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Planar broadband Huygens’ metasurfaces
for wave manipulations

Francisco S. Cuesta, Ihar A. Faniayeu, Viktar S. Asadchy, and Sergei A. Tretyakov, Fellow, IEEE

Abstract—Electrically thin and effectively two-dimensional ma-
terial composites, metasurfaces, have been widely exploited for
manipulation of electromagnetic waves. For many applications it
is desired to transform incident waves of a specific frequency
range keeping the metasurface invisible at other frequencies.
Such frequency-selective response can be achieved based on
subwavelength Huygens’ inclusions. However, their fabrication
requires sophisticated processes due to the three-dimensional
geometry. Here, we propose a planar Huygens’ meta-atom with
the goal to open a way to realize broadband invisible metasur-
faces with topologies suitable for the conventional printed circuit
board fabrication technology. We synthesize and analyse, both
numerically and experimentally, three different metasurfaces
capable of polarization and amplitude transformations of incident
waves.

Index Terms—Huygens; metasurface; chirality; matching;
transparency.

I. INTRODUCTION

TRANSFORMATION of electromagnetic waves is of car-
dinal importance for a variety of applications, including

beam forming, sensing, filtering, beam steering, and others. It
implies modification of one or several wave properties such as
the amplitude, phase, polarization, and wavefront shape. First
devices for wave transformations, mirrors and lenses, have
been used since ancient times. Subsequently, the engineer’s
toolbox was enlarged by more advanced structures: diffrac-
tion gratings, prisms, filters, wave plates, etc. In the early
twentieth century, during the heyday of microwave techniques,
active and passive antenna arrays were introduced, offering
rather general control of electromagnetic waves. Passive arrays
are typically categorized into two groups, namely, reflectar-
rays [1]–[6] and transmitarrays [7], [8]. Importantly, both
reflectarray and transmitarray antennas incorporate a ground
plane to illuminate unwanted scattering [1]–[8]. As a result,
the ground plane inevitably blocks electromagnetic radiation
outside the operating frequency band of the antenna, creating a
shadow. This effect is unwanted in several applications. Firstly,
the antenna becomes detectable in the entire electromagnetic
spectrum, which might hinder the use of the antenna for
military purposes. Secondly, the antenna shadow does not
allow to detect or manipulate electromagnetic waves of other
frequencies behind the antenna.
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Frequency-selective devices which transform the incident
waves in the required manner within the operational band,
remaining transparent at other frequencies, can open up new
practical opportunities. Such broadband-transparent structures
do not create unwanted blockage of radiation and cannot
be detected at non-operational frequencies. Early attempts to
create frequency-selective array antennas relied on the idea of
replacing the ground plane by a mesh of thin metal wires. At
the frequencies below the operational band the mesh efficiently
emulates a ground plane. At elevated frequencies, the mesh
becomes practically transparent, but still there are significant
reflections [9]. In contrast, frequency selective surfaces [10]
(also called FSSs) can overcome the problem of transmission
blockage and possess response of a notch filter for propagating
waves [11], [12]. However, FSSs cannot provide additional
functionalities such as uniaxial polarization conversion and
efficient beam bending since they do not possess chirality [13]
(being mirror-symmetric) and do not allow full phase control
over transmission and reflection.

Recent developments of metasurfaces, artificial thin com-
posite material layers, provided a platform for novel wave-
transforming devices with extended functionalities. A meta-
surface represents a two-dimensional array of sub-wavelength
inclusions [14]–[16]. It was demonstrated that full control over
normally incident waves can be achieved only when a metasur-
face possesses both electric and magnetic response (including
so-called Huygens’ metasurfaces) as well as magnetoelectric
coupling (e.g., chirality) [13], [17]–[22]. In order to realize
ideal frequency-selective response from a metasurface, i.e.
exhibiting some particular functionality (such as absorption
or cross-polarized reflection) at the resonance frequency and
being transparent at other frequencies, it is required that the
electric and effective magnetic currents flowing on the meta-
surface have the same amplitudes and frequency dispersions
(to ensure zero reflections in a broad frequency range). Such
scenario can be realized in metasurfaces formed by single-
wire bianisotropic inclusions [23], [24] or pairs of electric
and magnetic anisotropic inclusions with properly chosen
properties [25] (the latter case is applicable only for lossless
metasurfaces). Although previous designs of such metasur-
faces demonstrated high efficiency of polarization control and
beam deflection [23]–[28], it is a great challenge to fabricate
them due to the three-dimensional geometry of their metallic
inclusions even for microwave frequencies.

In this paper, we report on the realization of planar
broadband Huygens metasurfaces based on 3D bianisotropic
inclusions using conventional printed circuit board (PCB)
techniques [26], [29]–[32]. The proposed metasurfaces are
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fabricated as dielectric substrates with copper patterns on
both their sides connected with vias (copper-plated holes that
function as current channels through the dielectric substrate).
The individual metasurface inclusions have mirror-asymmetric
geometry to ensure general electromagnetic response as well
as nearly perfect spectral matching of electric and mag-
netic resonances. Three different devices have been designed,
namely a frequency-selective perfect absorber and two polar-
ization rotators operating in reflection and transmission modes
(in the microwave range). Both numerical and experimental
results reveal broadband transparency (invisibility) for electro-
magnetic radiation outside the resonance band (typically from
0 Hz up to the double resonance frequency). The devices can
be easily integrated in existing systems and even be cascaded
for achieving multifrequency multifunctional operations.

