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configuration interaction
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00076 Aalto, Finland

(Dated: 13 July 2018)

The accuracy of density functional theory (DFT) based kinetic models for electro-

catalysis is diminished by spurious electron delocalization effects, which manifest

as uncertainties in the predicted values of reaction and activation energies. In this

work, we present a constrained DFT approach to alleviate overdelocalization effects

in the Volmer-Heyrovsky mechanism of the hydrogen evolution reaction (HER). This

method is applied a posteriori to configurations sampled along a reaction path to

correct their relative stabilities. Concretely, the first step of this approach involves

describing the reaction in terms of a set of diabatic states that are constructed by

imposing suitable density constraints on the system. Refined reaction energy profiles

are then recovered by performing a configuration interaction (CDFT-CI) calculation

within the basis spanned by the diabatic states. After a careful validation of the

proposed method, we examined HER catalysis on open-ended carbon nanotubes and

discovered that CDFT-CI increased activation energies and decreased reaction ener-

gies relative to DFT predictions. We believe that a similar approach could also be

adopted to treat overdelocalization effects in other electrocatalytic proton-coupled

electron transfer reactions, e.g., in the oxygen reduction reaction.
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I. INTRODUCTION

Two prevalent paradigms steer the development of new catalyst materials in the field

of computational electrochemistry.1–3 The first involves relating experimentally measured

catalytic activities of well-defined materials to a reduced set of simple and easily calculable

descriptive variables, such as the adsorption (free) energies of reaction intermediaries.4–6 New

catalyst candidates can subsequently be screened from a large group of materials by com-

puting the values of the descriptive variables. The approach taken in the second paradigm is

totally opposite, where the ultimate goal is the development of an accurate kinetic model of

the catalytic process that mimics experimental reaction conditions as closely as possible.7–10

While both of these methods can be considered as complementary approaches, they suffer

from their own limitations and typically only one of them is adopted depending on the spe-

cific application. Nevertheless, recent efforts3,11 have begun blurring the boundary between

these approaches, and the advance towards a more unified treatment is likely to accelerate

in the future through the broader utilization of machine learning methods.12–14

One of the strengths of the kinetic modeling approach is that it attempts to address

phenomena that are extremely difficult to resolve based on experiments alone owing to res-

olution limitations. As an example of such an application, the method has elucidated the

effects of different surface functionalizations on the electrocatalytic activity of carbon nan-

otubes (CNTs) and other carbon-based materials towards the hydrogen evolution reaction

(HER), 2H+ + 2e− → H2.
15

The technological relevance and the relative simplicity of HER have made the reaction a

vital proving ground for testing new catalyst models and assessing their accuracy. Density

functional theory (DFT) based simulations are at the core of these HER models, and resolv-

ing the inherent deficiencies of DFT is an integral part on the path towards better catalyst

models. In addition to issues related to the accurate description of the electrode-electrolyte

interface,16–18 one major issue that affects the quality of DFT simulations is the choice of

the exchange-correlation functional. Specifically, commonly used functionals are prone to

errors resulting from spurious electron delocalization effects, which are ultimately caused by

self-interaction error.19 This leads to uncertainty in the predicted values of reaction and ac-

tivation energies, which are the key quantities needed in the construction of reaction energy

diagrams – the cornerstones for gauging catalyst performance from simulations.
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In this work, we propose a constrained DFT (CDFT)20–22 model for alleviating the effects

of spurious electron delocalization in the Volmer-Heyrovsky mechanism of HER, which is

comprised of the following two proton-coupled electron transfer (PCET) reactions

H+ + e− → H∗ (Volmer)

H+ +H∗ + e− → H2 (Heyrovsky) (1)

where H∗ denotes a surface adsorbed hydrogen. The first step of this model involves

representing the reaction in terms of a set of diabatic, charge localized electronic states

that are created by enforcing suitable charge and magnetization density constraints on the

system. The choice of which diabatic electronic states to include in the model is motivated by

adapting the Soudackov–Hammes-Schiffer23–25 (SHS) theory for concerted PCET reactions.

Subsequently, these CDFT diabatic states are used as the basis for a configuration interaction

(CDFT-CI) calculation in order to recover adiabatic potential energy profiles for the Volmer-

Heyrovsky reaction. Van Voorhis and coworkers26 originally developed a similar CDFT-CI

approach to treat static correlation, which they later successfully applied to improve the

predictions of activation energies for simple gas phase chemical reactions.27 Although there

are other methods for mitigating the effects of charge overdelocalization, the method we

propose in this work is relatively cheap to apply as an a posteriori correction to existing DFT

reaction calculations, and the explicit generation of the diabatic electronic states provides

grounds for additional analysis.

The remainder of this paper is structured as follows. First, we will establish the theoretical

basis for using the CDFT-CI model by discussing the SHS theory and its extension to the

Volmer-Heyrovsky reaction in Sec. II A. The algorithms that were implemented to construct

the diabatic CDFT states and to perform configuration interaction simulations are then

detailed in Sec. II B. Sec. III summarizes the computational methods used in the present

study. Benchmark calculations are carried out in Section IVA using a simple model system

to validate the proposed CDFT-CI method. Subsequently in Secs. IVB-IVC, we apply the

method to a more complex open-ended carbon nanotube based catalyst, originally studied

in Ref. 28, and compare the predictions of standard DFT and CDFT-CI for key catalytic

performance indicators. The causes for observed differences in DFT and CDFT-CI potential

energy surfaces are elaborated in Sec. IVD based on results from earlier sections. A critical
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analysis on the effects of the CDFT-CI active space size will also be presented. The main

conclusions of this study are summarized in Sec. V.

II. THEORY

To reiterate, our goal is to establish a theoretical foundation for modeling the elementary

steps of HER with constrained DFT based configuration interaction in an effort to mitigate

the effects of spurious electron delocalization, which causes uncertainty in the values of HER

reaction and activation energies. The Soudackov–Hammes-Schiffer theory23–25 for concerted

PCET reactions, formulated in a more general setting with distinct proton/electron donor

and acceptor groups, provides the necessary tools for this task. Consequently, in Section

IIA, we will first describe the main aspects of the SHS model before adapting it to the

Volmer-Heyrovsky reaction. The algorithms for performing CDFT-CI simulations are then

detailed in Section II B.

A. SHS model applied to electrocatalytic HER

The SHS model23–25 for PCET reactions uses an analogous theoretical framework to

Marcus theory of electron transfer (ET, see e.g. Ref. 29 for a recent review), which provides

a fruitful basis for describing the model. The model can be considered completely general in

the sense that it can treat both sequential and concerted electron-proton transfer reactions

as well as the special case of hydrogen atom transfer (HT), where an electron and a proton

are transferred between the same donor and acceptor groups, and the reaction does not

involve significant redistribution of charge. The relation between Marcus, SHS, and other

related theories has previously been explored in depth in the excellent review article by

Migliore et al.,30 which also includes a comprehensive treatise of the theoretical concepts

involved in PCET reactions. We will therefore keep our treatment concise.

To establish a connection between Marcus theory and the SHS model, consider the fol-

lowing generic proton-coupled electron transfer reaction involving the transfer of one proton

and one electron

D−
e−Dp−H+ +Ap−Ae → De−Dp +H+−Ap−A−

e (2)
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where De,Ae are the electron and Dp,Ap the proton donating and accepting groups, re-

spectively. The direction for proton and electron transfer is assumed to be the same without

loss of generality. If this reaction featured only electron transfer, then according to Marcus

theory, it could be described as a transition between two charge localized diabatic electronic

states, which represent the initial and final states of the reaction (the term ‘nonadiabatic’ is

used interchangeably in some publications), with solvent reorganization acting as the driving

force of the reaction.29 Analogous to the case of ET, the SHS model associates four diabatic

electronic states with the PCET reaction as depicted in Fig. 1a.23 The diagonal pathway in

Fig. 1a corresponds to the net concerted PCET reaction with no stable intermediate states,

whereas the pathways along the sides of the square represent sequential mechanisms where

proton transfer (PT) either proceeds or follows the electron transfer step. The relative en-

ergies of the diabatic states and the couplings between them determine the actual reaction

mechanism.

