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ARTICLE OPEN

Quantum-enhanced magnetometry by phase estimation
algorithms with a single artificial atom
S. Danilin1, A. V. Lebedev2,3, A. Vepsäläinen1, G. B. Lesovik3,4, G. Blatter2 and G. S. Paraoanu1

Phase estimation algorithms are key protocols in quantum information processing. Besides applications in quantum computing,
they can also be employed in metrology as they allow for fast extraction of information stored in the quantum state of a system.
Here, we implement two suitably modified phase estimation procedures, the Kitaev and the semiclassical Fourier-transform
algorithms, using an artificial atom realized with a superconducting transmon circuit. We demonstrate that both algorithms yield a
flux sensitivity exceeding the classical shot-noise limit of the device, allowing one to approach the Heisenberg limit. Our experiment
paves the way for the use of superconducting qubits as metrological devices which are potentially able to outperform the best
existing flux sensors with a sensitivity enhanced by few orders of magnitude.

npj Quantum Information  (2018) 4:29 ; doi:10.1038/s41534-018-0078-y

INTRODUCTION
Phase estimation algorithms are building elements for many
important quantum algorithms,1 such as Shor’s factorization
algorithm2,3 or Lloyd’s algorithm4 for solving systems of linear
equations. At the same time, phase estimation is a natural concept
in quantum metrology,5 where one aims at evaluating an
unknown parameter λ that typically enters into the Hamiltonian
of a probe quantum system and defines its energy states En(λ). In a
standard (classical) measurement, the precision δλ is restricted by
the shot-noise limit δλ / 1=

ffiffi
t

p
, where t is the measurement time.

This, however, is not a fundamental limit: in principle, the ultimate
attainable precision scales as δλ∝ 1/t, constrained only by the
Heisenberg relation ΔE(λ) ≥ 2πℏ/t, where ΔE =maxn;m En � Emð Þ.
The Heisenberg limit can be achieved with the help of
entanglement resources, e.g., using NOON photon states in
optics.6–8 However, these states are difficult to create in general
and they typically have a short coherence time. Alternatively, one
can reach the Heisenberg limit without exploiting entanglement,
by using the coherence of the wavefunction of a single quantum
system as a dynamical resource. However, the uncontrollable
interaction of the probe with the environment limits the time
scale t where the Heisenberg scaling can be attained by the
probe’s coherence time t~T2. A further improvement then has to
make use of an alternative measurement strategy with a precision
following the standard quantum limit but with a better prefactor.
The unknown parameter λ can be estimated from the phase ϕ

= ΔE(λ)τ/ℏ accumulated by the system in the course of its
evolution during the time τ~T2. The 2π-periodicity of the phase
limits the probe’s measurement range Δλ where λ can be
unambiguously resolved within the narrow interval [δλ]H= 2πℏ/
(μT2), with μ≡ ∂ΔE/∂λ denoting the sensitivity of the probe’s
spectrum. Therefore, the improvement in the precision at larger T2
is concomitant with a proportional reduction of the measurement
range Δλ. The use of phase estimation algorithms then allows to

resolve the 2π phase uncertainty and hence break this unfavorable
trade-off between the measurement precision δλ and the
measurement range Δλ. Moreover, a metrological procedure
based on a phase estimation algorithm is Heisenberg-limited: it
attains the resolution δλ ~ [δλ]H within a large measurement range
Δλ � ½δλ�H with a Heisenberg scaling in the phase accumulation
time τ, i.e., δλ∝ ℏ/(μτ) for τ ≤ T2. At larger times τ > T2, the
measurement proceeds with independent measurements invol-
ving the optimal time delay τ= T2. Running N= t/T2 experiments
and averaging over N � 1 outcomes, one can further improve the
precision within the standard quantum limit,9

δλ / 2π�h= μT2
ffiffiffiffi
N

p� �
≡ 2π�h= μ

ffiffiffiffiffiffi
tT2

p� �
.