II. DESIGN AND CHARACTERIZATION OF THE INDIVIDUAL
METASURFACE INCLUSIONS

Our two main objectives for the design of functional
broadband Huygens’ metasurfaces capable of various wave
transformations are the following: 1) The metasurface should
be transparent for incident waves beyond the operational
band, meaning that the transmission coefficient |T | ≈ 1;
2) The metasurface should be fabrication-friendly, i.e., it can
be manufactured with existing planar technologies. These
objectives are illustrated in Fig. 1 where incident waves of
different frequencies are shown in different colors. The waves
at the operational band (green color) are fully reflected with
90◦ polarization rotation. Resonant metasurfaces consisting of
single inclusions are ideal candidates for this role since, far
from the resonance, they are weakly excited and create no
absorption. However, near the resonance, the inclusions can
create strong and controllable reflections if their properties

𝑓 < 𝑓op
𝑓 > 𝑓op

𝑓op

E

Fig. 1: Conceptual illustration of a metasurface with the
desired properties. Different colors represent incident waves
of different frequncies. The metasurface fully reflects incident
waves into cross-polarization at the operational band fop,
while completely transmits other frequencies. The white lines
depict oscillations of the electric field E.

are properly chosen. First, let us address the first requirement.
It can be satisfied only if the reflection coefficient from the
metasurface is nearly zero in a wide frequency range, meaning
that all the dipole moments induced in the metasurface in-
clusions scatter destructively in the backward direction. Such
scenario can be realized with metasurfaces whose unit cell
comprises an orthogonal pair of electric and magnetic dipole
moments with the same phases and normalized amplitudes
(so-called Huygens’ pair). Indeed, the radiation pattern of a
combination of two orthogonal electric and magnetic dipole
moments has a null in the backward direction, resulting in
zero reflection from an array of such unit cells. However, in
most previous works, the electric and magnetic moments of
the Huygens’ pair are formed by two different current modes,
either supported by two separate scatterers [19], [20], [22]
or excited in a single multi-mode inclusion [17], [18], [25],
[33]–[37]. Due to this fact, the dispersions of the electric αee

and magnetic αmm polarizabilities of the unit cell, generally
speaking, are different, resulting in different dispersions of the
electric p = αeeEloc and magnetic m = αmmEloc/η0 dipole
moments (Eloc is the local electric field and η0 is the free-
space wave impedance). Modelling the polarizabilities using
the conventional Lorentz dispersion model, one can write the
following relations for the dipolar polarizabilities of the unit
cell of an arbitrary geometry:

αee =
Ae

ω2
e − ω2 + jωγe

, αmm =
Amω

2

ω2
m − ω2 + jωγm

, (1)

where γe and γm are the loss factors of the electric and mag-
netic modes of the unit cell, respectively, Ae and Am are the
amplitude coefficients, ωe and ωm are the angular frequencies
of the electric and magnetic resonances. Here, time-harmonic
dependency in the form ejωt is assumed. In order to design a
broadband Huygens’ metasurface, the dipole moments in each
unit cell must be related as η0p = m in a wide frequency
range, meaning that the normalized polarizabilities must be
equal η0αee = αmm/η0. As is seen from (1), the electric and
magnetic polarizabilities have different frequency dependences
due to the ω2 term in the numerator [38, Eqs. (7.55)–(7.60)].
This fundamental difference is due to the fact that the electric
polarization is proportional to the induced electric charge in
the inclusion, while the magnetic polarization is proportional
to the induced current. It can be understood by considering
the limit of the electric and magnetic polarizabilities of an
arbitrary non-magnetic passive inclusion at zero frequency,
ω = 0. In this case, static electric field creates electric charge
separation in the inclusion, resulting in non-zero electric
polarizability αee = Ae/ω

2
e . On the other hand, polarization

currents in the inclusions cannot exist since, according to
Faraday’s law, it would require alternating magnetic flux
through the inclusion (which is zero in statics). Therefore,
the induced magnetic dipole moment as well as magnetic
polarizability are zero at ω = 0, which is in agreement with
(1).

In fact, term ω2 in the numerator of (1) produces a no-
ticeable deviation only at frequencies far from the resonance
where meta-atoms are very weakly excited in any case. There-
fore, it is enough to match the other three parameters in (1):
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Fig. 2: Single-wire bianisotropic (chiral) inclusions. (a)
Smooth double-turn helix with dimensions D = 0.4 mm,
R = 2.33 mm, and H = 3.23 mm. (b) Planar double-
turn helix with the following parameters: d = 0.5 mm,
l = 6.5 mm, ∆ = 0.317 mm, t = 35 µm, h = 1.575 mm,
w = 0.3 mm, b = 1.1 mm, and α = 21.6◦. Calculated axial
components of the polarizabilities for (c) a smooth and (d)
planar bianisotropic inclusion.

Resonance frequencies ωe,m, amplitudes Ae,m, and loss factors
γe,m. Nearly perfect matching of the first two parameters can
be achieved in a lossless Huygens’ pair via precise engineering
of the inclusion geometry and their mutual interaction [25].
However, in the general case when absorption is not negligible
(γe,m 6= 0), simultaneous matching of the loss factors becomes
a serious challenge. Since the current distributions of the
electric and magnetic modes are different, to ensure equal loss
factors γe = γm, one must engineer specific spatial variation
of the material properties (e.g., conductivity) within the unit
cell.