The transferring proton is treated as an additional inner-sphere solute mode to the elec-

tronic subsystem and collective solvent coordinates are associated with both modes.23 The

quantum mechanical character of the proton is included explicitly in the model by replacing

the purely electronic states used in Marcus theory with mixed electron-proton vibronic states

 IS:

electron
transfer

      proton
         coupled
            electron
                transfer

hydrogen
 transfer

electron
transfer

hydrogen
 transfer

 FS:

 HT:

 ET:

      proton
         coupled
            electron
                transfer

proton
 transfer

electron
transfer

electron
transfer

proton
 transfer

a) b)

FIG. 1. a) The four diabatic electronic states considered in the SHS model for PCET.23 The

diagonal pathway represents the concerted reaction, whereas the off-diagonal pathways correspond

to sequential ET/PT and PT/ET mechanisms. b) Extension of the SHS model to the Volmer

reaction, the initial step of the electrochemical hydrogen evolution reaction. The proton transfer

steps from a) are replaced by hydrogen atom transfer steps. The diabatic states involved in the

reaction are denoted by the red labels. The depicted charge states apply to systems with a net unit

positive charge. If the system is charge neutral, the charges of all Y containing fragments must be

decreased by one.
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|ΨI
µ⟩. The vibronic wavefunctions can be expressed as the product of a diabatic electronic

component |ψI⟩ and the proton vibrational wavefunction |χµ⟩, or more generally, as the lin-

ear combination of such products.31 The proton vibrational wavefunction can be evaluated

by discretizing the motion of the proton onto a grid that spans the appropriate reaction

coordinate, and by solving the nuclear Schrödinger equation in the potential energy field

generated by the electrons.32–34

In the basis of the vibronic wavefunctions, the PCET reaction is modeled as a diabatic

transition between initial (IS) and final state (FS) wavefunctions |ΨIS
µ ⟩ → |ΨFS

ν ⟩, where

the off-diagonal states from Fig. 1a are either ignored if they lie far above the diagonal

states, or they can be combined with the diagonal states into effective states using block

diagonalization (see Section II B).25 Assuming that the vibronic coupling between the states

is small, Vµν = ⟨ΨIS
µ |H|ΨFS

ν ⟩ ≪ kBT , and that other conditions35 of the Fermi golden rule

limit hold, the rate of a vibronically diabatic PCET reaction can be expressed in a form that

closely parallels the Marcus ET rate equation.29 Concretely, the rate constant for a diabatic

PCET reaction at fixed proton acceptor-donor separation is given by36

k =
∑
µ

Pµ

∑
ν

|Vµν |2

~

√
π

σµνkBT
exp

[
−
(∆G◦

µν + σµν)
2

4σµνkBT

]
(3)

where the summations µ and ν are over the reactant and product vibrational states,

respectively, Pµ is the Boltzmann probability of observing the vibrational state µ, σµν is the

solvent reorganization energy, and ∆G◦
µν is the reaction free energy. The form of the vibronic

coupling Vµν depends on the degree of electron-proton adiabacity and it can be gauged e.g.

using the semiclassical diagnostic p = τp/τe, which relates the rates of proton tunneling and

electronic transition.25,37 In the electronically diabatic limit, p≪ 1 ⇔ τe ≫ τp, the electrons

are unable to rearrange fast enough for the proton to stay on the ground electronic state, and

the vibronic coupling is given by the product of the electronic coupling and the vibrational

overlap V diabatic
µν = V el ⟨χµ|χν⟩. In the opposite limit, p ≫ 1, electrons respond instantly to

proton motion and the PCET reaction can be fully characterized by the ground adiabatic

electronic state.

Having summarized the main aspects of the SHS model, we are now ready to apply

the model to the electrochemical hydrogen evolution reaction proceeding via the Volmer-

Heyrovsky mechanism. The former reaction step will be primary focus of this paper. An
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extension of the model to the Heyrovsky reaction will be briefly covered in Section IVC.

In order to make the connection to the SHS model explicit, we rewrite the Volmer reaction

from Eq. (1) as follows

[(H2O)n−H]+ +Y → (H2O)n + [H−Y]+ (4)

where n is a positive integer whose value depends on how the solvated proton is modeled,

e.g., n = 1 for the hydronium and n = 2 for the Zundel cation, respectively, and Y is the

electron donating catalyst surface. We would like to emphasize that the value of n includes

only those water molecules that actively participate in the reaction; the system may well

contain additional ‘bystander’ molecules for modeling hydration effects. Comparison of Eqs.

(2) and (4) shows that the only difference between the reactions is the apparent lack of

electron transfer in the Volmer reaction. This is due to the fact that the proton is reduced

to a hydrogen atom in the reaction: as the proton traverses the reaction coordinate, the

proton accepts an electron from the donor surface Y and simultaneously forms a covalent

bond with the surface. Consequently, the excess positive charge that is initially (mostly)

located on the proton becomes fully delocalized over the reaction product H− Y in the final

state. We have emphasized this charge delocalization by using square brackets in Eq. (4).

Fig. 1b shows the four diabatic electronic states that can be associated with the Volmer

reaction. The states on the diagonal are analogous to the SHS model and represent the

reactant (IS) and product (FS) states of the reaction, where both the electron and proton

are either localized on the donor or acceptor species. Continuing with the connection to

the SHS model, we may identify the ET diabat as a state where the donor Y has already

reduced the proton to a hydrogen but the atom still remains (loosely) associated with the

proton donor (H2O)n. To complete the sequential reaction pathway IS → ET → FS, the

final step now involves a hydrogen atom transfer step in contrast to the SHS model where

proton transfer was the concluding step. The last diabatic state, labeled HT, represents the

intermediary configuration of the opposite sequential HT/ET mechanism. It is worth noting

that the state associated with proton transfer in the SHS model, Fig. 1a, is fully equivalent

with the reactant (IS) state in the Volmer model due to the CDFT methodology used in

creating the diabatic states (vide infra).

At first glance, the off-diagonal states in Fig. 1b, especially the HT state, appear some-

what artificial because the existence of the required intermediate configurations is improbable
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in electrocatalytic hydrogen evolution. Glancing forward to Sections IVA-IVC, these states

will indeed be high energy states compared to the reactant and product states. However,

the off-diagonal diabats should not be interpreted as true observable states. They are pri-

marily included for completeness in the active space of the CDFT configuration interaction

calculation, and as subsequent Sections will show, the states will mainly play a small role

in the transition state region. First, however, we shall address how to reliably generate

the diabatic electronic states defined in Fig. 1b, which will be the key step controlling the

accuracy of the Volmer model.

B. Configuration interaction based on constrained DFT

As shown in the previous section, applying the SHS model to describe the elementary

steps of HER requires both the adiabatic and diabatic electronic states associated with

the reaction. The necessary diabatic states could, in principle, be obtained from the adi-

abatic wavefunction with localization techniques.38 However, since HER catalyst models

typically require the use of large systems due to their complexity (see e.g. Ref. 7), only

GGA level DFT calculations of such systems are routinely tractable with current compu-

tational resources, which are known to suffer from spurious electron delocalization due to

self-interaction error.19 In an effort to mitigate these errors, we have opted for an alternative

approach where the diabatic states are first explicitly constructed by means of constrained

DFT, and the adiabatic electronic states are subsequently calculated from the diabatic states

using configuration interaction. The theoretical foundations of CDFT20–22 and CDFT-CI26,27

have been discussed extensively in the literature. Here, we will present only the main at-

tributes of the algorithm that we have implemented to perform CDFT-CI simulations of

HER in solvated environments, as an extension of our earlier implementation39 which was

limited to systems with a single constraint and two diabatic states.

In CDFT, a diabatic electronic state is constructed by supplementing the standard Kohn-

Sham energy expression with suitable external potentials in an extended Lagrangian ap-

proach. The role of these constraint potentials is to enforce the desired charge and spin lo-

calization conditions in atom centered regions of the system. Assuming M arbitrary density

constraints, the CDFT energy functional can be written as the dual optimization problem22
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ECDFT[ρ(r), ξ] = max
ξ

min
ρ(r)

(
EKS[ρ(r)] +

M∑
c

ξc

[∑
i=↑,↓

∫
wi

c(r)ρ
i(r)dr −Nc

])
(5)

where ξ are the Lagrange multipliers associated with the constraints, wi
c(r) is an atom

centered real space weight function that enforces the constraint by operating on the density,

andNc is the constraint target value. The conventions w
↑
c = w↓

c = wc and w
↑
c = −w↓

c = wc are

adopted to treat total (ρ↑+ρ↓) and magnetization (ρ↑−ρ↓) density constraints, respectively.