There are two major classes of phase estimation algorithms, one
suggested early on by Kitaev10 and a second originating from the
quantum Fourier transform.11,12 In quantum computing, the Kitaev
algorithm was run as part of Shor’s factorization algorithm13 and
the Fourier transform algorithm was used in optics to measure
frequencies.14 These algorithms are system-independent and can
be employed in a variety of experimental settings, e.g., using NV
centers in diamond for the sensitive detection of magnetic
fields.15–17

RESULTS
Here, we implement a modified version of these algorithms using
an artificial atom or qubit in the form of a superconducting
transmon circuit.18 We show that the transmon can be operated as
a dc flux magnetometer with Heisenberg-limited sensitivity. The
sensitivity is boosted by a magnetic moment that is about five
orders of magnitude larger than that of natural atoms or ions. The
idea of the experiment is to combine the extreme magnetic-field
sensitivity of superconducting quantum interference devices
(SQUIDs) with an enhanced performance brought about by
exploiting quantum coherence. The ‘quantum’ in the name of
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this device refers to the macroscopic complex wave function of
the superconducting electronic state. In the SQUID loop geometry,
the relative phase of the superconducting wavefunctions across
the Josephson junctions acquires a dependence on magnetic flux
Φ via the Aharonov–Bohm effect. However, despite its quantum
origin, in standard SQUID measurements this phase is a classical
variable. In contrast, for the SQUID loop of a transmon qubit, the
phase turns into a fully dynamical quantum observable and the
flux Φ dependence is encoded in the energy-level separation
ℏω01(Φ) between the ground state and the first excited state.
Therefore, it is possible to exploit the phase difference ϕ= [ωd−
ω01(Φ)]τ acquired during a time τ by the qubit when it is prepared
into a coherent superposition of the ground and excited energy
states and driven by an external microwave field at a frequency
ωd. Differently from their “natural” counterparts, where the
characteristics of the quantum sensor are sample independent
and defined by the atomic structure, for artificial-atom systems,
such as the transmon, we need to adapt the algorithms by
including device-specific properties in a so-called passport—a
sample specific Ramsey interference pattern obtained in advance
from characterization measurements, see Fig. 1b. Making use of
phase estimation algorithms, we demonstrate an enhanced dc-
flux sensitivity of the transmon sensor in an enlarged flux range as
compared to standard (classical) measurement schemes. Recently,
a standard measurement procedure using a flux qubit has been
used for the measurement of an ac-magnetic field signal.19

The experiment employs a superconducting circuit in a
transmon configuration, consisting of a capacitively-shunted split
Cooper-pair box coupled to a λ/4–wavelength coplanar wave-
guide (CPW) resonator realized in a 90 nm thick aluminum film
deposited on the surface of a silicon substrate, see Fig. 1 and SI 1
for an image of the sensor device. The SQUID loop of the
transmon has an area of S≃ 600 μm2, which is chosen large in
comparison with standard transmon qubit designs in order to
provide a higher sensitivity to magnetic-field changes. The
magnetic moment of this artificial atom is μ= Sℏ|dω01/dΦ|,
directly proportional to the area S and the rate of change with
flux Φ of the transition frequency ω01. For our device, we obtain
dω01/dΦ=−2π × 5.3 GHz/Φ0 at the bias point, resulting in μ=
1.10 × 105 μB, where μB is the Bohr magneton. By comparison, the
Zeeman splitting due to the magnetic moment of NV centers is
28 GHz T−1, corresponding to a magnetic moment of 2μB. The
sample is thermally anchored to the mixing chamber plate of a
dilution refrigerator and cooled down to a temperature of roughly
~20mK. The qubit has a separate flux-bias line and a microwave
gate line, the former allowing to change the qubit transition
frequency, while the latter is used for the qubit’s state
manipulation. The qubit state is determined by a nondemolition
read-out technique (see Methods and SI 1) measuring the probe
signal reflected back from the dispersively-coupled CPW resona-
tor. To increase the magnetic field sensitivity, we bias the qubit
away from the “sweet spot”, see Fig. 1a. This follows an opposite
strategy as compared to the situation where the phase estimation
algorithms are employed for quantum computing and simula-
tions; in the latter cases, the qubit sensitivity to flux noise is
maximally suppressed by tuning the device to the “sweet spot”
characterized by a vanishing first derivative of the energy with
respect to flux. Operating away from the “sweet spot” leads to a
reduction of the T2 time. The decoherence rate T�1