The alternative route to satisfy the polarizability balance
η0αee = αmm/η0 of the metasurface unit cell in a wide
frequency range is based on the use of bianisotropic inclusions
constructed by a single metal wire [23], [24], [39]–[42]. In
such inclusions, the induced electric and magnetic dipole
moments are defined by the same current distribution (mode)
along the wire. Therefore, the resonance frequencies ωe,m

and the loss factors γe,m automatically become matched. The
only required adjustment is to tune the amplitudes Ae = Am,
which can be done by simple geometry modification. Figure 2a
depicts an example of such a single-wire bianisotropic inclu-
sion [23], [39]. The inclusion is a double-turn copper helix
with the properly chosen diameter-to-height ratio. Its electric
αyyee , magnetic αyymm, and magnetoelectric αyyem (see the basis

in Fig. 2a) polarizabilities read [43]

αyyee =
l2eff

jω

1

Zinp
, αyymm = −µ2

0

jωS2
eff

Zinp
, αyyem = −µ0

Seff leff

Zinp
,

(2)
where leff and Seff are the length of the effective electric
dipole antenna and the area of the effective loop antenna,
respectively, Zinp is the frequency dependent input impedance
of the helix. The non-zero magnetoelectric polarizability αyyem

is due to bianisotropy of the inclusion. From (2) it is seen that
the electric and magnetic polarizabilities differ only by the
ω2 multiplier whose influence was discussed above. There-
fore, broadband matching of αyyee and αyymm can be achieved
just by adjusting the effective geometric parameters leff and
Seff which are proportional to the height and the diameter
of the helix. Figure 2c plots the frequency dispersion of
the polarizabilities of the helix retrieved through the semi-
analytical approach [44]. It is seen that all three polarizability
components follow nearly the same Lorentzian curve in the
resonance frequency range. The deviation between the electric
and magnetic polarizabilities at a non-resonance frequency
ω = mωres (m is a real multiplier and ωres is the resonance
angular frequency) can be analytically estimated from (1):
η2

0αee(ω)/αmm(ω) = 1/m2. For example, at frequencies
4.3 GHz (ω ≈ 0.982ωres) and 4.5 GHz (ω ≈ 1.027ωres),
the deviation between the polarizabilities does not exceed
4% and 6%, respectively. It should be noted that the non-
axial components of the polarizability tensor of the helix
are negligibly small (within the considered frequency band)
compared to the axial components in (2), and therefore, are
not shown in Fig. 2c.

The main disadvantage of all known single-wire Huygens’
inclusions is that they have three-dimensional topology not
suitable for simple and commercially available fabrication
techniques [23], [24], [39]–[42] (the exception is the direct
laser writing technique which can be used for fabricating
metasurfaces for the infrared and terahertz frequencies). This
fact prevents effective implementation of metasurfaces based
on these inclusions. To satisfy our second objective for the
design of functional broadband Huygens’ metasurfaces, we
propose a novel printed-board topology of bianisotropic inclu-
sions shown in Fig. 2b which was inspired by similar meta-
atom configuration proposed earlier in Ref. [26]. It implies
copper patterning on the two sides of a dielectric spacer with
copper vias connecting the two sides. The geometry of the
inclusion, resembling that of the smooth double-turn helix,
is planar and, therefore, can be easily manufactured with the
conventional printed circuit board technology. Adjusting the
magnetic polarizability by the effective loop area (h and l)
and the electric polarizability by the height of the helix (α and
∆), we can match them in a broad frequency range, as shown
in Fig. 2d. The polarizabilities were calculated assuming
vacuum spacer. It should be noted that the presence of a
dielectric spacer different from vacuum will inevitably create
a disbalance between frequency dispersions of the electric
and magnetic polarizabilities. However, for low-permittivity
spacers, the disbalance will be not pronounced and can be
partially (at the resonance band) eliminated by increasing the
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magnetic response of the inclusion wire. As it will be shown
below (see Section III-A), adding a dielectric substrate with
the permittivity εr = 2.2, which we used for the metasurfaces,
creates deviation between polarizabilities η0αee and αmm/η0

of 52% at the resonance frequency. In order to compensate
this disbalance, we increased the strip length l from 6.5 mm
to 7.5 mm to improve the magnetic response. Thus, the unit
cell shown in Fig. 2b complies with our both objectives, to
be transparent outside the resonance band and have simple
topology that can be fabricated with accessible methods.

III. DESIGN OF BROADBAND HUYGENS’ METASURFACES
FOR WAVE CONTROL

Let us consider normal plane wave incidence on an infinite
periodic metasurface consisting of an array of subwavelength
meta-atoms. The periodicity is assumed to be smaller than the
wavelength at the metasurface resonance so that no diffraction
effects occur for the normal incidence and the surface can
be described as a homogeneous current sheet (superposition
of electric and magnetic surface current sheets). Moreover,
in this work, we assume that the metasurface is reciprocal
and only diagonal components of the polarizability dyadics
(in the metasurface plane) are non-zero. In this scenario,
the electric fields of the reflected and transmitted waves
through the metasurface can be expressed in terms of collective
polarizabilities (marked with hats) of the unit cells [26]:

Er = − jω
2S

[(
η0α̂

xx
ee −

1

η0
α̂yy

mm

)
xx + (α̂xx

em − α̂yy
em)yx

+ (α̂xx
em − α̂yy

em)xy +

(
η0α̂

yy
ee −

1

η0
α̂xx

mm

)
yy

]
·Einc,

(3)

Et =

{[
1− jω

2S

(
η0α̂

xx
ee +

1

η0
α̂yy

mm

)]
xx

+
jω

2S
(α̂xx

em + α̂yy
em)yx

+

[
1− jω

2S

(
η0α̂

yy
ee +

1

η0
α̂xx

mm

)]
yy

− jω
2S

(α̂xx
em + α̂yy

em)xy

}
·Einc,

(4)

where S is the unit-cell area and xy denotes the dyadic
product of two vectors x and y. In this basis, the incident
wave propagation is assumed towards the −z direction. The
collective polarizabilities take into account the interaction of
the unit cells. They can be found as functions of individual
polarizabilities as well as electric and magnetic interaction
constants. These expressions for the general bianisotropic case
can be found in [26, Eqs. (7)–(10)], while for the simple
anisotropic case the reader is referred to [45, Eqs. (6)]. Thus,
choosing desired reflected and transmission coefficients, one
can determine required collective and, subsequently, individual
polarizabilities of each unit cell.