The Becke40 population analysis method with atomic size adjustments has been selected as

the weight function wc in the present CDFT implementation. A detailed description of

the properties and efficient construction of the Becke weight function is given in our earlier

publication.39

The constraint target value, Nc, is a measure of the desired number of electrons per

molecular group in each of the diabatic electronic states. Because the formal number of

electrons per molecule is poorly defined when molecules interact strongly,27,41 we employ

so called fragment based constraints to define the constraint target values. This process

involves first splitting the full system into two isolated fragments, I = {A,B}, depending

on the modeled diabatic state. For example, to simulate the state labeled IS in Fig 1b,

the system would be split into the fragments [(H2O)n−H]+ and Y. The spin densities, ρ̃ i
I ,

of these isolated fragments are then separately optimized and saved to disk. Subsequently,

the constraint target values in the true interacting system are computed from the isolated

densities according to

Ñc =
∑
i=↑,↓

∫
wi

c(r)(ρ̃
i
A(r) + ρ̃ i

B(r))dr (6)

A number of remarks are in order to further elucidate the fragment constraint approach.

Although for notational convenience the active proton and electron are associated with the

donor or acceptor fragments in Fig. 1b, we wish to emphasize that the fragment constraint

formalism imposes no actual chemical bonds between the components. Instead, the CDFT

constraint target values for each diabat are fully determined by the superposition of the

reference fragment densities ρ̃ i
I through Eq. (6), which in turn are the self-consistent DFT

minimum energy densities of the isolated fragments with a selected exchange-correlation

functional. Three consequences follow directly from the use of the fragment constraints.

9

http://dx.doi.org/10.1063/1.5038959


Firstly, the partial charges of the reacting proton and other components of the system will

in general be fractional in contrast to the simplified picture depicted in Fig. 1b. Secondly,

the CDFT target values and hence the partial charges are not fixed quantities but will

vary along the reaction coordinate. Finally, as the system transitions from diabatic state

to another, the partial charges will exhibit non-integer changes which slightly obfuscate the

interpretation of the different CDFT diabats. These distinctions are especially important in

the transition state region – a matter we will discuss in more depth in Section IVD.

The optimization problem defined by Eq. (5) can be solved iteratively using a two

tiered self-consistent field (SCF) approach of alternating energy minimizations along ρ(r)

and maximizations along ξ. Standard SCF algorithms can be employed for the inner loop

energy minimization with a fixed value of ξ.42 To derive an algorithm for the outer energy

maximization along ξ, observe that the exact solution satisfies the following identity

c(ξ) =

[∑
i=↑,↓

∫
wi

1(r)ρ
i(r)dr−N1, · · ·

]T
= 0 (7)

In the above expression, the function c depends on ξ parametrically: for any fixed value

of ξ, the inner loop minimization of the Kohn-Sham energy produces a unique density ρ(r)

and hence a new value of c. According to Eq. (7), the outer loop energy maximization

can be viewed as a root finding problem that can be terminated when a value of ξ is found

that satisfies max |c(ξ)| ≤ ε at some fixed convergence threshold ε. O’Regan and Teobaldi43

have analyzed the necessary conditions to guarantee the uniqueness of this solution. The

Newton-Raphson method can be applied to iteratively solve the root finding problem by

generating a new guess for ξn at step n according to

ξn = ξn−1 − αJ−1
n c(ξn−1) (8)

where α > 0 is a step size, whose magnitude is optimized with backtracking line search,

and J−1 is the inverse of the Jacobian matrix. The elements of the Jacobian matrix are

approximated with finite differences, e.g., using a first order forward difference stencil

Ji,j =
∂ci
∂ξj

≈ ci(ξ + δj)− ci(ξ)

|δj|
(9)

where δj is a small perturbation of the jth component of ξ. The computational cost

of calculating the Jacobian matrix amounts to a sizable fraction of the total cost of the
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CDFT method when multiple constraints are imposed on the system. Different strategies

can be adopted to mitigate the computational cost: the same Jacobian matrix can be

reused for multiple iterations, or the matrix can be iteratively updated after the first step

by leveraging a quasi-Newton method, such as Broyden’s method. These strategies are,

however, unnecessary in the current context where the diabatic electronic states defined in

Fig. 1b are solved for a discrete set of atomic configurations translated continuously along

a reaction coordinate. With the exception of the first atomic configuration, the CDFT

energy optimization of any subsequent configurations can be restarted from the converged

solution of the previous configuration, which results in a significant reduction in the number

of required iterations with respect to ξ, see Section III for further details.

Configuration interaction can be employed to recover the adiabatic energy surfaces and

corresponding Slater determinants, |Φ⟩, from a set of diabatic CDFT states {|ΦCDFT
i ⟩}i.26

Specifically, the adiabatic state is expanded in the basis of the constrained states

|Φ⟩ =
∑
i

ci |ΦCDFT
i ⟩ ,

∑
i

c2i = 1 (10)

Here, the squares of the expansion coefficients, c2i , can be interpreted as the weight each

CDFT state contributes to the adiabatic state |Φ⟩. The adiabatic states and their energies

are obtained by solving the generalized eigenvalue equation

HC = SCΛ (11)

where H is the effective Hamiltonian matrix with elements Hi,j = ⟨ΦCDFT
i |HKS|ΦCDFT

j ⟩,

HKS is the Kohn-Sham Hamiltonian, C is the matrix of expansion coefficients, Λ =

diag(λi) contains the eigenvalues λi of H, and S is the overlap matrix comprised of terms

Si,j = ⟨ΦCDFT
i |ΦCDFT

j ⟩. The diagonal of H contains the energies of the diabatic CDFT

states, whereas the off-diagonal elements are calculated according Eq. (12) to ensure H is

symmetric.22

Hi,j = Hj,i =
ECDFT

i + ECDFT
j

2
Si,j −

∑
c

⟨
ΦCDFT

i

∣∣∣∣ξicwi
c(r) + ξjcw

j
c(r)

2

∣∣∣∣ΦCDFT
j

⟩
(12)

We will conclude this section by summarizing the main steps of the proposed strategy

for applying CDFT-CI to model the electrochemical hydrogen evolution reaction on the
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basis of the SHS model. First, the reaction is discretized into a set of configurations along

the reaction coordinate. For each atomic configuration, the necessary isolated fragment

densities are then optimized and used as input in CDFT simulations for solving the diabatic

electronic states defined in Fig. 1b. Finally, the adiabatic energy profile along the reaction

coordinate can be constructed by performing CDFT-CI multireference calculations on the set

of obtained diabatic states. In general, the full set of four diabatic states should be included

in the CDFT-CI calculation for accuracy reasons. However, because the SHS model is a

two state model, the number of diabatic states must be reduced in order to compute other

quantities defined in the SHS model, e.g., the semiclassical adiabacity parameter p.25,37 This

can be achieved by completely ignoring the ET and HT diabatic states, which are as noted

before higher in energy than the IS and FS states, or by combining the (IS, ET) and (FS,

HT) pairs into two effective diabatic states that describe the reactant and product states

using block diagonalization. The block diagonalization process has been illustrated in Fig.

2. The effects of using different sets of diabatic states in CDFT-CI will be explored in detail

in Section IV.

The block diagonalization process is also advantageous for including the effects of explicit

solvation in the model. Explicit solvation has typically been considered in reaction path

simulations of HER due to the importance of hydrogen bonding. At the same time, explicit

FIG. 2. Block diagonalization of the effective CDFT-CI Hamiltonian matrix H. The diabatic

states involved in the reaction are shown in Fig. 1b and the couplings between them are computed

with Eq. (12). The diagonal blocks (HIS,ET,HFS,HT) are diagonalized yielding eigenvectors that

are used to rotate the off-diagonal block HIF. In practice, only the lowest energy eigenvalues and

eigenvectors of the diagonal blocks are retained, reducing the rank of the resulting matrix H̃ in

half.
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solvation is problematic to include in fragment based CDFT constraints because only one

of the fragments can be solvated, causing any solvation effects associated with the opposing

choice to be fully ignored. Moreover, there is no clear reason to favor solvating one fragment

over the other which leads to a degree of ambiguity in the model. This issue can be avoided

altogether by taking advantage of block diagonalization during CDFT-CI, since the diabatic

CDFT states for both solvation cases can be modeled and combined into one effective state

with the method. The permutation where neither state is solvated, which would require a

total of three fragments instead of two, has been ignored throughout this paper.

