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Exploring the Organization of Semantic Memory through
Unsupervised Analysis of Event-related Potentials

Marijn van Vliet1,2, Marc M. Van Hulle1, and Riitta Salmelin2

Abstract

■ Modern multivariate methods have enabled the application
of unsupervised techniques to analyze neurophysiological data
without strict adherence to predefined experimental condi-
tions. We demonstrate a multivariate method that leverages
priming effects on the evoked potential to perform hierarchical
clustering on a set of word stimuli. The current study focuses
on the semantic relationships that play a key role in the organi-
zation of our mental lexicon of words and concepts. The N400
component of the event-related potential is considered a reli-
able neurophysiological response that is indicative of whether
accessing one concept facilitates subsequent access to another
(i.e., one “primes” the other). To further our understanding of
the organization of the human mental lexicon, we propose to

utilize the N400 component to drive a clustering algorithm that
can uncover, given a set of words, which particular subsets of
words show mutual priming. Such a scheme requires a reliable
measurement of the amplitude of the N400 component without
averaging across many trials, which was here achieved using a
recently developed multivariate analysis method based on
beamforming. We validated our method by demonstrating that
it can reliably detect, without any prior information about the
nature of the stimuli, a well-known feature of the organization
of our semantic memory: the distinction between animate and
inanimate concepts. These results motivate further application
of our method to data-driven exploration of disputed or un-
known relationships between stimuli. ■

INTRODUCTION

Semantic priming experiments (McNamara & Holbrook,
2003; Neely, 1991) have revealed that accessing a word in
our mental lexicon facilitates future access to semanti-
cally related words. Because words usually occur in a log-
ical sequence, this “priming” behavior facilitates the
processing of likely continuations of a sentence or story
(Neely, 1976) and thereby contributes to our ability to
exchange messages with others at high speed.
The semantic priming effect has been helpful for study-

ing the organization of human semantic memory (e.g.,
Kutas & Federmeier, 2000; Collins & Loftus, 1975). For
example, the exact nature of the relationships that causes
one word to prime another word continues to be the focus
of research (e.g., De Deyne, Navarro, Perfors, & Storms,
2016; Van Petten, 1993). In this article, we demonstrate
how unsupervised techniques, such as hierarchical cluster-
ing, are a particularly useful tool in this case and develop
a new technique to study the organization of semantic
memory based on a neural correlate of the semantic prim-
ing effect.
The boost in signal-to-noise ratio (SNR) provided by

multivariate data analysis (Norman, Polyn, Detre, & Haxby,
2006; Friston et al., 1996) enables an exciting paradigm
shift in how new insights may be obtained from neuro-
physiological data. When the SNR is high enough, a re-

searcher can approach the data analysis in an unsupervised
manner, instead of labeling data according to some pre-
determined division (e.g., words vs. pseudowords or tools
vs. vegetables). Multivariate analysis reduces the need for
averaging across trials, thus facilitating the generation of
sufficiently many data points for learning the underlying
structure in the data distribution, for example, via cluster-
ing techniques ( Jain, Murty, & Flynn, 1999). This allows for
a data-driven approach to complement theoretical work.

In the application of clustering techniques, the key
component to consider is the (dis)similarity score em-
ployed by the algorithm. This score is a measure of the
distance between two items and is used by the clustering
algorithm to determine which items to group together in
a cluster. Hence, the effectiveness and validity of cluster-
ing techniques in neuroscience depend a great deal on
how the measured brain activity is translated into a sim-
ilarity score.

In the context of semantic relationships, the similarity
score corresponds to the concept of semantic distance
(Rips, Shoben, & Smith, 1973). Such distance metrics
are traditionally based on behavioral data, such as the
co-occurrence of words in a large text corpus ( Jones,
Willits, & Dennis, 2015), the degree of overlap of seman-
tic features (De Deyne et al., 2008; McRae et al., 2005;
Hutchison, 2003), or the forward association strength
(FAS) score, which is produced by performing an associ-
ation study where participants, presented with a target
word, are asked to write down which words come to1KU Leuven, 2Aalto University

© 2017 Massachusetts Institute of Technology Journal of Cognitive Neuroscience 30:3, pp. 381–392
doi:10.1162/jocn_a_01211



mind (DeDeyne, Navarro, & Storms, 2013; Nelson,McEvoy,
& Schreiber, 2004). In this study, we develop a semantic
distance metric that is based solely on a neurophysiolog-
ical response.