A. Absorber

In our previous work [23], we demonstrated that meta-
surfaces based on smooth helices made of a material with

specific conductivity can be designed for complete absorption
of incident plane waves at the resonant frequency of the
array. Here, we utilize the same concept for synthesizing
a planar printed-board-like absorber. To achieve the total
absorption of electromagnetic waves, one should ensure that
at the operational frequency the reflection and transmission
are simultaneously eliminated, that is Er = 0 and Et = 0.
This requirement applied to (3) and (4) leads to the following
conditions on the collective polarizabilities:

η0α̂
xx
ee = η0α̂

yy
ee =

1

η0
α̂xx

mm =
1

η0
α̂yy

mm =
S

jω
,

α̂xx
em = α̂yy

em = 0.

(5)

As is seen, the electric and magnetic responses must be bal-
anced while the chiral magnetoelectric coupling must vanish
on the level of the unit cell [46]. Moreover, the collective elec-
tric and magnetic polarizabilities must be purely imaginary,
meaning that full absorption can occur only at the resonance
of the grid. From (5) it is also can be deduced that the
obtained values for the collective polarizabilities correspond to
those of lossy inclusions. Indeed, if the inclusions are lossless,
the imaginary parts of their collective polarizabilities would
obey equalities =(1/α̂ee) = η0ω/(2S) and =(1/α̂mm) =
ω/(2Sη0) [47, Eqs. (4.87)], which contradicts to Eqs. (5).

Following the idea proposed in [23], [39], we place several
chiral helices of opposite handedness in each unit cell (see
Fig. 3a) so that the magnetoelectric coupling is compensated,
i.e. α̂xx

em = α̂yy
em = 0. Note that the use of bianisotropic

inclusions is necessary since we aim at realizing a broadband
transparent metasurface (see the discussion in Section II).
The proper dimensions of the planar helices were chosen
based on requirements (5) using the polarization extraction
approach [44] and final numerical optimization of the meta-
surface. All the dimensions are listed in the caption of Fig. 3.

The metasurface was fabricated with conventional printed
circuit board technology by etching copper cladding on both
sides of a dielectric substrate (we used Rogers 5880 for all
metasurfaces; εr = 2.2, tan δ = 0.0009) and connecting the
patterns in the proper positions by metallized vias. Figure 3b
depicts the fabricated metasurface sample of 360× 260 mm2

size (≈ 3.91λres × 2.82λres, where λres is the resonance
wavelength) consisting of 6× 4 unit cells.

Based on the full-wave simulations [48], we calculated
the reflection, transmission, and absorption coefficients for an
infinite absorbing metasurface (see Fig. 3c). At the operational
frequency of 3.24 GHz, the metasurface absorbs 96.9% of
the incident power. At the same time, it remains transparent
(|T |2 ≥ 80%) from 0 Hz to 3.22 GHz and from 3.28 GHz
to 6.67 GHz. At higher frequencies, some reflection peaks
appear due to excitation of higher order current modes in
the helices [23], [25]). Also it is seen from Fig. 3c that at
high frequencies the reflectance becomes noticeable (around
5.5% at 6 GHz) due to the permittivity contrast between the
dielectric substrate and air.

Next, we performed experimental verification of the meta-
surface functionality. Due to relatively small size of the printed
sample (each side is just a few wavelengths long), it was
expected that the scattering at the edges of the metasurface
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Fig. 3: (a) Schematic image of the absorbing metasurface with
structural parameters: sa = 28 mm (≈ 0.3λres), pa = 2sa

(≈ 0.6λres), and aa = 14 mm (≈ 0.15λres). Right- and left-
handed planar helices are shown in blue and red, respectively.
The planar helix in this design has the following specifications:
d = 0.5 mm, l = 7.5 mm, ∆ = 0.317 mm, t = 35 µm,
h = 1.575 mm, w = 0.3 mm, b = 1.1 mm, and α = 21.6◦.
(b) Photograph of the absorbing metasurface fabricated using
the printed circuit board technique. (c) Simulated reflectance
(|R|2), transmittance (|T |2), and absorbance (|A|2) from the
infinite metasurface. (d) Corresponding coefficients extracted
from measurements of the finite-size metasurface. Simulated
absorbance as a function of the incidence angle for (e) TE and
(f) TM polarizations, respectively.

will be significant and conventional measurement approaches
(assuming that the incident wave beam is smaller in width than
the sample size) will not provide accurate results. Therefore,
we exploited the alternative technique based on the physical
optics approximation [49, ch. 8]. Its main assumption is that
the effective polarization currents flowing in the metasurface
at each point are determined by the value of the incident
field only at this very point. First, these effective currents
are determined over the sample aperture, knowing the in-
cident field and the local reflection coefficient. The latter
one, according to the aforementioned assumption, is taken
identical for points at the center and at the edges of the

sample (if the sample is uniform). Second, the magnetic vector
potential and scattered fields are calculated for the known
distribution of the effective currents. Therefore, this approach
approximately (in the physical optics approximation) takes
into account scattering from the edges and allows one to
determine the reflection and transmission coefficients from a
metasurface sample of a finite size. The reader is referred to
Section IV for more details about this approach. Figure 3d
shows the frequency dispersion of the reflection, transmission,
and absorption coefficients extracted from the measured data.
The experimental results are in good agreement with the
simulated ones and confirm transparency of the absorbing
metasurface at non-resonant frequencies. The absorption peak
in the experiment reaches only 75%, which we explain by
possible imperfections of the time gating window used in the
measurements to filter parasitic signals. At frequencies below
the resonance, the electrical size of the metasurface becomes
even smaller and the assumption of the current uniformity does
not hold any more, resulting in non-physical transmittance
slightly higher than unity.