III. COMPUTATIONAL METHODS

The CDFT-CI method described in Section II B has been implemented in a development

version of the open source quantum chemistry software CP2K.44,45 We validated our imple-

mentation by reproducing some of the results of Hammes-Schiffer et al.46–48 for the PCET

self-exchange reaction in the phenoxyl-phenol system. The exact details and results of these

simulations are presented in the Supplementary Material.

To confirm that the model introduced in Sec. IIA is applicable to the study of eletrocat-

alytic hydrogen evolution, extensive benchmark calculations were carried out for the Volmer

reaction in a system containing a hexa-peri-hexabenzocoronene C42H18 (HBC, see Fig. S2

in the Supplementary Material) molecule as a model catalyst. The impact of using dif-

ferent proton donors (hydronium H3O
+ vs Zundel H5O2

+cation) and the choice of which

diabatic electronic states to include in the CDFT-CI calculation were investigated in these

simulations. The proposed block diagonalization strategy for considering explicit solvation

effects in the reaction model was also tested. The main results of this manuscript are sub-

sequently obtained by applying the model to HER catalysis in solvated open-ended carbon

nanotube systems with a Zundel proton donor, which have been originally studied in Ref.

28. Concretely, we gauge how key catalytic performance indicators, i.e., the reaction and

activation energies, are affected when standard DFT methods are contrasted with the devel-

oped CDFT-CI model. The examined surface sites and hydrogen coverage conditions have

been detailed in Table S3 in the Supplementary Material. Explicit solvent molecules are

included in both systems with a droplet model, as depicted in Fig. S2 in the Supplementary

Material for HBC.
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For the benchmark simulations, the axis connecting one of the central six ring carbon

atoms and the proton donor oxygen was selected as the reaction coordinate. A sequence of

atomic configurations was created by translating the proton in 0.06 Å increments along this

axis. When the proton donating species was described by a Zundel cation, the axis connect-

ing the two oxygen atoms was defined as a second reaction coordinate, and the corresponding

hydrogen atom was translated along this axis with the same 0.06 Å stride. Two alternate

reaction coordinates were considered in the CNT systems: either calculated minimum en-

ergy pathways from nudged elastic band49 simulations were employed directly, or a set of

configurations were constructed by translating the transition state configuration along the

imaginary vibrational mode corresponding the reaction coordinate.28 Both of these reaction

coordinates involve the movement of several other atoms in addition to the proton that is

reduced in the reaction. The impact of using different reaction coordinate representations

has been studied in Refs. 50 and 51 in relation to the original SHS model.

The diabatic electronic states defined in Fig. 1b were constructed by imposing suitable

charge and magnetization density constraints on the system. For the explicitly solvated

carbon nanotube systems, separate constraints were applied to each component involved in

the reaction, namely, the reacting proton, the two water molecules that comprise the proton

donor, and the electron donating CNT. If the total number of electrons in the system was

even, magnetization density constraints were not applied to the diabatic states representing

the reactant (IS) and product (FS) states because these constraints were automatically

satisfied. Moreover, to maintain net spin parity in such systems, the other diabatic states

(ET, HT) were converged to broken symmetry solutions with opposing spin densities on the

CNT and proton donor molecular fragments.

The diabatic states at the reaction transition state were solved by using unconstrained

DFT densities as the initial guess. Subsequent configurations were restarted from the opti-

mized CDFT solution of the previous configuration along the reaction coordinate, typically

reducing the number of CDFT SCF iterations needed to reach convergence to 2-4. For the

HBC systems, more approximate constraint definitions were employed to reduce computa-

tional cost, because evaluating qualitative trends was our primary objective in these systems.

The specifics and an analysis of the effects have been presented in the Supplementary Ma-

terial.

Throughout this paper, constraint target values are calculated using isolated fragment
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configurations as reference values, see Sec. II B. A constraint is deemed converged when

its value deviates from the target value by at most 10−3 electrons. The additive single

bond covalent radii52 for oxygen and hydrogen atoms, and double bond radii53 for carbon

atoms were employed in the construction of the Becke40 weight functions that define the

CDFT constraints. The constraints were optimized using the Newton-Raphson method with

backtracking line search and an initial step size α = 1. The Jacobian matrix is calculated

on each iteration by sequentially perturbing each constraint Lagrangian ξj by 5× 10−3 and

minimizing the energy self-consistently.

Electronic structure optimizations used the spin polarized formalism of the Gaussian and

planewaves method44,54 in conjunction with the orbital transformation42 minimizer. The

PBE55 exchange-correlation functional was adopted for most simulations. Some qualita-

tive tests were conducted with the MPW1K56 global hybrid functional. The valence elec-

trons of atoms were expanded using molecularly optimized double ζ basis sets,57 while core

electrons were treated with norm conserving pseudopotentials.58–60 DFT-D3 van der Waals

corrections61 were applied to the PBE simulations. A 500 Ry cutoff was selected for the

auxiliary planewave basis in the HBC systems. For consistency with the original study,28

a higher 550 Ry cutoff and nonlinear core corrected pseudopotentials62 were employed in

the CNT systems. The studied systems were placed in vacuum with at least 10 Å vacuum

surrounding the atoms in each direction. Interactions with periodic images were decoupled

with a wavelet based Poisson solver.63 The CNT systems were all charge neutral, while a

unit positive charge was applied to the HBC systems.

IV. RESULTS AND DISCUSSION

In order to verify that the CDFT-CI method is suitable for studying the Volmer reaction,

benchmark calculations were first conducted using HBC as a model electron donating cata-

lyst. The results for systems with a hydronium cation proton donor in vacuum are reported

in Sec. IVA1, while the effects of solvation are explored Sec. IVA2 using a Zundel cation

proton donor. The method is subsequently applied to HER catalysis on open-ended CNTs.

Adiabatic energy profiles for the Volmer reaction are computed with standard DFT and

contrasted with CDFT-CI results in Sec. IVB. An extension of the CDFT-CI model to the

Heyrovsky reaction step is then presented in Sec. IVC. We conclude with a short discussion
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on the differences between CDFT-CI and DFT predicted energy profiles and analyze the

impact of using different diabatic bases for the CDFT-CI model in Sec. IVD.

A. Volmer reaction on HBC

1. Hydronium cation in vacuum

The Volmer reaction model defined in Sec. IIA was formulated in terms of four diabatic

electronic states, which were depicted in Fig. 1b. The adiabatic Kohn-Sham determinants

and the associated ground state energy profile along the Volmer reaction coordinate can be

recovered by performing a configuration interaction calculation in the basis of these states.

To estimate the importance of each diabatic state in the CI expansion, we will first compare

the energy profile obtained with the full set of diabatic states and the results from two

alternate two state representations, where only the reactant (IS) and product (FS) states

are considered, or the (IS, ET) and (FS, HT) pairs are combined into two effective states

via block diagonalization (see Fig. 2). The comparison is carried out by examining the

Volmer reaction in a system comprised of a hydronium cation proton donor and a HBC

electron donor. The hydronium cation is placed 3.2 Å above the surface, as measured from

the oxygen atom, and the reacting proton is translated in 0.06 Å increments along the axis

between the oxygen and a carbon atom in the HBC molecule. The adiabatic energy profiles

calculated with CDFT-CI using different sets of diabatic states are compared to standard

DFT in Fig. 3a.

Examining Fig. 3, it is immediately obvious that CDFT-CI increases the reaction ac-

tivation energy in comparison to DFT, regardless of the choice of which diabatic states to

include in the CI expansion. This result is natural given that the DFT curve was obtained

with the PBE functional which is known to suffer from spurious electron delocalization. In

addition, we find that CDFT-CI also alters the reaction energy, which in the present case is

decreased (more exothermic) in the forward reaction direction. Comparison of the different

sets of diabatic states included in the CDFT-CI model shows that the barrier is largest with

the two state model, which includes only the IS and FS states, and smallest when all states

are included, although the values differ only by 0.06 eV. The barrier obtained with the two

effective states constructed by block diagonalization resides in between these two.
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FIG. 3. a) Adiabatic energy profiles calculated with standard DFT and CDFT-CI for the Volmer

reaction in the HBC/hydronium system at a fixed 3.2 Å proton acceptor-donor separation. Positive

values of the proton coordinate indicate that the proton is closer to the water molecule than to

HBC. The CDFT-CI energy profiles are computed using different sets of diabatic states from Fig.