Previous studies that have developed semantic dis-
tance metrics from brain activity did so by showing that
concepts belonging to the same natural semantic cate-
gory (e.g., tools, animals) produce similar brain activity.
For example, fMRI studies have shown that stimuli from
the same semantic category generate similar BOLD ac-
tivity patterns (Huth, De Heer, Griffiths, Theunissen, &
Jack, 2016; Huth, Nishimoto, Vu, & Gallant, 2012; Gerlach,
2007), and EEG and MEG studies have shown that they
produce similar spatiotemporal time courses (Chan,
Halgren, Marinkovic, & Cash, 2011; Simanova, van Gerven,
Oostenveld, & Hagoort, 2010). However, although some
semantic categories may activate unique brain activity
patterns, there is currently no consensus that this should
be the case for all categories (Pulvermüller, 2013) or, for
that matter, other types of relationships that are impor-
tant to the semantic systems in our brain. In this study,
we explore an alternative route to obtain a semantic dis-
tance metric that is more closely tied to semantic priming.

The distance metric employed in this study is based
on a component of the ERP as recorded through EEG,
which has been shown to be reliably modulated by se-
mantic priming. By contrasting different levels of prim-
ing, an effect can be seen that reaches its maximum
around 400 msec post stimulus onset, and the compo-
nent was hence named the N400 (Kutas & Federmeier,
2011; Kutas & Hillyard, 1984). Since its discovery, relative
changes in the amplitude of the N400 component have
been shown to correlate well with various behavioral
metrics of the strength of the semantic relationship be-
tween words, such as word co-occurrence (Van Petten,
2014), FAS (van Vliet et al., 2016; Luka & Van Petten,
2014), and semantic feature overlap (Koivisto & Revonsuo,
2001).

In this study, we demonstrate how to find semantic
clusters for a given set of words by measuring the ampli-
tude of the N400 component that was evoked in a seman-
tic priming experiment. Because the semantic priming
effect and its relation to the N400 component have been
thoroughly studied, the metric and the clustering result
it produces are straightforward to interpret.

EEG was recorded while all pairwise combinations of
the stimuli, a set of 14 written words, were presented
sequentially to the participants. For the second word of
each word pair (the target), the amplitude of the N400
component of the evoked EEG response was estimated
using a linearly constrained minimum variance (LCMV)
beamformer (Van Veen, Van Drongelen, Yuchtman, &
Suzuki, 1997), modified to be suitable for ERP analysis
(Treder, Porbadnigk, Shahbazi Avarvand, Müller, &
Blankertz, 2016; van Vliet et al., 2016; Wittevrongel &
Van Hulle, 2016). This approach breaks down the problem
of finding proper weights into two steps. The first step is to

construct a template of the desired signal, in this case the
spatial and temporal shapes of the N400, based on a tra-
ditional ERP analysis consisting of averaging many epochs
across many participants. A novelty here is that, instead of
doing this on the data obtained in the current study, we
used the recordings of a previous semantic priming study
(van Vliet et al., 2014). The second step is to obtain the set
of weights that isolates this signal from the rest of the
EEG, which entails estimating the inverse covariance
matrix of the recording currently under consideration.
The advantage of this approach is that it leverages a
previous study for knowledge about the signal of interest,
so predefined experimental conditions are not required
for the target recording, that is, indicating beforehand
which trials are assumed to have high and low N400
amplitudes.
The N400 amplitudes, as estimated by the beamformer

filter, formed the elements of a word-to-word distance
matrix that served as input to a hierarchical clustering
algorithm, with the aim to discover clusters of seman-
tically related words. Because the main focus of this study
is to explore if such a scheme can work, the chosen stim-
uli in this study were either animals or furniture items,
thus items that most semantic theories place in separate
clusters (Martin, 2007). The validity of the method was
assessed by determining whether the clustering algo-
rithm reveals these clusters.
Importantly, although the stimuli in this study were

designed with a clear dichotomy, the method will be
agnostic to this fact. Accordingly, the proposed method
should also be suitable for exploring data sets where the
proper clustering is ambiguous or disputed. Further-
more, because of the unsupervised nature of the method,
additional subclusters may also be revealed that were not
an intentional part of the experimental design.

METHODS

The study was performed with 19 participants. The data
of two participants were discarded because of poor
sensor contact quality, and the data of one participant
were discarded because of excessive eye blinks. Of the
remaining 16 participants, 10 were male and 6 were
female, with an age range of 20–58 years (mean = 38 years,
SD = 11 years); all but one were right-handed; and six
were native speakers of Walloon-French and the other 10
were native speakers of Flemish-Dutch.
This study was performed at KU Leuven, and ethical

approval was obtained from its university hospital’s
medical ethics committee. All participants were unpaid
volunteers who signed an informed consent form before
the experiment.