2 ¼
2T1ð Þ�1þT�1

ϕ is the sum of the relaxation (2T1)
−1 and dephasing

T�1
ϕ rates.20 The dephasing rate appreciably increases at our bias
point, which reduces T2 and thus the number of available steps
that can be implemented in the Kitaev and Fourier algorithms.
In the experiment, we apply a Ramsey sequence of two

consecutive π/2 pulses separated by a time delay τ, which
corresponds to an effective spin-1/2 precession around the z-axis
of the Bloch sphere. The precession angle ϕ= Δω(Φ)τ is defined

by the frequency mismatch Δω(Φ)=ωd−ω01(Φ) between the
transition frequency ω01(Φ) of the transmon qubit and the fixed
drive frequency ωd of the π/2 pulses. The Ramsey sequence drives
the transmon from its ground state into a coherent superposition
of ground and excited states with relative amplitudes determined
by the phase ϕ. The theoretical probability to find the transmon in
the first excited state is given by

P τ;ΔωðΦÞ½ � ¼ 1
2
þ 1
2
exp �τ=2T1ð ÞγðτÞcos ΔωðΦÞτ½ � (1)

and depends both on the delay time τ and on the magnetic flux Φ
through the frequency mismatch Δω(Φ). The decay function γ(τ)
accounts for qubit dephasing, typically due to charge or flux noise.
By design, the transmon artificial atom is rather insensitive to
background charge fluctuations. On the other hand, intrinsic 1/f
magnetic-flux noise couples to the SQUID loop and is known to be
a relevant source for dephasing in flux qubits;21–23 in addition,
other decoherence mechanisms can be present, see below for
details. The dephasing process can be described through an
external classical noise source, see Methods. The particular shape
of γ(τ) depends on the noise spectral density at low frequencies.
“White” noise with a constant power density results in an
exponential decay function γ(τ)= exp(−Γwnτ), while 1/f-noise
produces a Gaussian decay γ(τ)= exp[−(Γ1/fτ)

2]. We fit our
experimental curves P(τ, Δω(Φ)) by Eq. (1) using both an
exponential and a Gaussian decay, see SI 2. For our sample with
a relaxation time T1 of about 260 ns, we cannot distinguish
between these two fits, neither in the ‘sweet spot’ nor in the bias
point. Fitting the Ramsey oscillation at different fluxes one finds
Γ�1
wn � 1250 ns and Γ�1

1=f � 780 ns at the ‘sweet spot’. At the bias
point, these pure dephasing times reduce to 520 and 420 ns,
respectively. The decay rates Γwn and Γ1/f in the bias point then
can be translated into equivalent white and 1/f flux noises and we
find the spectral densities Swn= (5.9 × 10−8 Φ0)

2/Hz and S1/f(f)=
(1.9 × 10−5 Φ0)

2/f[Hz], respectively (see Methods).
The function γ(τ) determines the optimal delay time τ where the

sensitivity of the probability P(τ, Δω) to the changes in Δω and hence
to a flux is the highest. In the standard (classical) measurement
approach, a minimal delay τ ¼ τ0 � T2 sets the frequency range Δω
(Φ)∈ [0, π/τ0] where the phase ϕ and hence P(τ, Δω) can be
unambiguously resolved. This defines the range ΔΦ= π(τ0dω01/
dΦ)−1 where the magnetic flux can be resolved with a precision
scaling given by the standard quantum limit (see Methods),

δΦ½ �class¼
dω01ðΦÞ

dΦ

����
����
�1 1

τ0
ffiffiffiffiffiffiffiffiffiffiffiffi
t=Trep

p ¼ Aclassffiffi
t

p ; (2)

where t is the total measurement or sensing time of the
experiment and Trep is the time duration of a single Ramsey
measurement. A better flux sensitivity can be attained at larger
delays τ, where the probability P[τ, Δω(Φ)] is more sensitive to
changes in Δω. We obtain the best sensitivity at τ= τ* defined by
the condition (2T1)

−1− [ln γ(τ)]′= τ−1 (see Methods),

δΦ½ �quant¼
dω01ðΦÞ

dΦ

����
����
�1 e

τ�
ffiffiffiffiffiffiffiffiffiffiffiffi
t=Trep

p ¼ Aquantffiffi
t

p : (3)

