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Local probe for connectivity and 
coupling strength in quantum 
complex networks
Johannes Nokkala   1, Sabrina Maniscalco1,2 & Jyrki Piilo   1

We develop a local probe to estimate the connectivity of complex quantum networks. Our results show 
how global properties of different classes of complex networks can be estimated – in quantitative 
manner with high accuracy – by coupling a probe to a single node of the network. Here, our interest is 
focused on probing the connectivity, i.e. the degree sequence, and the value of the coupling constant 
within the complex network. The scheme combines results on classical graph theory with the ability to 
develop quantum probes for networks of quantum harmonic oscillators. Whilst our results are proof-
of-principle type, within the emerging field of quantum complex networks they may have potential 
applications for example to the efficient transfer of quantum information or energy or possibly to shed 
light on the connection between network structure and dynamics.

While the study of classical complex networks has enjoyed considerable interest throughout the last 20 years1–3, 
the study of interacting quantum systems as quantum complex networks has only recently started to emerge4,5. 
The topics range from state6 and energy transfer7 as well as random quantum walks8 on such networks to mode-
ling structured finite environments9 and investigating the possible quantum effects in photosynthesis10. Quantum 
networks are also important in development of more complicated quantum communication schemes11,12. 
Experimental platforms that could be used to implement the quantum complex networks in the near future 
include arrays of micromechanical resonators cooled near to their ground state13, cold atoms in lattices14 and 
cluster states or networks of bosonic modes15–17.

Broadly speaking, networks are any systems that can be thought of as being composed of many interacting 
or otherwise related subsystems or entities. This includes an immense variety of large complex systems such as 
acquaintance networks18, the global shipping network19 and food webs in an ecosystem20,21, but also microscopic 
ones like metabolic processes in a cell22,23 and light-harvesting complexes24. The ability to capture the essential 
features of so many different systems of interest makes network theory a powerful tool. Much of its power stems 
from reducing a complicated system into an abstract graph composed of nodes connected by links. This can then 
be studied independently of what the physical network is and revealing, e.g., important information on mecha-
nisms influencing the construction and evolution of these complex systems. This is expected to hold true even if 
the constituents of the complex network are quantum physical objects.

An important problem in network theory is the extraction of information about the network when only a 
small subset of its constituents can be accessed. This has also been considered in the quantum case, and it has 
been shown that, provided one has suitable prior knowledge of the network, it is possible to determine sev-
eral of its properties indirectly using a probe system, such as the network state25, temperature26,27, and coupling 
strengths between nodes28,29. In particular, in the case of full access, the structure of the network can in principle 
be determined exactly9,30. The developed theoretical tools are crucial on the one hand for understanding how the 
structure of a nontrivial quantum environment is encoded in the dynamics of an open quantum system, and on 
the other hand for identifying and measuring the key properties of different quantum networks.

In this work, we consider the estimation of connectivity given by the number of links, or degree, of each node 
in the case of a simple and connected abstract graph. This choice is motivated by the fact that the degree sequence 
and corresponding distribution is one of the most important and commonly used concepts in characterising 
complex networks. By simple, we mean that between any two nodes there is at most one link and no node has a 
link with itself, and by connected that any node can be reached from any other by following the links. We also 
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assume that the links are undirected, meaning that the interactions or relations modeled by the links are taken to 
be symmetric. Our results are general in the sense that the only assumption one must make about a physical net-
work is that we know the number of nodes within the network and it is possible to perform measurements with 
results that are in a known relationship with the eigenvalues of the Laplace matrix of the corresponding graph. As 
an example of this type of system, we use a network of identical quantum harmonic oscillators interacting with 
spring-like couplings of constant magnitude9,31.

Earlier work for quantum networks has been done in the case of networks of spins, based on 
continuous-measurement-based approach of small networks up to 5 nodes with uniform or approximately uni-
form couplings32, as well as for quantum oscillator networks where the mutual information between a node and 
the rest of the network was shown to be characteristic of the topology when the network is at or near its ground 
state33. In contrast, our approach can in principle be applied to any kind of classical or quantum networks as long 
as the Laplace eigenvalues can be extracted. In practice, as producing the estimate requires solving a combinato-
rial problem, the method is best suited for networks of modest size. That being said, depending on the particular 
instance of a network, extracting all or nearly all eigenvalues might prove to be the most limiting factor.