Figures 3e and 3f demonstrate simulated angular response
of the absorbing metasurface. It is seen that for both TE and
TM polarizations, the metasurface effectively absorbs incident
plane waves at oblique angles up to 65◦. At frequencies
outside the resonance band and for arbitrary incident angles,
absorption is negligible.

B. Twist polarizer in transmission

Polarization rotation of electromagnetic waves in trans-
mission was for the first time observed by Arago in 1811.
Conventional structures with this functionality are various
cascades of wire-grid polarizers whose wires are oriented in
different directions in different layers (see e.g. [50], [51])
and optically anisotropic planar arrays of meta-atoms [52],
[53]. However, all of these structures operate only with one
polarization of incident waves. To achieve uniaxial polarization
rotation, the material slab or metasurface must have non-zero
chiral properties, i.e. α̂em 6= 0 (e.g., [54]). Currently, there has
been proposed a great variety of different chiral metasurfaces
operating as twist polarizers (for arbitrary polarization) in
transmission [26], [55]–[58]. However, only one of them
simultaneously combined properties of off-band transparency
and planar topology suitable for easy fabrication [26]. The
drawback of that design is the low efficiency of cross-polarized
transmission (about 45%). The deficiency occurred due to
imbalanced electric and magnetic responses of the unit cell
and could not be eliminated without significant modifications
of the unit-cell geometry. The topology of the unit cell that
is utilized in this work (see Fig. 2b) allows one to overcome
this problem.

The requirements of uniaxial polarization rotation in trans-
mission are zero reflection Er = 0 and unity-amplitude
transmitted field in cross polarization with arbitrary additional
phase φ, i.e. Et = ejφn × Ei, where n is a normal unit
vector pointing towards the direction opposite to the incident
wave propagation. Such formulation ensures that an arbitrary
linear polarization of incident waves is always rotated by angle
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90◦ in the anti clockwise direction (if φ = 0◦). Applying
the requirements of uniaxial polarization rotation to (3) and
(4), one obtains the following conditions on the collective
polarizabilities:

η0α̂
xx
ee = η0α̂

yy
ee =

1

η0
α̂xx

mm =
1

η0
α̂yy

mm =
S

jω
,

α̂xx
em + α̂yy

em = −ejφ 2S

jω
.

(6)

As is seen, the electric and magnetic responses must be
balanced as in a Huygens’ unit cell, while chirality must not be
compensated as in the previous example. Therefore, we design
a unit cell consisting of four right-handed planar helices as
shown in Fig. 4a. In this case, the phase of cross-polarized
transmission is φ = 90◦ and α̂xx

em = α̂yy
em = −S/ω [26]. The

parameters of the inclusions were modified to demonstrate
that the metasurfaces based on them can be designed for
an arbitrary frequency (within a reasonably wide frequency
range). It should be noted that the change of the frequency
requires modification of the geometry of the inclusions and
in some cases may require the use of a substrate with
a different thickness (see the structural parameters in the
figure caption). The fabricated sample, shown in Fig. 4b,
was of 260 × 180 mm2 size (≈ 3.77λres × 2.61λres) and
included 16 × 11 unit cells. Figures 4c and d show the sim-
ulated co- and cross-polarized reflectance and transmittance
extracted from the simulated infinite-size and measured finite-
size metasurfaces, respectively. The metasurface is transparent
(|Tco|2 ≥ 80%) from 0 Hz to 4.1 GHz and from 4.52 GHz
to 7.15 GHz. At the resonance frequency, the simulated cross-
polarized transmittance is smaller than unity due to absorption
in the dielectric substrate and small parasitic reflections. The
measured peak of cross-polarized transmittance reaches only
50%, which we explain by the relatively small electrical size of
the sample, compromising the physical optics approximation
(which assumes currents at the metasurface and at the refer-
ence metal plate be uniform everywhere, including edges), and
possible time gating inaccuracies. Moreover, to find the cross
polarized transmittance, we normalized the cross-polarized
signal transmitted through the metasurface by the co-polarized
signal transmitted through a reference metal plate. Thus, the
signals transmitted through the metasurface and the metal plate
were received by different ports of the antenna, experiencing
different absorption levels in the measurement setup. This fact
does not allow us to accurately calculate the cross-polarized
transmission. Importantly, the resonance frequencies as well
as off-band transparency properties are in agreement in both
simulations and measurements.

The efficiency of polarization rotation can be also charac-
terized by the polarization rotation angle θ and ellipticity ψ
of the transmitted waves. These parameters can be expressed
as follows [59]:

θ =
1

2
[arg(TRCP)− arg(TLCP)] (7)

ψ =
1

2
arcsin

(
|TRCP|2 − |TLCP|2

|TRCP|2 + |TLCP|2

)
, (8)

(c) (d)

(f)(e)

89.3°

3.5°

fres

(a)

RH
1 cm

(b)

pt

at pt

x y
z

𝑅co
2

𝑅cr
2

𝑇co
2

𝑇cr
2

𝑅co
2

𝑅cr
2

𝑇co
2

𝑇cr
2

Fig. 4: (a) Schematic image of the twist transmitter with
structural parameters: pt = 15.6 mm (≈ 0.23λres) and
at = 7.8 mm (≈ 0.11λres). The planar helix in this design
has the following specifications: d = 0.8 mm, l = 3.5 mm,
∆ = 0.226 mm, t = 70 µm, h = 3.175 mm, w = 0.3 mm, b =
1.4 mm, and α = 27◦. (b) Photograph of the twist transmitter
sample. (c) Simulated co- and cross-polarized reflectance
(|Rco|2 and |Rcr|2) and transmittance (|Tco|2 and |Tcr|2)
from the infinite metasurface. (d) Corresponding coefficients
extracted from measurements of the finite-size metasurface. (e)
Polarization rotation angle θ and ellipticity ψ of transmitted
waves through the metasurface at the normal incidence. (f)
Cross-polarized transmittance at the resonance frequency for
TE and TM polarizations.