The amplitudes Aclass and Aquant in Eqs. (2) and (3) quantify the
magnetic flux sensitivities. Measuring at the optimal delay τ= τ*

improves the flux resolution by a factor Aclass/Aquant= τ*/(eτ0),
which depends on the qubit’s coherence time, the latter serving as
the quantum resource in our algorithms. Another important factor
which enhances the flux sensitivity is the slope dω01/dΦ of the
transmon’s spectrum. At our working point ω01= 2π × 7.246 GHz,
we have dω01/dΦ =−2π × 5.3 GHz/Φ0. The minimal delay is given
by τ0≈31.6 ns, see SI 1. The repetition time Trep= 6.546 μs involves
the maximal time duration of the Ramsey sequence, the duration
of the probe pulse (2 μs) and the transmon’s relaxation time back
into its ground state (4 μs, which is 15 times longer than the T1
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time). Combining these numbers and setting τ*~2T1, we estimate
the theoretical value of flux sensitivity for our transmon sensor as
Aquant≃ 4 × 10−7Φ0 Hz

−1/2, see Eq. (3), providing an improvement
by a factor Aclass/Aquant ~ 6 over the classical sensitivity. Note, that
the best sensitivity is attained at Trep= τ* (i.e., for a very fast
control and readout) that gives for our sample δΦ½ �quant ≃
1:1 ´ 10�7 Φ0 Hz�1=2=

ffiffi
t

p
.

Measuring at large time delays τ~T2 leaves an uncertainty in
Δω(Φ) due to the multiple 2π-winding of the accumulated phase,
thereby squeezing the flux range ΔΦ ~ 2.5 × 10−3 Φ0 by the small
factor τ0/T2. The Kitaev and Fourier phase estimation algorithms,
avoid this phase uncertainty by measuring the probability P(τ, Δω)
at different delays τk= 2kτ0 for K � log2 T2=τ0ð Þ consecutive steps
k= 0, …, K− 1. As a result, such a metrological procedure is able
to resolve the magnetic flux with the quantum limited resolution

[δΦ]quant, see Eq. (3), within the original flux range ΔΦ set by the
duration ~ τ0 of the control rf-pulses. The operation of the Kitaev
and Fourier metrological procedures can be viewed as a
successive determination of the binary digits of the index
n ¼ bK�1 ¼ b0½ �≡PK�1

k¼0 bk 2
k in the so-called quantum abacus.24

The Kitaev algorithm starts from a minimal delay τ= τ0 and
determines the most significant bit bK−1 in its first step, further
proceeding with the less significant bits bK−2, …, b0. The Fourier
algorithm works backwards:25 it starts from the maximal delay τ ~
T2 and first determines the least significant bit b0, then gradually
learns more and more significant bits b1, b2, …, bK−1.

Modified Kitaev and Fourier metrological algorithms
In the present work, we use modified versions of the phase
estimation protocols, which take into account the nonidealities