1b in the expansion: full set of four states (denoted 4 states), two effective states obtained by

combining (IS, ET) and (FS, HT) pairs with block diagonalization (4 states, block), and only

the IS and FS states (2 states). The data has been smoothed using cubic splines. b) Weight

of each diabatic state in the CDFT-CI ground state determinants. States in the full four state

model are labeled IS, FS, ET and HT, the labels IS (2 state) and FS (2 state) denote states in the

model comprised of the reactant and product diabats, while the effective two states in the block

diagonalization model are indicated by the (IS, ET) and (FS, HT) labels.

To understand the observed trends in CDFT-CI barrier height, the weight, c2i , each

diabatic state contributes to the ground state CDFT-CI determinant is plotted against the

reaction coordinate in Fig. 3b. This figure demonstrates that the ground state determinant

is mostly described by the linear combination of the reactant and product states since their
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combined weight exceeds ∼ 95 % everywhere. However, in the transition state region around

0.2 Å, we observe a small peak (∼ 5 %) in the weight of the ET state which can be attributed

to the observed reduction in barrier height when the full four state diabatic representation

is used. As noted in Sec. IIA, the ET state represents a configuration where the electron

donating HBC surface has already reduced the reacting proton, but which still is (loosely)

bound to the water molecule that originally constituted the hydronium cation. When the

off-diagonal states from Fig. 1b are omitted from the CDFT-CI expansion, the transition

from the reactant (IS) state to the product (FS) state is more gradual than with the four

state model.

The differences between alternate diabatic representations are not limited to ground state

properties. Plots similar to those for the ground state in Fig. 3 are shown in Fig. S4 of the

Supplementary Material for the first excited state. To summarize, this figure demonstrates

that there are significant quantitative and qualitative differences between excited state en-

ergy profiles when the size of the CDFT-CI activate space is contracted. As a consequence,

large variances are also expected in the predicted values of the electronic coupling V el (see

below), which is defined as half of the energy splitting between the ground and first excited

state energy profiles at the transition state.64 The ET diabatic state is again the root cause

for the discrepancies between alternate diabatic representations as its weight in the first

excited state is over 60 % almost everywhere along the reaction coordinate, which follows

naturally from the prior interpretation that the state represents the reduction of the pro-

ton. Although alarming at first glance, the stark differences between the effective two state

and the full four state CDFT-CI models are fully explained by the properties of the block

diagonalization transformation. In particular, despite the inclusion of the ET state in the

construction of the block diagonalized basis, it is important to note that the transformation

discards almost all information about the excited state behavior because the transformation

is a matrix rank reducing operation: only the eigenenergies and eigenstates of the ground

block diagonalized state, which is predominantly IS-like at the transition state, are retained

in order to reduce the rank of the effective Hamiltonian matrix in half, as shown in Fig. 2.

Because the rate of electron tunneling decays exponentially with distance,29 the electronic

coupling discussed above should exhibit the same decay trend when the proton acceptor-

donor distance is increased. To verify that the CDFT-CI method reproduces this result,

Volmer reaction energy profiles were generated analogously to Fig. 3 for a total of six proton
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3.08 Å
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FIG. 4. a) CDFT-CI energy profiles for the Volmer reaction using the full set of four diabatic

states in the HBC/hydronium system at various proton acceptor-donor separations. b) Calcu-

lated values of the electronic coupling, V el, as a function of the proton acceptor-donor distance.

Note the logarithmic scale. The electronic couplings have been evaluated using different diabatic

representations, which have been explained in the main text and Fig. 3.

acceptor-donor separations by rigidly translating the hydronium cation. The calculated

CDFT-CI energy profiles with the full four state model are shown in Fig. 4a, while values of

the electronic coupling computed with all considered diabatic representations are presented

in Fig. 4b. Energy profiles obtained with DFT and other considered CDFT-CI models are

shown for comparison in Fig. S5 in the Supplementary Material.

The CDFT-CI calculated reaction and activation energies both exhibit an increasing

trend when the hydronium cation is translated farther away from the HBC molecule. The

observation that the barrier grows as the distance increases is in full accordance with the

expected exponential decay of the electron tunneling rate, because the electron has to tunnel

through ever greater distances prior to reducing the proton to a hydrogen atom. As shown

in Tables S4-S5 in the Supplementary Material, CDFT-CI predicts systematically larger

barriers than DFT as the proton acceptor-donor distance is varied. CDFT-CI reaction

energies are also more exothermic than DFT but the difference diminishes the greater the

separation. Overall, the results are quite insensitive to the employed CDFT-CI diabatic

representation: the reaction energies are identical and even the variance in barriers remains

within 0.07 eV, which is below the typical 0.1 eV resolution limit attributed to DFT based
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methods. The trends discussed here for the PBE functional persist when the functional is

swapped for the MPW1K global hybrid which includes ∼ 40% exact exchange, see Figs.

S6-S8 and Tables S9-S10 in the Supplementary Material.

Fig. 4 also confirms that the correct trend is indeed recovered for the magnitude of the

electronic coupling. As noted above, there is a clear difference between alternate diabatic

representations stemming from disparities in the first excited CDFT-CI state: the values of

the electronic coupling are the smallest with the full four state model and the decay is most

pronounced. However, the actual values of the electronic coupling are not that important in

the current context because, irrespective of the diabatic representation, the coupling is very

large compared to the thermal energy kBT . This implies that the reaction is electronically

adiabatic with respect to all nuclear modes and the reaction occurs on the ground electronic

state, see below for further analysis.

All in all, the results discussed thus far in this section suggest that ground state properties

(activation and reaction energies) are rather insensitive to the choice of diabatic states in

the CDFT-CI model, whereas quantitative differences arise in excited state properties if the

size of the CI active space is reduced. The preferred safe strategy for applying CDFT-CI

to the Volmer reaction, therefore, seems to be to include all diabatic states from Fig. 1b in

the model. This conclusion will be reevaluated in Sec. IVD once we have data from further

systems (Secs. IVA2-IVC). First, however, we shall complete the adiabacity analysis

started above to verify that the ground state potential energy profile suffices to characterize

the Volmer reaction, which will be the primary quantity evaluated in subsequent sections.

This analysis involves treating the reacting proton quantum mechanically and subjecting

the CDFT-CI model to the same semiclassical treatment which has been adopted with the

original SHS model to, e.g., characterize PCET reaction mechanisms.25,37

The vibrational wavefunctions that correspond to the reactant (IS) and product (FS)

diabatic electronic states as well as to the effective (IS, ET) and (FS, HT) states are de-

picted in Fig. 5 at a 3.2 Å proton acceptor-donor separation. The vibrational wavefunctions

were computed with the Fourier grid Hamiltonian method32,34 by discretizing the electronic

potential energy profiles onto a grid with 1024 points. The ET and HT states modify the

reactant and product states surprisingly much when the states are combined into effective

states with block diagonalization. This results in a broadening of the proton vibrational

wavefunctions, which in turn causes an order of magnitude increase in the value of the
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FIG. 5. Energies of the diabatic electronic states as a function of the proton coordinate in the

HBC/hydronium system at a 3.2 Å acceptor-donor separation. The solid lines correspond to the IS

and FS states, while the dashed lines represent the effective (IS, ET) and (FS, HT) states obtained

with block diagonalization. The ground state proton vibrational wavefunctions associated with

these electronic states are shown by the filled curves. The minima of the diabatic states are

aligned on the energy axis because the vibrational wavefunctions should be degenerate for the

semiclassical analysis.

vibrational overlap. These modifications are rationalized by the observation that the ener-

getic separation between the IS (FS) and ET (HT) state pair decreases notably when the

hydrogen nucleus is translated away from energy minimum of the IS (FS) diabat.