where TRCP = Tco + jTcr and TLCP = Tco − jTcr are
the transmission coefficients of the right- and left-circular
polarized waves, respectively. The polarization rotation an-
gle θ represents the angle between the polarization planes
of the incident and transmitted waves, while the ellipticity
ψ measures the polarization state of the transmitted wave.
Pure transformation to the cross-polarized transmitted wave
corresponds to the case when the ellipticity is equal to zero
(ψ = 0◦) while the polarization plane has rotation angle of
θ = 90◦ with respect to the normal incidence. Figure 4e
shows the simulated polarization rotation angle and ellipticity
of transmitted waves through the designed twist transmitter.
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As is seen, the polarization angle and ellipticity are equal
to θ = 89.3◦ and ψ = 3.5◦ at the resonance frequency of
fres = 4.33 GHz. This result confirms the high polariza-
tion purity of the designed twist polarizer. Figure 4f shows
simulated cross-polarized transmittance of the metasurface as
a function of the incidence angle for TE and TM linearly
polarized waves. One can see that high level of the cross-
polarized transmittance |Tcr|2 > 60% is retained for up to 70◦

for both polarizations.

C. Polarization rotator in reflection

Another device that can be build based on the broadband
Huygens’ cell shown in Fig. 2b is a reflector which rotates po-
larization of the incident wave by 90◦. Due to reciprocity, the
rotation directions are opposite for vertical and for horizontal
linear polarizations of incident waves. Conventional structures
rotating polarization of reflected waves are anisotropic meta-
surfaces backed with a ground plane [60]–[62]. Obviously,
these devices block incident waves of all frequencies.

By requiring zero transmission through the metasurface
Et = 0 and unitary cross-polarized reflection Er =
−ejφ(xy + yx) · Ei, from (3) and (4), one can derive the
following conditions on the collective polarizabilities:

η0α̂
xx
ee = η0α̂

yy
ee =

1

η0
α̂xx

mm =
1

η0
α̂yy

mm =
S

jω
,

α̂xx
em − α̂yy

em = ejφ
2S

jω
.

(9)

Interestingly, these requirements are very similar to (6) with
the only difference in one sign in the last equation. However,
the realization of the polarization rotator in reflection differs
from that of the twist polarizer for transmitted waves. Ac-
cording to the last equation in (9), the unit cell cannot be
isotropic in the plane that would imply α̂xx

em = α̂yy
em. As a

canonical solution, we propose to arrange in one unit cell
left- and right-handed inclusions along the x and y axes,
respectively, so that α̂xx

em = −α̂yy
em = S/ω. The geometry of

the unit cell can be seen in Fig. 5a. The fabricated sample was
of 260 × 180 mm size (≈ 4.44λres × 3.08λres) and included
16×11 unit cells (shown in Fig. 5b). Both simulated (Fig. 5c)
and measured (Fig. 5d) data reveal the resonance frequency of
5.13 GHz. The metasurface remains transparent (|T |2 ≥ 80%)
from 0 Hz to 4.83 GHz and from 5.28 GHz to 8.45 GHz.
The simulated peak of the cross reflectance is at 75% due to
relatively high absorption loss (about 14%) and parasitic co-
polarized reflections (about 11%). The measured peak reaches
30%. Such low value could be due to several factors: The
inaccuracies of the physical optics approximation technique
applied to the data processing for the sample with a relatively
small electrical size, non-ideal time gating window, and non-
ideal plane-wave illumination, etc. At frequencies below the
resonance, the electrical size of the metasurface becomes
smaller and the assumption of the current uniformity becomes
less adequate, resulting in non-physical transmittance higher
than unity. Nevertheless, both simulated and experimental
data confirm that the metasurface is highly transparent at
frequencies outside the resonance.

(c) (d)

(e) (f)

-91.2°

19.1°

fres

RH LH 1 cm

(b)

pr

ar

(a)
x y
z

pr

𝑅co
2

𝑅cr
2

𝑇co
2

𝑇cr
2

𝑅co
2

𝑅cr
2

𝑇co
2

𝑇cr
2

Fig. 5: (a) Schematic image of the metasurface rotating polar-
ization in reflection with structural parameters: pr = 16 mm
(≈ 0.27λres) and ar = 8 mm (≈ 0.14λres). The planar helix
in this design has the following specifications: d = 0.8 mm,
l = 2.8 mm, ∆ = 0.24 mm, t = 70 µm, h = 3.175 mm,
w = 0.3 mm, b = 1.4 mm, and α = 34◦. (b) Photograph of
the fabricated sample. (c) Simulated co- and cross-polarized
reflectance and transmittance from the infinite metasurface.
(d) Corresponding coefficients extracted from measurements
of the finite-size metasurface. (e) Polarization rotation angle
and ellipticity of reflected waves from the metasurface at
the normal incidence. (f) Cross-polarized reflectance at the
resonance frequency for TE and TM polarizations.