Our main result is that it is indeed possible to obtain accurate estimate for the degree sequence of the network 
by using only a single probe weakly coupled to any of the nodes of the complex network. This result is based on 
exploiting known mathematical relations between the Laplace eigenvalues and the connectivity, and using the 
possibilities that quantum probing provides. The numerical evidence shows that the scheme works very well for 
different classes of network structures and is robust to small errors in the probed quantities. We also consider the 
case where the coupling strength in an oscillator network is uniform but a priori unknown. It turns out that for 
some classes of networks the coupling strength can always be correctly deduced, and numerical evidence suggests 
that the estimation succeeds with high probability in the general case.

For the sake of simplicity, we show first - in terms of classical graph theory - how the degree sequence of 
complex networks can be estimated once the eigenvalues of the Laplace matrix are known. After this, we turn our 
attention to quantum networks and develop a scheme to probe locally these eigenvalues within the network of 
quantum harmonic oscillators.

Results
Connectivity estimation.  Once the nodes of a simple and connected graph have been labeled, its structure 
may be encoded into a matrix in many ways. In particular, the Laplace matrix L of the graph has elements

L d l(1 ) , (1)ij ij i ij ijδ δ= − −

where di is the degree of node i and lij = 1 if there is a link between nodes i and j and 0 otherwise; notice that 
lij = lji. Given the eigenvalues λi of the Laplace matrix, the objective is to estimate the degrees di. This can be done 
by combining several results from spectral graph theory, which studies the relationship between graphs and the 
eigenvalues of their matrices. In addition to bounds on minimum and maximum degree by eigenvalues λi, the 
following relations must be fulfilled34,35
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The above restrictions are illustrated using a small example in Fig. 1. The sequences d′ of N positive integers 
that satisfy simultaneously the degree bounds and restrictions (2), (3) and (4) are referred to as solutions. The 
number of solutions is clearly always finite. It will be seen that the feasibility of finding them depends strongly on 
both the network topology and size.

For some graphs there is only one solution, and consequently the degree sequence d is unambigiously deter-
mined by the eigenvalues. These include simple chains, completely connected graphs and any graphs for which all 
degrees coincide. For the first two this follows from the squared sum in Eq. (3) attaining its minimimum or max-
imum value for a given number of nodes, while a direct application of Cauchy-Schwarz inequality shows that only 
regular graphs have equality in ⩽∑ ∑d N d( )i

N
i i

N
i

2 2. There is also an important class of graphs called threshold 

Figure 1.  A visualization of the constraints imposed on the degree sequence by equations (2), (3) and (4). The 
length of the line is given by Eq. (2). The number of boxes coincides with the sum of squared degrees given by 
Eq. (3), and the ticks are given by the bounds appearing in Eq. (4). By filling the line with squares such that all 
boxes are used, there are as many squares as there are slots, and each square will not exceed its slot, one will find 
an integer sequence satisfying simultaneously the three equations. Here this is done in three steps for a small 
graph to illustrate the problem. The bounds on mimimum and maximum degree are not shown.



www.nature.com/scientificreports/

3SCiEntiFiC REPOrTS |  (2018) 8:13010  | DOI:10.1038/s41598-018-30863-2

graphs36 that are uniquely determined by their degree sequence and their degree sequence is in turn determined 
by the Laplace eigenvalues, however the eigenvalues will typically be degenerate.

More generally, Eqs (2) and (3) for a given N fix the mean, variance and root mean square of the bounded 
solutions and Eq. (4) further refines them by ruling out cases where deviations from d are bunched together. For 
any solution, the deviations must cancel out because the correct sum of degrees is enforced; similarly also devi-
ations between any element-wise squared solution and the element-wise squared d must cancel out. The degree 
sequence is always included in the solutions.