The values of the semiclassical adiabacity parameter p have been estimated on the basis

of the CDFT diabatic states as a function of the proton acceptor-donor separation. The

results are tabulated in Tables S6-S8 in the Supplementary Material for all consider diabatic

representations. Note that the IS and FS states were employed to compute the vibrational

quantities related to the full four state model because the semiclassical analysis is based on

a two state formalism. Irrespective of whether the IS and FS or the effective (IS, ET) and

(FS, HT) diabatic states are employed in the analysis, the value of adiabacity parameter

is large, p ≫ 1, indicating that the proton tunneling time is significantly slower than the

electron transition time, τp ≫ τe. In the context of more general PCET reactions given by

Eq. (2), this result could be interpreted as an indication that the reaction proceeds via the

hydrogen atom transfer mechanism instead of concerted PCET, i.e., that the proton actually
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reacts as a neutrally charged hydrogen atom and there is no significant rearrangement of

charge density.25 This mechanism is not directly transferable to the Volmer reaction but it

nonetheless offers interesting insight into the reaction. Looking back at Fig. 4, we see that

the transition state is attained at a positive value of the proton coordinate, that is, closer

to water than to HBC. The FS state becomes the predominant contribution to the CDFT-

CI determinant at the same time. Together these observations suggest that the reaction

mechanism, very loosely speaking, consists of a fast initial reduction of the proton followed by

slower hydrogen transfer. This interpretation is of course an oversimplification because the

CDFT-CI wavefunction is multiconfigurational: the system transitions from a predominantly

IS-like state to a predominantly FS-like state through a sequence of intermediaries where

both states contribute notably. Note that no actual assumptions about the mechanism enter

into the CDFT-CI calculation because the weight of each diabat is free to vary according

to Eq. (11). The second implication of the result p ≫ 1 is that the reaction can be

fully characterized by the adiabatic ground state potential energy surface (the reaction is

both vibronically and electronically adiabatic65); however, as the results of this section have

shown, standard DFT calculations with GGA functionals might not be reliable in estimating

the energy profile.

2. Zundel cation

Having verified that the CDFT-CI model is applicable to the Volmer reaction in vacuum,

we next validate the proposed strategy for including explicit solvation effects in fragment

based CDFT constraints. As described in Sec. II B, the first step of this process is to treat

each diabatic electronic state in terms of two separate substates, where either the proton

donor (hydronium/Zundel) or acceptor (HBC) is solvated. The substates are next combined

into a single effective state with block diagonalization. Here, we will also evaluate the

effects of using a different proton donor, namely, the Zundel cation H5O2
+. A second proton

coordinate axis is defined between the oxygen atoms of the Zundel cation. Note that the

proton/hydrogen moving along this axis is not reduced in the reaction. This two dimensional

treatment has been adopted to approximate the concerted motion of the two active hydrogen

nuclei participating in the Volmer reaction. The primary reaction coordinate describes the

motion of the proton that is reduced in the reaction as it moves from the Zundel cation
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to HBC surface, while the secondary coordinate models the motion of the hydrogen that

is initially delocalized between the Zundel oxygen atoms and becomes fully associated with

the proton donating oxygen in the product state. With this scheme, the costly calculation of

actual reaction paths can be avoided. Additionally, to estimate the effects of changing Zundel

cation oxygen-oxygen separation, the Volmer reaction energy profiles were computed at two

Zundel oxygen-oxygen separations, corresponding to the minimum energy configurations of

the Zundel cation (2.4 Å) and a water dimer (2.8 Å) in vacuum. A comparison of the vacuum

and solvated energy profiles are shown in Fig. 6 for CDFT-CI simulations using the full set

of diabatic states.

Focusing first on the effects of explicit solvation, we observe that the water shell stabilizes

the reactant state of the reaction, which leads to an increase in the values of the activation

and reaction energies when compared to vacuum results, see Tables S11-S12 in the Supple-

mentary Material for the actual quantitative values. The effects are more pronounced for

the system where the Zundel oxygen-oxygen distance is set to the shorter value of 2.4 Å. In

fact, the reactant state of the other system with the longer O-O distance has two local min-

ima separated by a shallow saddle point. These minima correspond to configurations where

both translated hydrogens are either bonded to the same oxygen forming H3Or
+ · · ·H2O,

or they both are bonded to different oxygens H2Or · · ·H3O
+, where Or denotes the oxygen

atom used in defining the primary reaction coordinate with the HBC surface. Neither state

truly represents a Zundel cation H5O2
+, and the actual proton donor in this system is a

hydronium cation with the other water molecule acting as an additional solvent molecule.

The addition of solvent causes a similar increasing effect to the value of the electronic

coupling calculated at the reaction transition state (Tables S11-S12 in the Supplementary

Material), which again is more pronounced for the system with the shorter Zundel O-O

separation. In order to estimate whether the choice of diabatic states affects the results, the

adiabatic energy profiles from Fig. 6 were reevaluated using the two state CDFT-CI models

composed either of the reactant (IS) and product (FS) states or the effective (IS, ET) and

(FS, HT) states. The resulting profiles are shown in Figs. S10-S11 of the Supplementary

Material, while data for standard DFT with the PBE functional is included for completeness

in Fig. S9. The energy parameters from these simulations have also been collected into

Tables S11-S12 in the Supplementary Material. Overall, the reaction and activation energies

computed with both two state models are in perfect quantitative agreement with the full four
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FIG. 6. Two dimensional CDFT-CI energy profiles for the Volmer reaction in the HBC/Zundel

system at two Zundel oxygen-oxygen separations, corresponding to the minimum energy configu-

rations of the Zundel [a) – b)] and water dimer [c) – d)] molecules in vacuum. The HBC-Zundel

separation is fixed to 3.4 Å in both systems. The vertical reaction coordinate describes the mo-

tion of the proton that is reduced to hydrogen in the reaction and binds to HBC in the product

state, represented by negative values of the reaction coordinate. The secondary horizontal reaction

coordinate describes the motion of the hydrogen atom that is located on the axis connecting the

two oxygen atoms of the Zundel cation, with negative values indicating that the atom is closer to

the oxygen which donates a proton to HBC. The profiles in [a) & c)] were calculated in vacuum,

while explicit solvation was included in the profiles in [b) & d)] by using the block diagonalization

strategy described in the main text. The full set of diabatic electronic states from Fig. 1b were

included in the CI expansion.

state model. By contrast, standard DFT predicts activation energies 0.1 − 0.3 eV smaller
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than the CDFT-CI values depending on system, although reaction energies are consistent

with the other methods. The values of the electronic coupling exhibit the same increasing

trend discussed previously in Sec. IVA1, growing in order four state model > effective two

state model > two state model. The effect of using the MPW1K functional instead of PBE

is briefly explored in Sec. S8 in the Supplementary Material.

B. Volmer reaction on CNTs

The previous section IVA demonstrated that the proposed CDFT-CI method can suc-

cessfully be applied to the Volmer reaction using a simple model system. In this section, we

will consider a more complex HER catalyst model by assessing how CDFT-CI influences the

catalytic performance of different surface sites at the edge of solvated open-ended carbon

nanotubes, which were studied in detail in Ref. 28. Instead of translating the reacting pro-

ton along a one dimensional reaction coordinate, we will consider two alternative reaction

coordinates where the entire system is translated according to the minimum energy reaction

path, obtained via nudged elastic band49 (NEB) simulations, or where the transition state

configuration is translated along the reaction coordinate vibrational mode. CDFT-CI en-

ergy profiles were computed for a total of three surface sites using both reaction coordinate

representations. The results for two of these sites are compared to standard DFT PBE re-

sults in Fig. 7, while data for the remaining site is shown in Fig. S13 of the Supplementary

Material. The Zundel cation acts as the proton donating species in each system.

Applying the CDFT-CI model causes substantial modifications of the Volmer energy

profiles. The activation energies increase by up to 0.2 eV, while reaction energies in the

forward direction decrease by 0.1 − 0.2 eV, when evaluated on the NEB minimum energy

reaction paths. The magnitude of these changes cannot be predicted a priori because CDFT-

CI modifies each reaction profile by a different amount. The barriers obtained when the

CDFT-CI determinant is expanded in the basis of the effective (IS, ET) and (FS, HT)

states are consistently larger than with the full set of four diabats, or with the two state

basis comprised of the reactant and product states. The reaction energies, conversely, are

identical with all diabatic representations. Although the contribution of the ET and HT

states to the four state CDFT-CI vector is small (< 5×10−3), combining these together with

the reactant and product states yields effective states that are either lower or at most equal
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FIG. 7. Comparison of CDFT-CI and DFT PBE energy profiles for the Volmer reaction evaluated

at two different surface sites (top/bottom) on the edge of solvated open-ended CNTs taken from Ref.