It should be noted that the proposed polarization rotator
in reflection behaves as the so-called “chiral mirror” [63].
In contrast to conventional mirrors (perfect electric or mag-
netic conductors), the metasurface totally reflects circularly
polarized incident waves preserving their handedness. In order
to verify this property of the proposed structure, we derive
from (3) and (4) the following relations for reflection and
transmission coefficients in the basis of circularly polarized
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waves:

RRR/LL =
jω

4S
(η0α̂

yy
ee − η0α̂

xx
ee −

1

η0
α̂xx

mm +
1

η0
α̂yy

mm

∓2jα̂xx
em ± 2jα̂yy

em),

RRL = RLR = − jω
4S

(η0α̂
xx
ee + η0α̂

yy
ee −

1

η0
α̂xx

mm −
1

η0
α̂yy

mm),

TRR/LL = 1− jω

4S
(η0α̂

xx
ee + η0α̂

yy
ee +

1

η0
α̂xx

mm +
1

η0
α̂yy

mm

±2jα̂xx
em ± 2jα̂yy

em),

TRL/LR =
jω

4S
(η0α̂

yy
ee − η0α̂

xx
ee +

1

η0
α̂xx

mm −
1

η0
α̂yy

mm).

(10)
Here indices “R” and “L” define, respectively, RCP and LCP
polarizations. The double indices in the left-hand sides of the
relations correspond to the double signs in the right-hand sides.
Now, it is easy to show that the proposed chiral polarization
rotator, with polarizabilities given by (9) and α̂xx

em = −α̂yy
em =

S/ω, in fact reflects circularly polarized waves preserving their
handedness, i.e. RRR/LL = ±1 and TRR/LL = TRL/LR =
RRL/LR = 0.

The simulated polarization rotation angle and ellipticity of
waves reflected from the designed metasurface are plotted in
Fig. 5e. Due to the non-zero parasitic co-polarized reflec-
tion mentioned above, the ellipticity equals to = 19.1◦ at
the resonance. The polarization angle is = −91.2◦. Finally,
Fig. 5f shows the simulated cross-polarized reflectance of
the metasurface as a function of the incidence angle for TE
and TM linearly polarized waves. It is seen that in contrast
to the two previous metasurfaces, the polarization rotator in
reflection possesses higher sensitivity to the incident angle. It
can be explained by the fact that the unit cell of the reflecting
metasurface is not isotropic in the array plane.

IV. ON EXPERIMENTAL CHARACTERIZATION OF
FINITE-SIZE SAMPLES

Due to the limited size of the fabricated metasurface sam-
ples, it was expected that the direct measurements of the
reflection and transmission coefficients based on conventional
techniques would be very inaccurate. Therefore, instead we
exploited the method based on the physical optics approxi-
mation [49, ch. 8] which approximately takes into account
diffraction on the sample edges. This method is particularly
suitable when the sample is so small that incident waves
illuminate its whole surface.

A. Co- and cross-polarized reflected fields from a finite-size
sample

In this section, we calculate diffraction of a plane wave
on a finite-size two-dimensional sample (aperture) with given
reflective properties (locally defined reflection coefficients).
The calculated scattered field will be subsequently used for
normalization of the measured data.

We assume that the metasurface sample is located in the xy-
plane and it is illuminated along the −z-axis by a plane wave

𝑥

𝑧

𝑦 Probe 𝐄inc

𝐤inc

Sample

Σ

(a)

𝑥

𝑧

𝑦
Probe𝐄inc

𝐤inc

Σ

(b)

Fig. 6: On measurements of local (a) reflection and (b)
transmission coefficients through a metasurface sample of a
finite size. The sample is illuminated by a plane wave. The
scattered field is measured at distance z.

with electric field Einc = E0e
jk0zy0 (k0 is the wavenumber

of free space), as it is shown in Fig. 6a. The reflected field at
each point of the metasurface is defined as

Er = ¯̄Rs(f) ·Einc(z = 0), (11)

where ¯̄Rs is the local reflection coefficient of the metasurface
written in dyadic form using unitary dyadic ¯̄I as

¯̄Rs(f) = Rco(f) ¯̄I +Rcr(f)z0 × ¯̄I. (12)

Next, one can find the equivalent electric surface current
density on the metasurface which creates the given reflected
field Er = −η0/2Js. Using (11), this current is given by

Js = − 2

η0

¯̄Rs(f) ·Einc(z = 0). (13)

The scattered fields created by the finite-size metasurface
with surface current density (13) can be obtained using the
magnetic potential vector definition with the Green function:

A =

∫
Σ

Js(r
′)G(r− r′)d2r′, (14)

where Σ is the metasurface area. The Green function is defined
by the distance between the observation point r, measured
from the coordinates’ origin, and an arbitrary point of the
sample surface r′. If the observation point is defined at a
distance z collinear with the incident wave and the arbitrary
point at the sample surface is r′ = x′x0 + y′y0, the Green
function reads:

G(r− r′) =
e−jk0|r−r

′|

4π|r− r′|
, (15)
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r− r′ = zz0 + x′x0 + y′y0. (16)

Hence, the back-scattered electric field can be obtained from
the magnetic potential vector in (14) and using (15) and (16):

Ebsc = −jωµ0A =
jk0

2π
¯̄Rs(f) ·Einc(z = 0)Geff(z), (17)

where Geff is the “effective Green factor” of the illuminated
surface:

Geff(z) =

∫
Σ

e−jk0
√
z2+x′2+y′2√

z2 + x′2 + y′2
dx′dy′. (18)

Using equation (17), it is possible to relate the local co- and
cross-polarized reflection coefficients with the back-scattered
field at a distance z:

Ebsc,co(z) = y0
jk0

2π
RcoE0Geff(z), (19)

Ebsc,cr(z) = y0
jk0

2π
RcrE0Geff(z). (20)

B. Co- and cross-polarized transmitted fields from a finite-size
sample

Next, we calculate scattered fields in the forward direction
from a finite-size sample with given transmission properties,
that is, the local transmission coefficient. In this scenario,
the incident plane wave propagates along the +z-axis, and
its electric field reads Einc = E0e