Stimuli and Experimental Procedure

Word pairs were formed by using all possible prime–target
combinations (182) of the 14 words listed in Table 1. The
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list contains category exemplars for African animals and
common furniture items. The stimuli differ in length and
frequency of usage, which are normally controlled for in
linguistic experiments. However, our method is mostly
insensitive to the influences of such word-specific prop-
erties, as will be further argued in the Discussion section.
The stimuli were presented in the native language of the
participant (Flemish-Dutch or Walloon-French). All pos-
sible word pairs were presented once, which means that
each individual word was presented 26 times: 13 times as
prime and 13 times as target. A word was never paired
with itself (e.g., the pairs CHAIR–CHAIR or LION–LION
were not included), which means there were altogether
84 (i.e., 2 × 7 × 6) “within-category” pairs and 98 (i.e., 2 ×
7 × 7) “between-category” pairs.
Participants were seated in an upright position ap-

proximately 1 m from a computer screen. The hand used
to give the button response rested upon a table with the
index and middle fingers on the mouse buttons. A trial
consisted of the sequential presentation of a single word
pair. The first word of the word pair (the prime) was pre-
sented for 200 msec; and the second word (the target),
for 1000 msec, with a SOA of 500 msec, after which a
question mark appeared prompting a response.
Following the advice of Renoult and Debruille (2011)

for obtaining a semantic priming effect even when stimuli
are shown multiple times during the experiment, the par-
ticipants were asked to determine whether the prime and
target words belonged to the same semantic category by
pressing one of two mouse buttons. The mapping of the

yes/no response to the mouse buttons and the hand used
to operate the mouse were counterbalanced indepen-
dently across participants.

Data Recording and Preprocessing

EEG was recorded continuously using 32 active electrodes
(extended 10–20 system) with a BioSemi Active II System
(BioSemi, Amsterdam, The Netherlands), having a fifth-
order frequency filter with a pass band of 0.16–100 Hz,
and sampled at 2048 Hz. Two additional electrodes were
placed on both mastoids, and their average signal was
used as a reference for the other sensors. Furthermore,
four additional electrodes were placed on the outer canthi
of the eyes and above and below the left eye to record
horizontal and vertical EOG.

The EEG and EOG signals were further bandpass-filtered
offline between 0.3 and 30 Hz by a fourth-order zero-phase
infinite impulse response filter to attenuate large drifts and
irrelevant high-frequency noise. Electrodes with insuffi-
cient signal quality were detected based on visual inspec-
tion of the raw data and replaced by a virtual channel
using spherical interpolation of the remaining electrodes
(Perrin, Pernier, Bertrand, & Echallier, 1989). On average,
1.25 of 32 channels were replaced, with a maximum of four
in one participant. The EOG signal was used to attenuate
eye artifacts from the EEG signal using the aligned-artifact
average regression method described in Croft and Barry
(2000). Individual trials were obtained by cutting the con-
tinuous signal from 0.1 sec before the onset of each target
stimulus to 1.0 sec after. All trials were used in the analysis.
Baseline correction was performed using the average volt-
age in the 0.1-sec interval before the stimulus onset as
baseline value. Finally, because any high-frequency content
was removed by the bandpass filter, the signal was down-
sampled to 50 Hz without losing much information. This
step was included to reduce the dimensionality of the data
matrices, which improves the numerical stability of the
beamformer filter.

Beamformer Filter

After preprocessing the EEG signals, multivariate analysis
was performed using a spatiotemporal LCMV beamfor-
mer filter. The filter takes a weighted sum of the data
points from all EEG channels and all samples within an
epoch. The result of this summation represents the esti-
mated amplitude of the N400 component of the ERP
within that epoch. For an in-depth explanation and im-
plementation details of the method, see van Vliet et al.
(2016).

The beamformer approach consists of two steps. The
first step is to construct a template of the desired signal:
in this case, the spatial and temporal shapes of the N400.
The second step is to obtain the set of weights that iso-
lates this signal from the rest of the EEG, which entails

Table 1. Words Used in the Unsupervised Clustering Study

Dutch French English

bed lit bed

bureau bureau desk

deur porte door

giraf girafe giraffe

kast placard closet

leeuw lion lion

neushoorn rhinocéros rhinoceros

nijlpaard hippopotame hippopotamus

olifant éléphant elephant

stoel chaise chair

tafel table table

tijger tigre tiger

zebra zèbre zebra

zetel canapé couch

The words were displayed in French or in Dutch, according to each
participant’s native language. The English translation is only for the
sake of exposition and was not displayed to the participants. The stimuli
consisted of all possible pairwise combinations of these words.
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estimating the inverse signal covariance matrix of the
recording currently under consideration (the target
recording).

To obtain a template of the N400 component and fine-
tune the beamformer filter, we reused data that were
collected in a previous semantic priming study (van Vliet
et al., 2014). In that study, 10 native speakers of Flemish-
Dutch were shown 800 word pairs with varying FAS, as
determined from an association norm database com-
piled by De Deyne and Storms (De Deyne et al., 2013;
De Deyne & Storms, 2008), covering the whole range of
completely unrelated to the strongest related words in the
database. The experimental procedure, recording setup,
and data processing were identical to those used for the
unsupervised clustering study as described above, with
the exception that the responding hand was always the
right hand and the mapping of yes/no responses to the
mouse buttons was not counterbalanced. See van Vliet
et al. (2014) for further details about the study.