28. a, c) The system is translated along the minimum energy reaction path obtained from nudged

elastic band simulations. b, d) The transition state geometries of these systems, i.e. the highest

energy configurations from a) and c), are translated along the reaction coordinate vibrational

mode. The CDFT-CI results were computed with three alternate diabatic representations: all four

diabatic states from Fig. 1b, the two effective (IS, ET) and (FS, ET) states obtained from the full

model by block diagonalization, or the two state model including just the reactant and product

states.

in energy to the original IS and FS states, see Fig. S14 in the Supplementary Material. The

same figure also reveals that a part of the stabilization arises due to stronger mixing of the

IS and ET states around the transition state because the energetic separation between these
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two states becomes narrower as the system traverses the reaction coordinate. The block

diagonalization treatment induces other slight modifications to the diabatic state overlap

matrix S as well. The joint influence of these factors leads to the observed increase in

reaction barriers. The energies of the diabatic states remain relatively unchanged outside

the transition state region which explains why the reaction energy predicted by both diabatic

representations is equal. The weight of the (effective) initial diabatic state varies between

0.5 to 0.8 depending on system at the transition state, as illustrated in Fig. S14 of the

Supplementary Material.

The results discussed above indicate that CDFT-CI stabilizes the product state, where the

reduced proton is bound to the active site on the CNT, or, equivalently, destabilizes the initial

state configuration in the considered systems. The CDFT constraints were constructed in

a manner that prevents any extra charge transfer between the solvent, proton, and the

electron and proton donors beyond what is needed to satisfy the constraints. The ambiguity

of selecting the ‘correct’ admissible amount of charge transferred was avoided by adopting

a fragment based approach (see Sec. IIA). Taking all of these notions into account, we can

explain the observed results as follows. Firstly, the decrease in the reaction energy suggests

that the PBE DFT description of the reactant state deviates more from the CDFT-CI

solution than the product state. In the current systems, this manifests as a greater exchange

of charge between the electron and proton donors in the reactant state with DFT than with

CDFT-CI. Secondly, the increase in the activation energy is a direct result of the enhanced

charge localization due to CDFT, consistent with our earlier discussion in Sec. IVA and

the findings of Van Voorhis et al.27 in relation to other chemical reactions.

CDFT-CI also modifies the energy profiles that were constructed by translating the tran-

sition state geometry along the reaction coordinate vibrational mode, see Figs. 7b,d. As

before, reaction energies in the forward direction are reduced by approximately 0.1 eV.

However, the impact on activation energies is not as pronounced: CDFT-CI calculations

performed within the basis of the effective block diagonalized states yield systematically

larger activation energies than DFT PBE, whereas the full four state and the IS+FS two

state models show virtually no difference to DFT PBE in two out of three of the considered

systems.

Energy diagrams constructed on the basis of minimum energy reaction paths are a stan-

dard tool for comparing the catalytic performance of different surface sites without requiring
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any input from experimental measurements. In this section, we have shown that CDFT-CI

significantly alters the relative stability of the Volmer reaction transition, reactant and prod-

uct states. As a result, it is obvious that the energy diagrams for the full Volmer-Heyrovsky

mechanism will also be modified. The theoretical treatment of the Heyrovsky reaction suf-

fers from the same adverse effects of spurious electron delocalization as the Volmer reaction.

We can therefore expect CDFT-CI to influence the energetics of the Heyrovsky reaction as

well. To complete our description of the entire reaction mechanism, we will briefly explore

how the proposed CDFT-CI model generalizes to the case of the Heyrovsky reaction in the

next section.

C. Heyrovsky reaction on CNTs

Generating a set of appropriate diabatic electronic states to represent the Heyrovsky

reaction is not as straightforward as for the Volmer reaction, because the reacting proton

forms a hydrogen molecule H2 in the product state instead of binding directly to the elec-

tron donating CNT. Moreover, it is not immediately clear how to partition the system into

fragment configurations, especially if the two fragment limit on the total number of configu-

rations is maintained. While in principle all possible permutations could be considered, we

have opted for a set of diabatic states that are fully analogous to the states employed for

the Volmer reaction. To this end, we rewrite the Heyrovsky reaction from Eq. (1) as

[(H2O)n−H]+ + [H−Y] → (H2O)n + [H2 · · ·Y]+ (13)

In the above expression, the product H2 molecule has been associated with the electron

donating species Y. This choice does not however imply that hydrogen molecule is (cova-

lently) bonded to Y or that it carries any net charge in the product state; on the contrary,

it is merely a way to represent the reactant state in the CI expansion. The reaction in Eq.

(13) can be represented in terms of four diabatic states that are obtained by performing

the appropriate substitutions into Fig. 1b, see Fig. S15 in the Supplementary Material for

the resulting states. Solvation effects are included in this model as before by adopting a

block diagonalization strategy. The diabatic CDFT states are created by using a total of

four charge and four magnetization density constraints, which are applied separately to the

CNT, the water molecules that comprise the proton donor, and the two hydrogens that form

28

http://dx.doi.org/10.1063/1.5038959


the hydrogen molecule in the product state (see Sec. III for notes on when the magnetization

density constraint can be omitted). CDFT-CI energy profiles were computed for two sur-

face sites using the same reaction coordinate representations considered previously in Sec.

IVB. The energy profiles are compared to data obtained with standard DFT and the PBE

functional in Fig. 8. The weight each diabat contributes to the CDFT-CI wavefunction has

been visualized in Fig. S16 in the Supplementary Material.

The main trends and observations noted for the Volmer reaction in Sec. IVB are preserved

when CDFT-CI is applied to the Heyrovsky reaction. Nevertheless, the CDFT-CI treatment

appears to have a more profound impact on the energetics of the latter reaction, at least in

the absence of additional data. This manifests as a larger overall increase in the values of

the activation energies, now ranging between 0.1− 0.3 eV. The effect is particularly evident

in the values computed by including just the reactant (IS) and product (FS) states or the

full set of diabatic electronic states in the CDFT-CI expansion. Interestingly, the barriers

with the four state model are slightly lower than with either two state model, whereas they

were indistinguishable from the IS+FS two state model in the case of the Volmer reaction.

Reaction energies in the forward direction are reduced roughly by a 0.1− 0.15 eV constant

factor in both systems, in full accordance with the results for the Volmer reaction. Here,

the influence of CDFT-CI on reaction energy profiles is quantitatively similar for both of

the considered reaction coordinates, contrary to the Volmer reaction case where minimum

energy path simulations were more affected.

Although only a limited number of systems were examined in this section, the results

have nonetheless demonstrated that the CDFT-CI model that we originally proposed for

the Volmer reaction is also suitable to the Heyrovsky reaction, even without extensive mod-

ifications of the set of diabatic electronic states included in the model. Summarizing the

findings of Sections IVB-IVC, we believe that CDFT-CI could be a powerful tool for gener-

ating more accurate energy diagrams for the hydrogen evolution reaction in systems where

the reaction proceeds via the Volmer-Heyrovsky mechanism. However, further studies with

additional systems and surface sites are necessary to verify these observations. The effects

of using a larger set of diabatic states in the CDFT-CI model for the Heyrovsky reaction

should be explored as well to ensure model convergence, which was beyond the scope of the

current work.
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FIG. 8. Comparison of CDFT-CI and DFT PBE energy profiles for the Heyrovsky reaction eval-

uated at two different surface sites (top/bottom) on solvated open-ended CNTs taken from Ref.

28. a, c) The system is translated along the minimum energy reaction path obtained from nudged

elastic band simulations. b, d) The transition state geometries of these systems, i.e. the high-

est energy configurations from a) and c), are translated along the reaction coordinate vibrational

mode. The CDFT-CI results were computed with three alternate diabatic representations: all four

diabatic states from Fig. S15 in the Supplementary Material, the two effective (IS, ET) and (FS,

ET) states obtained from the full model by block diagonalization, or the two state model including

just the reactant and product states.