To find the solutions, we considered Eq. (3) as an integer partitioning problem, where the sum of squared 
elements must be partitioned into N integers. The allowed integers are square numbers with bounds determined 
from the eigenvalues. Taking the element-wise squareroots of each found partition and filtering the results 
according to equations (2) and (4) will provide the solutions. Alternatively, one could start from Eq. (2) and then 
filter but we found that this is more wasteful and consequently uses more memory and computation time. Further 
details about finding the solutions are provided in Methods.

We tested our estimation scheme on random graphs generated by Erdős-Rényi37, Barabási-Albert38 and 
Watts-Strogatz39 random graph models as well as tree graphs. An Erdős-Rényi random graph refers to either 
of two closely related models of generating random graphs with exactly N nodes. The so-called G(N, L) model 
chooses uniformly among all possible graphs with exactly L links, while the G(N, p) model starts from a com-
pletely connected graph and includes each link in the final graph with probability p. Both models are used in this 
work. A Barabási-Albert random graph G(N, K) is constructed starting from a cyclic graph of three nodes and 
iteratively adding a new node with K links until the graph has N nodes, connecting the new links randomly but 
favoring nodes with higher degree. It can be shown that graphs constructed like this have a degree distribution 
that follows a powerlaw. Watts-Strogatz graphs G(N, k, p) are constructed by starting from a circular graph where 
each node is connected to up to k-th nearest neighbors. Then each link is rewired with probability p, creating a 
graph with small world properties. Finally, a tree of N nodes is any connected graph with exactly N − 1 links; this 
gives them the property that they have no cycles, i.e. closed walks without repetitions of links or nodes other than 
the starting and ending node. We also considered two real complex networks: a social network of 62 bottlenose 
dolphins40 and the macaque visual cortex network41.

As a figure of merit of a solution d′ we chose the 1 distance from d normalized by the total degree of the graph, 
i.e.

   f d d dd d d d( ) / / (5)i
N

i i i1 1 ∑′ = − ′ = | − | | |.′

This choice is motivated by the fact that this quantity can be interpreted as the average deviation from the real 
degree per link. We found that, for all considered cases, f(d′) < 1/2. By choosing as final estimate the solution that 
has the smallest 1 distance from the mean of solutions it is possible to single out a solution particularly close to d, 
since the deviations, that must cancel out for any particular solution as explained previously, will then be partly 
averaged out. By mean of solutions, we indicate the sequence where each element is the corresponding mean 
degree calculated from all solutions. On the other hand, the set of all solutions always contains d while the esti-
mate is typically not a perfect match.

The results, averaged over 1000 realizations of each random graph with size fixed to N = 30, are shown in 
Fig. 2. Besides the parameter values used here, we have also checked other values and found similar results for 
these random graph models. In particular, the estimation was not sensitive to size. After a transient for very small 
graphs of only a handful of nodes the averaged results converge, and there is no appreciative change as size is 
increased further.

For Erdős-Rényi random graph, we used L = 87. This would be the expected number of links for G(N, p) 
of same size with p = 1/5. For Barabási-Albert graph, we used K = 2. In the latter case the estimation performs 
worst, and in particular none of the estimates coincided with the real degree sequence. This is caused by the high 
variance of d for this class of random graphs: higher variance allows the solutions to deviate more from d and 
consequently the estimation is less accurate. Compared to the other two graphs which had typically thousands 
of solutions, Watts-Strogatz graphs and trees had much less solutions, with the former having tens and the latter 
only a handful with the used parameter values. Consequently a significant fraction of estimates were a perfect 
match with d. The plots are not smooth, indicating that certain values are much less likely than others, a feature 
not present for the other two graphs. For the former, we used k = 2 and p = 0.2. Unlike for the other graphs, more 
than half of the solutions had the same distance from d. We believe this to be because this class of random graphs 
had the smallest variance of d since they are generated from regular graphs. Trees had the biggest fraction of per-
fect matches out of all graphs, but this is mostly because the number of solutions was so small to begin with. This 
is essentially caused by any tree having the smallest possible number of links for a given number of nodes, greatly 
restricting also the solutions.