The data of the previous study were reanalyzed by
performing linear regression, using the logarithm of the
FAS of the stimuli as predictor and the EEG as response
variable, resulting in what Smith and Kutas (2015) refer to
as a “slope” ERP. This slope ERP is a generalization of
the difference wave and can be thought of as “the part
of the ERP that changes when the FAS of the stimulus
changes.” Next, we determined the time point when
the global field power of the slope ERP reached its
maximum, which was at 430 msec after stimulus onset.
The distribution of the slope ERP across the sensors at
that time point was taken to be the spatial pattern for
the N400 component (Figure 1, left). The temporal tem-
plate was constructed by using the spatial template to
create a spatial LCMV beamformer (van Vliet et al., 2016),
the output of which represents an estimation of the
summed activity at the cortical source locations of the
N400 (Figure 1, right, gray line). This time course was
further refined by multiplying it with a Gaussian kernel

(μ = 400 msec, σ = 10 msec), which has the effect of
limiting the nonzero values to a window of interest
centered on the peak amplitude of the N400 (Figure 1,
right, black line). Finally, the full spatiotemporal tem-
plate was obtained by taking the outer product of the
spatial and temporal templates.
To compute the filter weights that will isolate the

signal component described by the template from the
rest of the signal, the template must be multiplied with
the spatiotemporal covariance matrix Σ of the target
data. This matrix can be readily computed from the data
of the current study, because it does not require con-
trasting different experimental conditions. Because of
the high dimensionality of this matrix, it is recom-
mended to employ heavy shrinkage during its estima-
tion. In this study, we employed shrinkage toward the
diagonal:

Σ̂ ¼ X⊺X (1)

Σ ¼ 1− að ÞΣ̂þ a
TrΣ̂
n

I (2)

where X is a matrix where each row corresponds to one
of the n epochs and contains a flattened version (i.e., all
elements are placed on a single row) of the Channels ×
Samplesmatrix. Σ̂ is the empirical covariancematrix, “Tr Σ̂”
means the sum of the diagonal elements of Σ̂, and I is
an identity matrix. The value of the shrinkage parameter
a was optimized by designing beamformer filters with
different values for a and applying them to the data of
the previous study. The optimization criterion was to
maximize the correlation between the output of the fil-
ter and the FAS of the stimuli that were used in that
study. This resulted in an optimal a value of 0.9, which
is the value we subsequently used to design the filter for
this study.

Figure 1. Spatial (left) and temporal (right) patterns of the N400 ERP component, evoked in a semantic priming experiment. In the figure depicting
the temporal template, the gray line represents the result of the spatial beamformer, and the black line represents the result after multiplying
with a Gaussian kernel.
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Given the covariance matrix and the template of the
N400 component, the estimation of the amplitude of this
component for a given epoch is

w ¼ Σ−1a

a⊺Σ−1a
(3)

ŷ ¼ w⊺x (4)

where Σ−1 is the inverse of the covariance matrix, a is a
flattened version of theChannels×Samplesmatrix contain-
ing the N400 template, and x is the flattened version of the
Channels × Samples matrix containing the EEG epoch.

Hierarchical Clustering

The amplitude of the N400 ERP component ŷ as quan-
tified by the spatiotemporal LCMV beamformer filter
was further processed to obtain a suitable metric for the
semantic distance between the prime and target stimuli.
First, for each participant, z scoring was performed across
the ŷ’s to equalize the scaling. Then, a distance metric was
derived from the z-scored N400 amplitude estimates.
As distance metric, we chose the relative change in the

amplitude of the N400 component, as a target word is
paired with different prime words. Given the set S of all
words used in the study (here, we regard the Dutch and
French translations as the same word), the amplitude of
the N400 component evoked by the target word of word
pair a 2 S and b 2 S is denoted N400(a, b) and the distance
between the words, denoted d(a, b), is quantified as

d a; bð Þ ¼ N400 a; bð Þ − 1
n

X

w2S
N400 w; bð Þ (5)

where n is the total number of words in S. Because a
word was never paired with itself during our study, an
actual measurement of the amplitude of the N400
component is missing for this case. We therefore assume
d(b, b) = 0. The resulting distance values were sub-
sequently organized in a Words × Words matrix D.
Matrix D contains, for each pairwise combination of

two words in Table 1, two responses for each participant:
one response for the case where the first word was used
as prime and the second word as target and another
response for the reversed case. Because the hierarchical
clustering algorithm operates on geometric distance,
which is symmetric and positive, the distance matrix D
should be symmetric and positive as well. This was
achieved by averaging D with its transposed form and
subtracting the lowest value:

Dsym ¼ DþD⊺

2
(6)

Dpos ¼ Dsym − minDsym (7)

The final matrix, used as input for the hierarchical cluster-
ing algorithm, was obtained by averaging the distance

matrices across participants. Because the N400 amplitude
estimates are noisy, it is beneficial to base the distance
between two clusters on as many measurements as
possible. Therefore, average linkage (also known as un-
weighted pair group method with arithmetic mean link-
age) was chosen as the clustering algorithm (Jain et al.,
1999). It determines the distance between two clusters
by considering the average distance between all items
in the clusters (Sokal & Michener, 1958). We present
the output of the clustering algorithm in the form of a
dendrogram.

Psycholinguistic Variables

We investigated the extent to which the distance metric
(Equation 5) is influenced by properties of the prime and
target words that are independent of their semantic rela-
tionship. Estimations of word frequencies on a log scale
(denoted “log freq”) were taken from the SUBTLEX-NL
project (Keuleers, Brysbaert, & New, 2010) for Dutch
words and from the French Lexicon project (Ferrand
et al., 2010) for French words. Age of acquisition (AoA)
estimates were provided by Brysbaert, Van Wijnendaele,
and De Deyne (2000) for Dutch words and Rijn et al.
(2008) for French words. Finally, the mean family-wise
error of participants performing a lexical decision task
for a word, presented in isolation, was determined in
the large-scale Dutch and French lexicon projects (Ferrand
et al., 2010; Keuleers, Diependaele, & Brysbaert, 2010).

Statistics

At each “node” in the dendrogram, where two subclus-
ters were joined to form a new cluster, a statistical test
was performed to provide an indication of the reliability
of the distinction presented by the two subclusters.
To this end, a linear mixed-effects (LME) model was
used to analyze the difference between the distance
values (Equation 5) for within-cluster word pairs versus
between-cluster word pairs. Note that this test can only
be performed if both clusters consist of at least two
words; otherwise, there are no within-cluster word pairs.
The distance values were used as the dependent variable,
with a dummy encoding of the labels “within-cluster” = 1
versus “between-cluster” = 0 as fixed effects. Because the
model needs to generalize beyond the participants in-
cluded in the study, participants were modeled as a ran-
dom effect (random slopes and random intercepts).
However, because the model does not need to general-
ize beyond the words in the clusters, words were not in-
cluded as a random effect. The model was fitted using
restricted maximum likelihood, with degrees of freedom
and the resulting p values estimated using Satterthwaite’s
approximation (Satterthwaite, 1946). To control for the
FWE rate, the p values were Bonferroni corrected by
multiplying them by the number of tests performed. When
this resulted in p > 1, we report p = 1.
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When testing the effect of a psycholinguistic variable
on the amplitude of the N400 component or the distance
metric, the fact that the values for Dutch and French
words originate from different norm studies must be
taken into account. Therefore, in these cases, the LME
model was used with both participants and language
(Dutch or French) as random effects (random slopes
and random intercepts), which means that the model will
use different regression weights for each language.

Software

Stimulus presentation was performed using MATLAB
(The MathWorks, Natick, MA) in combination with the
Psychophysics toolbox (Brainard, 1997). Data analysis
was performed using Python in combination with the
Psychic, NumPy, and SciPy packages (Oliphant, 2007).
Covariance estimation with shrinkage was performed
using the Scikit-learn package (Pedregosa et al., 2012).
Plots were created using the Matplotlib package (Hunter,
2007). Statistical analysis was performed using R (R Core
Development Team, 2015) in combination with the LME4
(Bates, Maechler, Bolker, & Walker, 2015) and lmerTest
(Kuznetsova, Brockhoff, & Christensen, 2015) packages.

Data and Code Availability

A software implementation of the N400 template estima-
tion procedures and spatiotemporal LCMV beamformer
can be found at github.com/wmvanvliet/ERP-beamformer.
The raw EEG data and the N400 template constructed
from the data collected in van Vliet et al. (2014) can be
acquired upon request from the corresponding author.
In addition, for use in future studies that employ a meth-
odology that is similar to that in the current work, a tem-
plate that is based on the data collected during the current
study is also available upon request. The processed data and
source code pertaining to the subsequent computation
of the distance matrix, hierarchical clustering, and all statis-
tics performed in this study are available at github.com/
wmvanvliet/jocn2017.