D. Comparison of DFT and CDFT-CI potential energy surfaces

Sections IVA-IVC have demonstrated a clear difference between DFT and CDFT-CI

predicted reaction energy profiles. In CDFT-CI, the adiabatic ground state wavefunction
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and the associated potential energy surface are created by expanding the wavefunction in

terms of charge localized diabatic states. It is therefore not surprising that the disparities

between CDFT-CI and DFT arise due to the fact that the charge density is partitioned

differently by these two methods. Quantitatively assessing these differences is, unfortunately,

limited by the lack of a ground state density for CDFT-CI (only the diabat CI expansion

coefficients are available). Instead, to obtain a more qualitative picture of the differences,

DFT partial charges are compared to CDFT charges in each diabatic state for a subset of

the investigated systems in Figures S17-S22 in the Supplementary Material. The partial

charges are plotted separately for each component of the system, i.e., the reacting proton,

proton donor, electron donor and solvent.

Examination of the partial charges reveals that DFT charges not only differ from CDFT

values in the transition state region but also in the reactant and product reaction states,

where the CDFT-CI state is almost fully described by either the IS or FS state, respectively.

Significant differences of DFT partial charges to the latter two reaction states correlate with

the observed reduction of reaction energies in these systems. Moreover, the figures suggest

that according to CDFT-CI the electron donor HBC/CNT loses more charge density than

predicted by DFT during the course of the reaction, reaching roughly 0.2 e in the CNT

systems if we assume that the IS and FS states fully determine the multireference reactant

and product states, respectively. Large variances in CDFT and DFT charges are evident in

the transition states of each system. Because multiple diabats contribute to the CDFT-CI

transition state, establishing a direct relationship between these differences and the increased

barrier is however not possible. As a reminder, the constraint target charges for CDFT were

obtained through a fragment constraint approach by splitting the system into appropriate

isolated components, see Sec. II B for additional details. This methodology has been shown

to be a reliable way of partioning charge density in strongly interaction systems, but it

is not entirely immune to exchange-correlation functional effects particularly with complex

fragments, e.g., explicitly solvated, elongated Zundel cation.27,41

In this work, the CDFT-CI potential energy surfaces were evaluated by considering three

alternate diabatic representations on the basis of Fig. 1b and Fig. S15 in the Supplemen-

tary Material. The diabatic states corresponding to the reactant (IS) and product (FS)

configurations of the investigated reactions are by far the most important contributions to

the CDFT-CI wavefunction, as evident by their combined weight to full four state model
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that exceeds 95 % everywhere along the reaction coordinate in all systems. Qualitatively,

all diabatic representations produced consistent trends in comparison to DFT, namely, in-

creased barriers, and unchanged or reduced reaction energies depending on system. Minor

system specific quantitative differences were however observed, although they remain below

0.1 eV in each case. Whenever discrepancies between activation energies were noted, the

four state model always predicted the smallest values while the ordering of the two state

models varied. Reaction energies were less affected and exhibited no obvious trend, mainly

manifesting in a subset of the studied Heyrovsky reactions, see Fig. 8 panels b and d.

These observations reflect the significant weight of the IS and FS states; larger differences

between diabatic representations are likely to arise in systems where the contribution of

the off-diagonal states is more pronounced. By contrast, excited state properties indicated a

stronger dependence on the diabatic basis stemming from disparities in the first excited state

induced by the reduction of the CI active space, although these differences had no bearing

on the main conclusions regarding electronic adiabacity. The impact of the additional block

diagonalization step that transforms the four state model into an effective two state model is

difficult to analyze in detail because the repeated diagonalizations and rotations modify the

relevant CDFT-CI interaction matrices (H, S) in a nontrivial manner: the transformation

not only induces subtle changes to the overall contribution of each diabat but also discards

some information as the result of the matrix rank reduction, see Sec. II B for details.

Based on the data in Secs. IVA-IVC, it remains unclear when it is sufficient to use

just the reactant and product states in CDFT-CI and when additional diabats are required.

The use of only two states without loss of accuracy would naturally be preferable owing to

the reduced computational effort. Decidedly, the issue of which diabatic representation to

employ warrants further investigation. Future studies might benefit from the development

of a tool to directly compare the electronic properties of CDFT-CI and DFT wavefunctions.

Construction of a high quality reference database for the Volmer-Heyrovsky mechanism

would obviously aid in this matter and also enable the systematic testing of exchange-

correlation functionals, which was beyond the scope of the current manuscript where an

emphasis was placed on typical system sizes found in surface electrocatalysis applications.

Another research direction that might further elucidate the properties of the CDFT-CI

wavefunction could be to compare the method to block-localized DFT based CI,66,67 where

valence bond type diabatic states are constructed directly in terms of localized orbitals.
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V. CONCLUSIONS

In computational electrochemistry, the electrocatalytic performance of catalyst materials

is often measured by constructing energy diagrams on the basis of minimum energy reaction

paths, which are calculated for the elementary steps that comprise a reaction. The relative

stability of configurations along DFT simulated reaction paths suffer from spurious electron

delocalization effects, which leads to inaccuracies in the estimated values of reaction and

activation energies.

In this paper, we proposed a constrained DFT model for alleviating the effects of spurious

electron delocalization in the simulation of the Volmer-Heyrovsky mechanism of the hydrogen

evolution reaction, building upon the general treatment of proton-coupled electron transfer

reactions by Soudackov and Hammes-Schiffer.23–25 This model involves representing atomic

configurations sampled along the reaction coordinate in terms of a set of diabatic electronic

states constructed by imposing suitable density constraints. The diabatic states correspond

to the reactant and product states of the reaction as well as two intermediate states where

electron transfer either proceeds or follows hydrogen transfer. Refined adiabatic minimum

energy reaction profiles are subsequently recovered by performing a configuration interaction

calculation in the basis of the CDFT diabatic states.

The CDFT-CI method was first extensively benchmarked by investigating the effects of

explicit solvation and using different proton donors for the Volmer reaction with a simple

model catalyst. We then examined the full Volmer-Heyrovsky reaction mechanism in open-

ended carbon nanotube systems originally characterized in Ref. 28. These simulations

demonstrated that CDFT-CI alters the relative stability of the reaction transition, product

and reactant states, which lead to an increase in activation energies and a decrease in reaction

energies in the examined systems. Reduced electron delocalization and the prevention of

excessive charge transfer between different components of the system were deemed to be the

main causes for the observed trends.

The proposed CDFT-CI approach is an a posteriori correction method. It thus offers

a relatively cheap way for improving DFT calculated energy diagrams by considering only

the relevant reaction states. In principle, the reaction minimum energy paths could also

be optimized directly at the CDFT-CI level if the necessary nuclear gradients were im-

plemented, which might lead to further accuracy improvements.68 Given the success we

33

http://dx.doi.org/10.1063/1.5038959


observed in generalizing the model from the Volmer to the Heyrovsky reaction, we expect

similar CDFT-CI models with suitably selected diabatic electronic states to be applicable to

other electrocatalytically interesting PCET reactions as well, e.g., to the oxygen reduction

reaction.

SUPPLEMENTARY MATERIAL

See supplementary material for method validation calculations, further computational

details, and additional results related to the systems discussed in Secs. IVA-IVD presented

as tables and figures.
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41J. Řezáč and A. de la Lande, J. Chem. Theory Comput. 11, 528 (2015).

42J. VandeVondele and J. Hutter, J. Chem. Phys. 118, 4365 (2003).

43D. D. O’Regan and G. Teobaldi, Phys. Rev. B 94, 035159 (2016).

44J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, and J. Hutter,

Comput. Phys. Commun. 167, 103 (2005).

45J. Hutter, M. Iannuzzi, F. Schiffmann, and J. VandeVondele, Wiley Interdiscip. Rev.:

Comput. Mol. Sci. 4, 15 (2014).

46A. Sirjoosingh and S. Hammes-Schiffer, J. Phys. Chem. A 115, 2367 (2011).

47A. V. Soudackov and S. Hammes-Schiffer, J. Phys. Chem. Lett. 5, 3274 (2014).

48A. K. Harshan, T. Yu, A. V. Soudackov, and S. Hammes-Schiffer, J. Am. Chem. Soc.

137, 13545 (2015).

49G. Henkelman, B. P. Uberuaga, and H. Jónsson, J. Chem. Phys. 113, 9901 (2000).

50A. Sirjoosingh and S. Hammes-Schiffer, J. Chem. Theory Comput. 7, 2831 (2011).

51B. Auer, L. E. Fernandez, and S. Hammes-Schiffer, J. Am. Chem. Soc. 133, 8282 (2011).
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