The insets in Fig. 2 show the scaling of the averaged execution time of the program that, given the eigenvalues, 
finds the solutions and the estimate(s). Each data point was averaged over 1000 realizations for the Erdős-Rényi 
and Barabási-Albert graphs, and over 10000 realizations for the other two. Different amounts of realizations 
were used partly because the results for the first two graphs converged significantly faster, and partly because the 
problem instances took much longer for them. For all four graphs the scaling would appear to be exponential in 
the size N. The other parameter values are as in the main figures except for Erdős-Rényi graph, for which G(N, p) 
model was used with p = 1/5. Refer to Methods for more details.

The real networks had considerably more solutions than the random graphs due to their bigger size, but 
for both a single, relatively accurate estimate was found as there was no averaging over realizations. The dol-
phin social network40 of 62 nodes and 159 links had over 35 million solutions, while the macaque visual cortex 
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network41 of 31 nodes and 311 links had over 56 million. Despite the sizes of the solution sets, the problem 
instances were still solved on a tabletop computer, as described in the Methods. We stress that similar numbers of 
nodes and links would result in large solution sets also for the random graphs.

While d′ close to mean solution are alike, the outliers are different from both them and d. This is because there 
are many relatively smooth sequences that satisfy the constraints, but only a few jagged ones that pass. Indeed, 
the estimation works poorly on graphs with jagged degree sequences since the majority of solutions will be much 
smoother. We stress that choosing an outlier and realizing it as a network will in general not yield the same solu-
tions since degree bounds and restrictions imposed by Eq. (4) can change even between different realizations of 
a fixed d.

Application to quantum networks.  To exploit the previous results for quantum probing and networks, 
we consider networks of uniformly coupled quantum harmonic oscillators9. We will use units as referred to an 
arbitrary (but fixed) frequency unit and give coupling strengths, times and temperatures in terms of this unit. We 
will also set ℏ = 1 and kB = 1. The network is composed of N unit mass quantum harmonic oscillators coupled by 
springs, each having the same bare frequency ω0. The couplings between network oscillators are assumed to be 
uniform with the strength given by g. We can express the network Hamiltonian in a compact way as

H gp p q I L q/2 ( ) /2, (6)E
T T

0
2ω= + +

where p = {p1, p2, …, pN}T and q = {q1, q2, …, qN}T are the vectors of momentum and position operators, I is the 
identity matrix and L is the Laplace matrix of the underlying graph. We will assume that g and N are known, but 
make no assumptions on L. Since the row sums of any Laplace matrix are zero, the eigenvalues λi are non-negative. 
This, together with a positive coupling constant g, ensures the positivity of Hamiltonian HE.

Since the network Hamiltonian is quadratic in position and momentum operators for any configuration given 
by L, it can be diagonalized with an orthogonal transformation. This allows us to move into an equivalent picture 
of noninteracting eigenmodes of the network. In this picture, = ∑ + Ω=H P Q( )/2E i

N
i i i1
2 2 2 , where Pi and Qi are the 

position and momentum operators of the network eigenmodes and Ωi are their frequencies, related to the eigen-
values λi of the Laplace matrix L as

g( )/ (7)i i
2

0
2λ ω= Ω − .

This is the key equation which allows us to use the previously described estimation procedure for the degree 
sequence. In other words, if we can probe the eigenfrequencies Ωi of the network, this gives us direct information 
about the eigenvalues of the Laplace matrix and therefore a way to estimate the connectivity of the network. It 
is also worth mentioning that, since ω0 coincides with the smallest eigenfrequency, it is not necessary to know it 
beforehand.