RESULTS

As expected, the button responses collected during the
experiment showed that the participants very consis-
tently marked word pairs as “related” and “unrelated”
according to a classification of animal versus furniture
item. Furniture–furniture pairs received a “related” re-
sponse 89.0% of the time; animal–animal pairs, 93.6%;
furniture–animal pairs, 1.1%; and animal–furniture pairs,
0.6%. It is likely that, after a few trials, the participants
noticed the pattern and started to perform a classification
task (do the two words belong to the same animate/
inanimate category?) instead of a judgment of association
task (are the two words associatively related?). The dis-
tance matrix, based on estimations of the amplitude of

the N400 component (Figure 2), also shows as overall
trend a dichotomy between animal versus furniture items.
Although single-item measurements can be unreliable
(e.g., CHAIR–HIPPO shows up as relatively related, which
is probably a measurement error), hierarchical clustering
can reveal the underlying patterns.
The dendrogram produced by the hierarchical cluster-

ing algorithm (Figure 3) has as the topmost two clusters
all animal stimuli versus all furniture stimuli. The fact that
these clusters could be reliably reconstructed shows that
the multivariate analysis of the EEG data yielded a mea-
surement with a high enough SNR to perform this type of
unsupervised clustering. As these clusters are themselves
divided into subclusters, the results are based on less
data and therefore less reliable. Statistical tests at each
“node” of the dendrogram are an indication of this reli-
ability and show whether there is a significant difference
in N400 amplitude between within-cluster and between-
cluster trials.
The only explicit distinction in the experimental design

was a distinction between animals and furniture items.
However, the dendrogram suggests that there may be a
dichotomy in the chosen furniture stimuli (DESK/BED/
CLOSET vs. DOOR/TABLE/CHAIR/COUCH). The cluster
containing the animal stimuli did not show any reliable
further subclustering.
Given the experimental design, it is likely that the

amplitude of the N400 component is influenced by con-
scious decision-making processes. To exclude the possi-
bility that the N400 effect solely reflects the upcoming
behavioral response, we reanalyzed the [DESK, BED,
CLOSET] versus [DOOR, TABLE, CHAIR, COUCH] sub-
clusters. These subclusters only contain furniture–furniture

Figure 2. Distance matrix based on the amplitude of the N400
component, averaged across participants. The order of the words
mirrors the order in which they appear in the dendrogram (Figure 3).
Black lines mark the boundary between the top clusters in the
dendrogram.
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pairs. A total of 672 trials (7 × 6 word pairs × 16 par-
ticipants) are available for this analysis, in which a “words
are related” button response was given 598 times and a
“words are unrelated” response was given 74 times. This
reflects the tendency of the participants to make
the relatedness judgments based on semantic category
membership. Discarding the 74 trials with an “unrelated”
response, there remained 254 “within-subcluster” pairs
and 344 “between-subcluster” pairs for which the be-
havioral response was the same. For these pairs, a sig-
nificant difference in the distance values persisted for
within- versus between-cluster word pairs, t(12.78) =
−2.65, p = .020. This suggests that the distance metric we
employ in this study is not driven solely by the behavioral
responses.
The grand-averaged ERPs, obtained by assigning the

labels “within-cluster” and “between-cluster” based on
the topmost clustering in the dendrogram, are presented
in Figure 4. Two components can be observed in the
ERP, with the first being the N400 component with a pos-
terior distribution, present during both the within- and
between-cluster conditions. The second component is
only observed in the between-cluster condition and has
a more frontal distribution, which can be possibly classi-
fied as a P600 component, commonly observed when stim-
uli are repeated (Van Strien, Hagenbeek, Stam, Rombouts,
& Barkhof, 2005).
There are many factors that influence the amplitude

of the N400 component. In our study, we are only inter-
ested in capturing effects that are due to the relation-
ship between the prime and target words. Therefore, we
wish to ensure that effects that cannot be attributed to
this relationship do not affect our results. Table 2 shows
the results of statistical tests for various psycholinguistic
variables on both the amplitude of the N400 component
and the distance metric that was derived from this ampli-
tude (Equation 5). In the experimental paradigm used by

our method, the psycholinguistic variables that were
tested only had a small effect on the amplitude of the
N400 component, none of which passed the significance
threshold. The distance metric employed in this study
corresponds to the change in amplitude of the N400 com-
ponent as the target word is presented in combination
with different prime words, relative to the mean N400
amplitude for the word. It is therefore insensitive to ef-
fects that pertain to the target word alone.

DISCUSSION

The main result is that the distinction between animals
and furniture items could be reliably extracted, based
purely on EEG responses. This could be done without
supplying any information about the nature of the clus-
ters to the algorithm (i.e., no experimental conditions,
no information about the clusters having an equal num-
ber of members), thus giving confidence that the method
can produce trustworthy results for data sets where the
optimal clustering is not known beforehand, provided
that the distance (in our case, semantic distance) between
the clusters is large enough.

