, model selection
controlling the complexity of the global model, and
empirical Bayes predicting the uncertainty for a new task
parameter. The global parametric GPDMP model is simple
and can be scaled to accommodate for non-linearities
when mapping a task parameter to policy parameters,
thus allowing for generalizing a policy to new situations
and incremental construction of a database of MPs. We
observed that the complexity of the global parametric
model was needed to be updated online as new MPs were
added to the database, indicating that model selection is
integral for constructing online incremental DB of MPs.
Experiments showed that the proposed penalized log-
likelihood based model selection lead to a global model
which is simple, overcomes over-fitting, and performs
better than locally weighted regression both in terms
of inter- and extrapolation. It also works even with few
training samples, which indicates its suitability for online
incremental learning. Most importantly, comparing the con-
vergence rate of empirical Bayes with CMA, pre-structured
and unstructured noise, we observed that the proposed
empirical Bayes approach led to statistically significant
improvement in learning speed when generalizing to a

new task parameter.
All things considered, only a single human demonstra-

tion was needed for constructing the database of MPs. Our
experiments demonstrated that the global model worked
hand in hand with empirical Bayes, thus providing RL with
a more accurate initial policy and a better structure of
covariance matrix for generating noise in a new situation
resulting in a faster convergence. In return, RL provided
the global model and the empirical Bayes with additional
training examples enhancing their predictive accuracy.
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