Assuming that the network is in a thermal state of known temperature T, the detection of eigenfrequencies can 
be done by measuring the mean excitations 〈n(t)〉 of a bosonic probe weakly coupled to a node in the network and 
doing a frequency sweep across the range that covers the spectrum9. The probe is assumed to be a quantum 

Figure 2.  Solutions d′ compared by their distance from the real degree sequence d as quantified by 
f d d d d( ) /1 1′ = − ′  for different types of random graphs, each having N = 30 nodes, and for two complex 
networks. The dashed line corresponds to all solutions satisfying the constraints and the solid line to estimates 
acquired by choosing the solution closest to their mean; notice that for the real networks the sole estimate is 
marked by a point. Results for the solutions for random graphs are averaged over 1000 realizations of each type 
of graph. Insets: logarithmic plots of the averaged times to find the solutions, compared with the size of the 
networks. Refer to main text for details.
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harmonic oscillator with the Hamiltonian ω= +H p q( )/2S S S S
2 2 2 , where pS and qS are its momentum and position 

operators and ωS is its frequency, while the interaction Hamiltonian is of the form HI = −kqSqj, where k is the 
strength of the coupling and qj is the position operator of the node interacting with the probe. By fixing the states 
of the probe and the network, the reduced dynamics of the probe can be determined exactly by diagonalizing the 
total Hamiltonian, solving the Heisenberg equations of motion for the decoupled oscillators, and returning to old 
operators. While here we fix the state of the probe and the network to be vacuum and thermal state of temperature 
T, respectively, the accuracy is largely insensitive to the state of the probe as long as there is an energy difference 
between the probe and the network9.

When coupled strongly to the network, the probe will exchange energy with all eigenmodes and the reduced 
dynamics depends on the structure of the network in a complex way. On the other hand, with a sufficiently weak 
coupling the interaction becomes limited to only the few closest modes in the vicinity of system frequency ωS, 
and this makes the reduced dynamics very sensitive to the resonance condition in the sense that when ωS matches 
an eigenfrequency, a significantly larger amount of energy can flow between the network and the probe before 
finite size effects cause the flow to be reversed. An example is shown in Fig. 3, which demonstrates that even a 
small difference in frequencies can lead to a very different value of 〈n(t)〉, for sufficiently long interaction times 
and a weak coupling, provided that there is an energy difference between the probe and the network. While this 
behaviour is universal to finite networks, the number of nodes N is assumed to be known in the probing protocol 
because otherwise one does not know when all eigenfrequencies have been found.

The probe must interact with an eigenmode to detect its frequency. The spectrum should also be nondegener-
ate because any degenerate eigenfrequencies are interpreted as a single frequency. This is typically the case, and it 
can be seen by considering the oscillators in terms of the eigenmodes: any qi can be expressed as a weighted sum 
of eigenmode position operators where the weights are given by the elements of the ith eigenvector of the matrix 

gI L( )/20
2ω + . For a generic L, all eigenvalues are distinct and the eigenvectors will not have zero elements, which 

means that the probe will interact with and resolve all eigenmodes from any node. It should be mentioned how-
ever that bipartite graphs, an important class of complex networks, do often have degenerate eigenvalues.

In the non-ideal case, there might be some errors in the values of eigenfrequencies or the coupling strengths 
might be only approximately uniform. We checked the robustness against both for all four classes of networks. 
For all of them, 1% unbiased error in either eigenfrequencies or coupling strengths will typically not cause any 
errors in the detected sum of degrees while perturbing the probed sum of squared degrees, degree bounds, and 
bounds on partial sums very little if at all. With larger errors, the worst case accuracy of results averaged over 
many realizations deteoriates slowly, but the differences between individual realizations grows. We also found that 
the number of solutions had a large impact on the robustness of the best case accuracy, as this was affected very 
quickly for trees and Watts-Strogatz networks while the other two classes of networks were much more resilient. 
Sometimes the affected bounds on partial sums did not provide any solutions at all for trees or Watts-Strogatz 
networks, in which case we considered the accuracy of solutions without this restriction.

In the case of nonuniform coupling strengths, the eigenvalues of a weighted Laplace matrix L can be recovered 
from i

2
0
2ωΩ − . Now the off-diagonal elements of L are the coupling strengths between the oscillators and the 

diagonal has the sums of coupling strengths to each oscillator. While other restrictions still apply as before, the 
eigenfrequencies only upper bound the sum of the squares of diagonal elements of L and conversely, their vari-
ance can only be bounded from above, reducing the accuracy of the estimation considerably. The number of 
possible solutions can still be finite if the coupling strengths in the network are divisible by the same number, for 
instance if there is a weakest coupling and others are its integer multiples.