It is worth noting that, although p values are provided
in the dendrogram, the clustering result goes beyond the
statistical statement that these p values make. Although
there are many possible ways to cluster the stimuli in
such a manner that there is a significant difference in
N400 amplitude between the within- and between-cluster
pairs, the dendrogram reveals, of all possible ways to ar-
range the items, the strongest hierarchical clustering (ac-
cording to the linkage metric). When this clustering
corresponds to the clustering predicted by a hypothesis
(as it does in this case) and the accompanying p value is
small, the evidence that the hypothesis is correct is much
stronger than is provided by a p value alone.

Figure 3. Dendrogram resulting from the hierarchical clustering algorithm applied to the distance matrix based on the amplitude of the N400
component. Statistical tests were performed to test for differences in N400 amplitude in response to between-(sub)cluster versus within-(sub)cluster
word pairs. Clusters that could be significantly distinguished from each other at p < .05 have been assigned different colors. The reported p values
are Bonferroni-corrected.
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We employed a semantic distance metric that is based
on the amplitude of the N400 component of the ERP,
evoked using a semantic priming paradigm. This metric
may capture different semantic relationships than earlier

work that analyzed the full spatiotemporal activity pattern
evoked by single words (Huth et al., 2016; Chan et al.,
2011; Simanova et al., 2010; Gerlach, 2007). Furthermore,
because the proposed metric does not require the user to

Figure 4. Grand-averaged ERPs in response to within-cluster (thin line) and between-cluster (thick line) word pairs, corresponding to the
topmost clusters in the dendrogram: animals versus furniture items.
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distinguish brain activity between different spatial locations,
the measurement can also be performed using techniques
that have a relatively poor spatial resolution, such as EEG.
It is likely that our method could be applicable to study

ERP components other than the N400, when the ampli-
tude of such components is affected by the relationship
between stimuli. Examples include the P300, mismatch
negativity and the N2 component, all of which have been
used to study aspects of memory (Folstein & Van Petten,
2008; Novak, Ritter, Vaughan, & Wiznitzer, 1990; Johnson
& Donchin, 1980).

Considerations Regarding the Interpretation of
the Results

The method requires the detection of differences in
N400 amplitude when a target word is presented in com-
bination with different prime words. How large these
differences need to be in order for clusters to be differ-
entiated depends on the SNR that can be achieved in
estimating the amplitudes. In this study, we employed
a spatiotemporal LCMV beamformer, which has been
shown to produce more reliable estimates of the N400
amplitude than more traditional approaches, such as
measuring the mean voltage in a fixed time window
(van Vliet et al., 2016).
Because stimuli need to be repeated to construct a full

word-to-word distance matrix, the N400 effect is degraded
somewhat because of semantic facilitation through STM
(e.g., due to the old/new effect; Rugg & Curran, 2007).
Nevertheless, our results reproduce the earlier finding
that the N400 effect persists even when the stimuli are re-
peated (Renoult & Debruille, 2011; Debruille & Renoult,
2009), as long as the target word cannot be predicted

from the prime word and an explicit task is given to the
participant (Renoult, Wang, Mortimer, & Debruille, 2012).

It is likely that there are small differences between the
N400 template and the actual N400 observed in this
study, due to the repetition of stimuli, which can cause
small shifts in the timing of the component (Renoult,
Wang, Calcagno, Prévost, & Debruille, 2012). Further-
more, the earlier study that provided the N400 template
for the current study (van Vliet et al., 2014) explores
some possible motor-related and P300 confounds when
using an explicit decision task.

The fact that good results were obtained using a tem-
plate based on an independent data set (Figure 1) pro-
vides some validation that the component reaching a
maximum around 400 msec (Figure 4) is similar to the
N400 component observed in classical priming experi-
ments. The ability of the beamformer algorithm to accu-
rately estimate N400 amplitudes depends greatly on the
accuracy of the supplied template (Treder et al., 2016;
van Vliet et al., 2016). If the component evoked in this
study would deviate too much from the template (in
either spatial distribution or timing), it would fall out-
side the passband of the filter.

Considerations Regarding the Experimental Design

In this study, our primary research question is whether
the amplitude of the N400 component could be estimated
with a high enough SNR in order for the unsupervised
clustering to produce the expected result. To this end,
the experimental paradigm was chosen to maximize the
measured N400 effect. For example, a relatively long SOA
of 500 msec was chosen, and no masking of the prime
stimulus was performed.