20 mK
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Fig. 1 Experimental layout. The schematic shows a transmon qubit (in blue) comprised of a capacitor and a SQUID loop with two nearly
identical junctions. The qubit charging and total Josephson energies are EC= 299MHz and EJΣ= 26.2 GHz. The qubit is coupled via a gate
capacitor Cg to a coplanar waveguide resonator (CPW, in green) with a resonance frequency ωr around 2π × 5.12 GHz. The magnetic flux Φ
through the transmon’s SQUID loop is controlled by a dc-current flowing through a flux-bias line (in red). An arbitrary waveform generator
(AWG) and a microwave analog signal generator are employed to create a Ramsey sequence of two π/2 microwave pulses at a carrier
frequency ωd= 2π × 7.246 GHz separated by a time delay τ. The sequence drives the transmon into a superposition of ground and excited
states where the state amplitudes depend on the accumulated phase ϕ= [ωd−ω01(Φ)]τ. The qubit state is read out nondestructively using a
probe pulse sent to the CPW resonator; the reflected signal is downconverted (not shown in the figure), digitized, and analyzed by a
computer. Next, the computer updates a flux distribution function PðΦÞ stored in its memory, determines the next optimal Ramsey delay
time, and feeds it back into the AWG. a Qubit transition frequency ω01(Φ) as a function of magnetic flux Φ (parabolic curve). The bottom inset
shows the CPW resonator’s spectrum. The red circles indicate the bias point of our transmon sensor: we operate far away from the ‘sweet spot’
in a regime where the transmon’s frequency ω01(Φ) is an approximately linear function of the flux Φ within the entire flux range ΔΦ. For the
fluxes around the point considered here, the frequency ωr of the readout CPW resonator remains approximately constant. b A pre-measured
sample-specific Ramsey interference fringes pattern defines the “passport” function of our sensor. This can be regarded as a non-normalized
probability function Pp(τ, Φ) to observe the qubit in the excited state after a Ramsey sequence with a delay τ for a specific value of the
magnetic flux Φ. The largest flux value used to obtain the Ramsey interference fringes pattern Φ= 0.1394 Φ0 corresponds to a frequency
detuning Δω= ωd−ω01(Φ)= 2π × 15.8 MHz between the drive and the qubit transition frequencies. The flux range of the “passport” ΔΦ~2.5 ×
10−3 Φ0 corresponds to a range 2π × 13.8 MHz in frequency detuning
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present in actual experiments. For brevity, we will still refer to
these protocols as the Kitaev and Fourier phase estimation
algorithms. We demonstrate the superiority of these algorithms
over the standard technique and show that we can beat the
standard quantum limit. Instead of relying on the ideal theoretical
probability function P[τ, Δω(Φ)] of Eq. (1) these modified Kitaev
and Fourier protocols exploit the empirical probability Pp(τ, Φ), the
so-called passport, which we measure by a set of Ramsey
sequences at various magnetic fluxes Φ, representing the result
on a discrete equidistant grid in the form Pp(τj,Φi), see Fig. 1b.
Here, Φi= (i− 1)[δΦ]step+Φ1 with the index i chosen from the
flux-index set I0= [1, 161] [δΦ]step≃ 1.59 × 10−5 Φ0, Φ1≃ 0.137 Φ0,
and discrete time delays τj= (j− 1) × 2 ns, j= 1, … 241 quantify-
ing the time separation between the two π/2 rf-pulses of the
Ramsey sequence. In order to increase the signal-to-noise ratio, we
average over 65000 Ramsey experiments at each discrete point (τj,
Φi). The resulting pattern is only approximately described by Eq.
(1) due to the fact that the resonator frequency changes slightly
with the applied flux, thus modifying our calibration (see Methods
and SI 2). In principle, one can change the working point to an
even more sensitive part of the spectrum at the price of a further
distortion of this pattern.
Using the qubit passport Pp(τj, Φi), one can pose the following

metrological question: given an unknown flux Φ within some pre-
chosen range, how can one estimate its value using a minimal
number of Ramsey measurements? We design two metrological
algorithms where the time delay τ of the Ramsey sequence serves as
an adaptive parameter whose value is dynamically adjusted. In the
course of operation, both our algorithms return a discrete
probability distribution P(Φi), i∈ I0, which reflects our current
knowledge about the flux Φ to be measured. This probability
distribution is improved in subsequent steps and shrinks to a narrow
interval around the actual flux-value when running the algorithm.

Bayesian learning
The elementary building block for both our metrological algorithms
is a Bayesian learning subroutine which updates the discrete flux
distribution P(Φi) after each Ramsey measurement of the qubit
state. This subroutine takes the time delay τj between π/2 pulses as
an input parameter and performs a sequence of N= 32 Ramsey
measurements. Our readout scheme returns a measured variable hN
which, at N � 1, is equal to the empirical passport probability Pp(τj,
Φi). At small values N, the readout variable hN is a normally
distributed random variable with a mean value given by Pp(τj, Φi),

p hNjτj;Φi
� � ¼ 1ffiffiffiffiffiffi

2π
p

σN
exp � hN � Pp τj;Φi

� �� �2
2σ2N

" #
; (4)

where the variance σ2
N ¼ σ2

1=N can be directly measured, σ2
1 � 3:5

(see SI 1 for further explanations on the readout variable hN). Next,
the algorithm makes use of the measurement outcomes hN and
updates the flux probability distribution with the help of Bayes’
rule, P Φið Þ→ p hNjτj;Φi

� �P Φið Þ/Pi p hNjτj;Φi
� �P Φið Þ.