Estimation of an unknown coupling constant.  If the coupling strengths are known to be uniform but 
the value of the coupling constant is not known, one can estimate it from the probed eigenfrequencies using the 
relation λ ω= Ω −g i i

2
0
2 obtained from Eq. (7). The estimation procedure uses general properties of the eigenval-

ues λi of an unweighted connected graph. We stress that the success or failure of the estimation depends only on 

Figure 3.  Evolution of mean excitations 〈n(t)〉 for a probe system weakly coupled to a single node in an 
Erdős-Rényi network of 40 oscillators and 80 couplings with bare frequency ω0 = 0.2 and coupling constant 
g = 0.1, with probe frequency coinciding with an eigenfrequency of the network (squares) and just a little 
above 1% off (circles). The initial state of the probe and the chain were vacuum and thermal state with T = 0.3, 
respectively, while coupling strength between the probe and the chain was k = 0.0025. The clear difference in 
the dynamics for longer interaction times makes the detection of eigenfrequencies possible. Once detected, the 
eigenfrequencies can be used to determine the Laplace eigenvalues.
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the structure of the graph, rather than on a particular value of g. As will be seen below, for generic degree 
sequences it succeeds.

Because the graph is connected and simple, we know that − ≤ ∑ ≤ −N d N N2( 1) ( 1)i
N

i . Since 
di

N
i i

N
iλ∑ = ∑ , this leads to ≤ ≤

ω ω∑ Ω −

−
∑ Ω −

−
g

N N N
( )
( 1)

( )
2( 1)

i
N

i i
N

i
2

0
2 2

0
2

. We can reduce this range to a finite set of values by 
demanding that both ∑ di

N
i and di

N
i
2∑  are even integers, as they must be for a connected graph. This set can be 

further refined by using results related to regular graphs and the largest eigenvalue λN. As mentioned before, for 
any connected graph ∑ − ∑ ≥N d d( ) 0i

N
i i

N
i

2 2  with equality iff the graph is regular. This property can be violated 
for values of the coupling constant larger than g, which can be used to rule them out. On the other hand, values 
smaller than g can violate the property λN ≤ N42. Typically several values pass these tests, however as we will argue 
below, they are not equally likely to be correct.

Clearly, if some g′ satisfies the condition that both ∑ di
N

i and di
N

i
2∑  are even, then so does any g′/x where 

x = 2, 3, 4, …. This suggests that g is more likely to be among the larger values satisfying the constraints. In fact, 
for trees and regular networks, the largest possible value coincides with g. In the former case this follows directly 
from the fact that the sum of degrees attains its minimum value, and hence any g′ > g will violate the assumption 
that the network is connected. In the latter case this can be seen by letting g′ = ag and noticing that then 

∑ − ∑ = <Δ −N d d( ) 0i
N

i i
N

i
N a

a
2 2 (1 )2

2  for all a > 1, where Δ is the constant degree of the network.
More generally, for some g′ > g to lead to even sum of degrees and squared degrees, it has to be the case that 

d d d D( ) /i
N

i i i
2 2 2∑ + ′  is even, where ′ < ∑D di

N
i is the wrong sum of degrees corresponding to g′. While such a g′ 

might still be ruled out by the other constraints, this implies that without prior knowledge of the structure of the 
network, g can be determined unambigiously only when no other value passes the tests. We studied how well the 
estimation works in the case of the Erdős-Rényi random network as a function of connection probability p, as 
shown in Fig. 4 – here the G(N, p) model is used since for prime values of the total degree the estimation almost 
always succeeds, and consequently the G(N, L) model would lead to a discontinuous plot. The results confirm that 
the largest value coincides with g with high probability, success rate improving for larger values of p. Also shown 
is the fraction of conclusive cases, i.e. when g is the only possible value. The curve shows an interesting behaviour, 
with a sudden transient from most cases being inconclusive to most being conclusive, between p = 0.2 and p = 0.4. 
This is essentially because then λN > N/2, which will rule out any g′ ≤ g/2. This does not guarantee conclusiveness 
since some g > g′ > g/2 might still pass, but this requires special values of ∑ di

N
i and di

N
i
2∑ .