Table 2. Effect of Various Psycholinguistic Variables on the Amplitude of the N400 Component and the Distance Metric Derived
From This Amplitude

Worda Variableb

N400 Amplitude Distance Metric

Effect Size t Estimated df p Effect Size t Estimated df p

Prime Length 0.0169 0.280 2909.95 .779 0.0244 0.419 2839.53 .675

Log freq −0.0190 −0.437 2909.97 .662 −0.0199 −0.476 2910.00 .634

AoA −0.0155 −0.154 2363.00 .877 −0.0100 −0.103 16.11 .919

RT −0.1687 −0.266 16.00 .397 −0.130 −0.166 2.89 .879

Target Length 0.0970 1.577 19.06 .131 0.000 0.000 2909.88 1.000

Log freq −0.0130 −0.285 1.45 .811 0.000 0.000 2910.00 1.000

AoA 0.0717 0.714 2361.92 .475 0.000 0.000 2364.00 1.000

RT 0.4729 0.671 16.00 .744 0.000 0.000 14.50 1.000

Note that the psycholinguistic variables for the target word have no discernible effect on the distance metric.

aThis indicates whether the variable pertains to the first (prime) or second (target) word of the word pair.

bSee the Psycholinguistic Variables section for a description of the variables.
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Whereas the current study focuses on a well-known
animate–inanimate dichotomy to provide an initial vali-
dation of the method, further studies are needed to
explore the sensitivity of the method to more intricate
aspects of memory organization. For example, one may
attempt to disentangle the influence of conscious pro-
cesses on the N400-based distance metric. To this end,
a very short SOA may be used (Hill, Strube, Roesch-Ely,
& Weisbrod, 2002), as well as masking of the prime word
(Deacon, Hewitt, Yang, & Nagata, 2000). In addition, the
task for the participants may be modified such that they
no longer perform a conscious categorization task
while still requiring deep processing of the stimuli (e.g.,
Heyman, De Deyne, Hutchinson, & Storms, 2015), to
reduce conscious decision-making effects and confounds
of the P3 component (van Vliet et al., 2014; Roehm,
Bornkessel-Schlesewsky, Rösler, & Schlesewsky, 2007).

The construction of a full word-to-word distance matrix
of n items requires the presentation of n2 − n stimuli,
hence the number of items that can be included in the
analysis is restricted. Because the method can more reli-
ably reveal patterns in semantic relationships when there
are clearly distinguishable clusters in the stimulus set, the
items that are included should be carefully chosen.

An advantage of the distance metric we used in this
study is that the outcome is quite robust against word-
specific properties, thus possible confounding factors
such as length, frequency of usage, AoA, and so forth.
This is achieved by setting the mean across all the
prime–target pairs, where the item was used as target,
to zero (Equation 5). The remaining values only reflect
the change in the N400 response when a word is pre-
ceded by different prime words. Furthermore, because
the average linkage algorithm determines the distance be-
tween two clusters by computing the ratio between the
mean within-cluster distance and the mean distance to
every other cluster, the word pairs relevant to the com-
putation always cover the complete set of words. Specif-
ically, because the distance matrix is made symmetric,
the choice of cluster to which a word is assigned is influ-
enced by how the N400 amplitude changes when the
word is paired with all other words, regardless of whether
the word was used as a prime or target. This approach
will not eliminate all possible confounding effects, but
it leaves the experimenter with considerable freedom in
how to select the stimuli for the experiment.

In addition to answering a predefined research ques-
tion, post hoc analysis of the dendrogram may be used
as a starting point for future exploration. Of course,
proper consideration must be given to the level at which
to “cut” the dendrogram; in this study, we compute
p values for each node and cut at p < .05. In addition
to the top level clusters, we find that the dendrogram
also hints at a dichotomy among the selected furniture
stimuli. Indeed, strong semantic clusters may well exist
within this category of words, for example, based on
the room that the furniture pieces are commonly found in.

Although this study does not include enough data to
confirm such a hypothesis, the method suggests that this
line of inquiry may be fruitful.
Although the proposed method is unsupervised and

will always produce some clustering solution, a careful
experimental design is needed to ensure that the result
is interpretable. We show how measurement of the am-
plitude of the N400 component may be used to drive a
clustering algorithm. Precisely what aspects of semantic
memory are reflected in these amplitudes (e.g., Cheyette
& Plaut, 2017), and the role of the experimental design
therein (e.g., Roehm et al., 2007), is an ongoing debate
for which our proposed method may yield new insights.

Conclusion

We have demonstrated a way to employ amplitude mea-
surements of the N400 ERP component as a semantic
distance metric between words. To obtain a reliable mea-
surement, a multivariate analysis procedure based on the
LCMV beamformer was successfully employed to over-
come the low SNR of EEG signals. The resulting distance
metric allows for successful application of unsupervised
techniques, such as hierarchical clustering, on EEG prim-
ing data, to analyze how a chosen set of stimuli cluster
together.
Our results illustrate how unsupervised techniques can

be leveraged to analyze EEG data without strict adher-
ence to predefined labels. This can be particularly useful
when validating theories concerning the organization of
memory systems in the brain.
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