Kitaev algorithm
The Kitaev-type metrological algorithm has been introduced
earlier in ref.26. The algorithm involves K steps k= 0, …, K− 1
with optimized Ramsey times τk, tolerances ϵk , and flux index sets
Ik; below, N (I) denotes the size of a discrete set I. It is initialized
with a uniform discrete distribution P0(Φi) which reflects our prior
ignorance of the flux to be measured. In the first step k= 0, the
algorithm repeats the Bayesian learning subroutine at a zero time
delay τ(0)= 0 between π/2 pulses until the probability distribution
shrinks to a twice narrower interval I1⊂ I0, i.e., N (I1)=N (I0)/2,
satisfying

P
i2I1 P0 Φið Þ 	 1� ϵ0. The flux values Φi, i∉ I1 are

discarded. After completing the first step, the algorithm searches
for the optimal delay τj for the next step. The next optimal Ramsey

measurement requires a larger delay τ(1) > 0 such that the passport
Pp(τ

(1), Φi), i∈ I1, has the largest range: τð1Þ ¼ argmaxτj ΔP τj
� �

where ΔP(τj)=maxi2I1Pp τj;Φi
� �

−mini2I1Pp τj;Φi
� �

. The algorithm
thus sweeps over the passport data Pp(τj, Φi) to find the optimal
delay τ(1) with maximal range ΔP(τ(1)). Subsequently, a new
distribution P1 Φi2I1ð Þ=N�1 I1ð Þ and P1 Φi=2I1

� � ¼ 0 is initialized
and the algorithm proceeds to the next step by running the
Bayesian learning with the new optimal delay τ1. After K steps, the
algorithm localizes Φ within a 2K times narrower interval IK, N (IK)
=N (I0)/2

K, with an error probability ϵ ¼ 1�QK�1
k¼0 1� ϵkð Þ.

Quantum Fourier algorithm
This algorithm starts from the Ramsey measurement with an
optimal time delay τ(s)~T2. The starting delay τ(s) is a free input
parameter of the algorithm. Similarly to the Kitaev algorithm, the
quantum Fourier algorithm runs the Bayesian learning subroutine
until the flux probability distribution P0(Φi), i∈ I0, squeezes to a
twice narrower subset S1⊂ I0 such that

P
i2S1 P0 Φið Þ 	 1� ϵ0.

However, in contrast to the Kitaev algorithm, the passport
function Pp(τ

(s), Φi) is an ambiguous function of Φi at the large
delay τ(s). As a result, S1 is not a single interval but rather a set of n
~ τ(s)/τ0 disjoint narrow intervals S1= I1 ∪… ∪ In of almost equal
lengths, see Fig. 2. Hence, after completing the first step, the flux
value is distributed among n equiprobable alternatives Ii. The
Fourier algorithm discriminates between these n alternatives in
the next steps. First, it searches for the next optimal delay τj, where
it is possible to rule out half of the remaining alternatives in the
most efficient way. At each delay τj the algorithm splits the
remaining intervals Ii, i= 1, …, n into two approximately equal-in-
size groups A ¼ Ii1 ∪ ¼ ∪ Ii½n=2� and B ¼ Ii½n=2�þ1

∪ ¼ ∪ Iin which are
ordered by the passport function, Pp(τj, Φ∈ A) > Pp(τj, Φ∈ B). Then
it finds the probability distance ΔP(τj)=mini2APp τj;Φi

� �
−

maxi2BPp τj;Φi
� �

>0 separating the two sets A and B. Repeating
this procedure at all available delays τj, the algorithm finds the
optimal delay τ(1) with maximal ΔP(τj) over the discrete set of
delays τj. In the next step, the algorithm discriminates between A
and B by repeating the Bayesian learning subroutine approxi-
mately [ΔP(τ(1))]−2 times and sets S2= A or B. Continuing in this
way, the algorithm returns a single interval Iout where the actual
value of the flux Φ(Φi), i∈ Iout, is located. Figure 2 shows how the
flux distribution function P(Φi) develops in time during the
execution of the Kitaev and Fourier algorithms.