Discussion
Connectivity is an important structural property of complex networks. We considered simple connected graphs 
and showed how connectivity can be estimated from the eigenvalues of the Laplace matrix. Our estimation 
scheme is applicable to any network, quantum or classical, amenable to the extraction of Laplace eigenvalues 
from measurement results. While the accuracy is best for networks with a degree sequence having small variance, 
the estimation performs well also for, e.g., networks where the degrees follow a powerlaw. Even if the size of the 
network prevents finding the estimate in a reasonable amount of time, the connectivity can still be classified as 
the mean and variance as well as bounds are easily determined from the eigenvalues. We stress that in actual sit-
uations the main limiting factor might instead be the extraction of the eigenvalues, as this becomes increasingly 
difficult for large networks due to the growing density of the eigenvalues.

For actual networks of uniform link strength, the eigenvalues are in principle extractable locally whenever a 
basis of non-interacting normal modes exist. Hence in these cases the probing scheme requires only access to any 
single node, and once in weak contact, only local operations on the probe are needed. While this is an advantage 
in any situation, it is also the only option should the access to the network be restricted to only one node. As an 
example, we applied our results to networks of identical uniformly coupled quantum harmonic oscillators and 
showed how not only the connectivity but also the uniform coupling strength can be estimated with local probing 
of any of the oscillators in the network.

In this work, we have demonstrated how even in the quantum case, graph theory can be highly useful in 
eludicating the properties of coupled many-body systems. While here we used information extractable from a 

Figure 4.  Estimation of an unknown coupling constant g for the Erdős-Rényi random network, compared with 
connection probability p. The estimation procedure produces a finite list of possible values for the coupling 
constant, of which the largest is selected as the estimate. The fraction of cases where the estimate coincides with 
g is shown on the left. On the right, the fraction of cases where g is the only value produced by the estimation is 
shown. Refer to main text for details. All results are averaged over 100000 realizations of the network.
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quantum network with minimal access, it would be interesting to study the case where a small subset of nodes 
could be accessed, or investigate how knowing also some of the eigenvectors of the graph could be exploited.

Methods
Finding the solutions.  For each problem instance, the integer sequences bounded by dmin and dmax and 
satisfying equations (2) and (3) were found with the algorithm outlined below.

The output was further filtered according to eq. (4). The function IntegerPartitions is the one from 
Mathematica (Wolfram Research, Champaign, IL) version 7 and onwards, and it implements a multiply restricted 
integer partitioning algorithm that in this case finds all ordered sequences of exactly N integers adding up to A 
using only the elements appearing in the list s defined in the lines 1–4 above. The vast majority of time is taken by 
the call to IntegerPartitions. For the two real networks which had millions of solutions, IntegerPartitions 
was run in block mode where a subset of partitions was found with each call until all partititions had been found. 
While it is conceivable that more direct and efficient methods might exist to find the solutions, such discussion is 
outside the scope of this work.

Time complexity analysis.  The data for time complexity analysis was gathered on a 64-bit PC running 
Microsoft Windows 7 Ultimate 6.1.7601 Service Pack 1 Build 7601. The processor was Intel Xeon CPU e5-1650 
v3 @ 3.50 GHz, 3501 Mhz, with 6 cores and 12 logical processors, and the installed physical memory (RAM) was 
48 GB.

For each data point, 1000 problem instances were generated and solved with Mathematica 11.2.0 using the 
method described above. The CPU time spent in the Wolfram Language kernel was recorded starting from having 
the graph eigenvalues to finding all solutions and choosing the estimate. In particular, this does not include the 
generation of the random graphs or finding the eigendecomposition of the graph Laplace matrix.
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