−jk0zy0, as shown in
Fig. 6b. The transmitted field at each point of the metasurface
is defined as

Et = ¯̄Ts(f) ·Einc(z = 0), (21)

where ¯̄Ts is the local transmission coefficient of the metasur-
face written in dyadic form as

¯̄Ts(f) = Tco(f) ¯̄I − Tcr(f)z0 × ¯̄I. (22)

Next, in order to find equivalent electric surface current
density Js induced on the metasurface, we find the electric
field that it scatters locally: −η0/2Js = Esc = Et − Einc.
Therefore, the current density reads

Js =
2

η0

(
[1− Tco(f)] ¯̄I + Tcr(f)z0 × ¯̄I

)
Einc(z = 0). (23)

By reusing the result obtained in equations (14)–(17), it is
possible to relate the local co- and cross-polarized transmitted
coefficients with the forward-scattered field at a distance z:

Efsc,co(z) = y0
jk0

2π
(Tco − 1)E0Geff(z), (24)

Efsc,cr(z) = −y0
jk0

2π
TcrE0Geff(z). (25)

𝑧

Metasurface (MS) Metal plate (MP) Free space (FS)

𝑥
𝑦

Port 2

Port 1

Port 4

Port 3

Fig. 7: Illustration of the experimental setup. The fields were
measured in two polarizations, vertical (ports 1 and 3) and
horizontal (ports 2 and 4). To eliminate all parasitic effects,
there were three measurements performed: With a metasurface
(MS), with a metal plate (MP), and empty aperture (FS).

C. Extraction of local reflection and transmission coefficients

As it is seen from (19), (20), (24), and (25), in order to find
the local reflection/transmission coefficients, one must know
the corresponding scattered field at one particular point on
the z-axis and the incident field E0 (also its phase) at the
position of the sample. Direct measurement of these fields
is not a trivial task. Therefore, in addition to measurements
of the metasurface sample, we performed two additional
reference measurements: A free-space scenario (the sample
was removed) and a reference metal plate (the sample was
replaced by a metal plate of the same shape and size). Using
the data obtained from these three measurements, we could
eliminate all parasitic effects such as losses in the cables,
reflections from the walls of the anechoic chamber, mismatch
of the antennas, etc. Additionally, time gating was exploited
to improve the signal-to-noise ratio.

The experimental setups for all three measurements are
illustrated in Fig. 7. A wall made of wideband microwave
absorbers was positioned in the sample plane (xy-plane) with
an open aperture of the same size. Two identical horn antennas
operating with both orthogonal polarizations were located at
a distance of approximately 2.5 m (more than 25 times larger
than the longest operational wavelength of the metasurfaces)
away from the sample. The antennas had dual function, that
is to emulate the source of an incident plane wave and to
measure the fields at their locations. The terminals of the
antennas for measuring vertical and horizontal polarizations
were connected to four ports of a vector network analyser
(see numeration in Fig. 7). Now, based on the S-parameters
measured by the vector network analyser, one can write the
following relations for extracting the unknown reflection and
transmission coefficients:
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Rco =
S11,MS − S11,FS

S11,MP − S11,FS
· Geff,MP

Geff,MS
, (26)

Rcr =
S21,MS − S21,FS

S11,MP − S11,FS
· Geff,MP

Geff,MS
, (27)

Tco = 1− S13,MS − S13,FS

S13,MP − S13,FS
· Geff,MP

Geff,MS
, (28)

Tcr =
S23,MS − S23,FS

S13,MP − S13,FS
· Geff,MP

Geff,MS
. (29)

Here, subscripts “MS”, “MP”, and “FS” correspond to the
scenarios shown in Fig. 7 when the aperture in the absorbing
wall was filled with a metasurface, metal plate, and left empty
(free space), respectively. The effective Green factors appear
in (26)–(29) to take into account possible difference in the
sizes of the metasurface and the reference metal plate.

The reflectance and transmittance plotted in Fig. 3d were
calculated as |R|2 = |Rco|2 + |Rcr|2 and |T |2 = |Tco|2 +
|Tcr|2, respectively. The absorption coefficient was calculated
as |A| = 1− |R|2 − |T |2.

V. CONCLUSIONS

In this work, we have proposed a new planar Huygens’
meta-atom that possesses balanced electric and magnetic re-
sponses in addition to chiral coupling. Importantly, the meta-
atom remains highly transparent outside the resonance due
to the identical frequency dispersions of its polarizabilities.
Metasurfaces based on these Huygens’ unit cells can be readily
fabricated with conventional printed circuit board technique.
This technology is widely used for manufacturing of electronic
products and its components in the printed form.

We fabricated three different metasurfaces capable of spe-
cific amplitude and polarization transformations. Their poten-
tial applications include transparent lenses, passive antenna
arrays, and holograms. One can extend the use of Huygens’
meta-atoms to the design of gradient PCB-compatible metasur-
faces for general wave front manipulations (e.g., focusing and
beam deflection with additional polarization transformation).
Indeed, as is seen in the captions of Figs. 4 and 5, the unit cell
size does not exceed 0.27λres, resulting in the possibility to fit
several of such unit cells in a super-cell of a wavelength-scale
size [24]. The design of gradient PCB-compatible metasur-
faces can be performed using the traditional approach based
on locally-uniform surface approximation [64]. In this case,
Eqs. (3) and (4) should be used for synthesizing each unit cell
(expressions between the collective and individual polarizabil-
ities will not change). Alternatively, gradient metasurfaces can
be designed based on a recently proposed non-local approach
which demonstrated significantly higher efficiencies [65]–[69].
Although the Huygens’ unit cells proposed in this paper can
be still utilized in this case, the theoretical analysis will need
to be modified.
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