Results
The superiority of our quantum metrological algorithms is clearly
demonstrated by the scaling behavior of the magnetic flux
resolution with the total sensing time of the flux measurement, see
Fig. 3. We run each algorithm n= 25 times at every flux value Φ=
Φi, i∈ I0, within the entire flux range, and find the corresponding
arrays of estimated values Φ̂ji , j= 1, …, n. The estimate Φ̂ ¼
Φ̂ðPðΦÞÞ is defined as the most likely value derived from the
observed probability distribution P(Φ). For a probability distribu-
tion P i(Φ) measured at a known flux value Φ=Φi the
corresponding estimate Φ̂ji is a random quantity due to statistical
nature of the measurement procedure. We define an aggregated
resolution δΦ as an ensemble standard deviation of the random
variables Φ̂ji � Φi ,

δΦ2 ¼ 1
N I0ð Þ

X
i2I0

1
n� 1

Xn
j¼1

Φ̂ji � Φi

h i2
: (5)

In case of the Fourier algorithm, such a definition is meaningful
only at the final step of the algorithm where P(Φ) becomes a
single-peaked function. The sensing time t is defined through the
total number of calls of the Bayesian learning subroutine m, t=
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NTrep m. The scaling behavior of the measured flux resolution δΦ
(t) with sensing time t is shown in Fig. 3 for both our algorithms
and is compared with the scaling δΦstd(t) of the standard
(classical) procedure, where all Ramsey measurements are done
at a zero delay τ= 0.
Both quantum algorithms clearly outperform the standard

procedure, with the Kitaev algorithm appearing slightly more
efficient than the Fourier one. We explain this by the fact that the
Fourier algorithm strongly relies on the periodicity of the Ramsey
interference pattern given by Eq. (1), whereas our readout scheme
produces a slightly distorted pattern. On the other hand, the
Kitaev algorithm turns out to be more stable to the irregularities in
the measured passport function Pp(τ, Φ). The magnetic flux
sensitivities Aquant range within 5.6–7.1 × 10−6Φ0 Hz

−1/2 for the
Kitaev algorithm and within 6.5–8.5 × 10−6Φ0 Hz

−1/2 for the
Fourier procedure. These sensitivites are an order of magnitude
worse than the theoretical bound 4.0 × 10−7Φ0 Hz

−1/2 set by Eq.
(3). The discrepancy has two main reasons. First, our readout
scheme is not a single-shot measurement, which leads to a factor
32 increase of the Trep time. Second, we spend part of the time
resource for the intermediate steps with τk ≤ T2 during the run of
the phase estimation procedure. Finally, for our transmon, the
SQUID area S≃ 20 × 30 μm2 results in a magnetic filed sensitivity
in the range 19.3–29.3 pT Hz−1/2.
Decoherence processes define the most important factor

limiting the sensitivity of our device. E.g., the intrinsic 1/f flux
noise22,23 caused by magnetic impurities constitutes a relevant

source of decoherence. At short times 0 < τ < 2T1, τ the duration of
a single Ramsey sequence, the presence of 1/f noise can be
accounted for by a finite coherence time Tϕ of the qubit. Assuming
that dephasing originates exclusively from intrinsic flux noise
results in an upper limit S1/f(f)= (1.9 × 10−5Φ0)

2/f[Hz] for the noise
spectral function. At much larger time scales, as defined by the
entire duration t of the Kitaev or Fourier procedure, 1/f noise
causes low-frequency flux fluctuations δΦ2� � � R 1=τ�

1=t S1=f ðf Þdf . As
follows from Fig. 3, the 5-step Kitaev procedure takes ≈0.05 s,
which provides a value δΦ2� �

~(6.4 × 10−5Φ0)
2 for the flux

fluctuations, about twice larger than the actually achieved flux
resolution δΦ~3 × 10−5Φ0. This suggests that 1/f flux noise has a
smaller weight and another, non-magnetic decoherence mechan-
ism is present in our device. One of the potential candidates
derives from electron tunneling at defects inside the dielectric
layer of the qubit’s Josephson junctions. These fluctuating charges
produce 1/f noise in the critical current and hence affect the
transition frequency of the transmon atom.27 The 1/f flux noise
may become more pronounced at a larger size L of the transmon’s
SQUID loop as the flux-noise spectral density grows linearly with
the loop size.23 Consequently, the flux resolution [δΦ] degrades
/ ffiffiffi

L
p

when increasing the loop size, while the corresponding
magnetic field resolution [δB]∝ [δΦ]/L2 still improves as L growths,
see Methods.
Interestingly, the non-ideality of the qubit’s passport strongly

affects the performance of the standard procedure as well. Its
scaling behavior δΦstd ∝ t−α exhibits a crossover in the scaling
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Fig. 2 Evolution of the flux probability distribution Pk (Φi−Φ), during the run of the first k= 1,…, 4 steps of the Fourier (red panels) and Kitaev
(blue curves) estimation algorithms. The magnetic flux is measured with respect to a reference flux (as explained in the Methods). The actual
flux value is shown by a thick black line in the flux-step plane. The Kitaev algorithm starts at a zero delay τ= 0 and a first step returns a broad
probability distribution with a single peak centered near the actual flux value. During the run of the Kitaev algorithm this peak narrows down.
The Fourier algorithm starts from the Ramsey measurement at large delay τ(s)= 360 ns, with the first step returning a probability distribution
with six out of twelve flux intervals assuming a non-vanishing value. Hence, this first step selects half of the n= τ(s)/τ0~12 different flux
intervals ΔΦm given by Δωm=Δω0+ 2πi/τs, m= 0, …, n−1, where Δωm≡ ω01(ΔΦm)− ωd is the frequency interval corresponding to the flux
interval ΔΦm, and determines the parity of the yet unknown index m∈ [0, n− 1] associated with the true flux interval. In the second step, the
Fourier algorithm proceeds to a shorter delay and rules out another half of the remaining six intervals. In the next two steps the algorithm
discriminates between the remaining three alternatives and ends up with the correct flux interval. The green line at the fourth step displays
the probability distribution learned by the standard (classical) procedure during the same number of Ramsey measurements as was required
by the quantum procedures. The distributions obtained at the step number 4 for the Kitaev and Fourier estimation algorithms and in the
standard (classical) measurement are shown in the inset
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exponent α, assuming a value α ≈ 0.39 at short sensing times,
while at large times α decreases to a much smaller value ≈0.046.
The scaling exponent 0.39 deviates from the shot noise exponent
1/2 due to the cases when the actual flux value is located near the
boundaries of the flux interval Φ∈ [Φ1, Φ161], where the passport
function Pp(0, Φ) has an extremum and the scaling exponent for
the standard procedure is reduced to 1/4, δΦ(t)∝ t−1/4. As a result,
the aggregated scaling exponent of Eq. (5) is reduced below 1/2.
On the other hand, the crossover to α ≈ 0.046 is a consequence of
the irregularity of the passport function set by low-frequency
noise fluctuations during the passport measurement. Indeed, at
large sensing times, the standard procedure needs to distinguish
fluxes within a narrow interval where the passport function Pp(τ=
0, Φ) has a non-regular and non-monotonic dependence on Φ. As
a result, the Bayesian learning procedure fails to converge to a
correct flux value. In contrast, at a larger scale of Φ, the passport
function is smooth and monotonic and the standard procedure
behaves properly. These arguments are indeed confirmed by a
numerical simulation with a regular passport function given by Eq.
(1). Importantly, both our quantum metrological algorithms are
more stable than the standard procedure with respect to passport
imperfections and their scaling behavior at large sensing times
coincides with the scaling behavior resulting from a regular
passport function. The quantum algorithms suffer, however, from
the same irregularity problem at larger sensing times, not shown
in Fig. 3.
Finally, we discuss how our metrological algorithms use the

quantum resource of qubit coherence in order to acquire
information about the measured flux. We quantify the quantum
coherence resource spent in a given measurement by the total
phase accumulation time τϕ ¼ N

P
k τkmk , where mk is the

number of calls for the Bayesian learning subroutine with delay

τk. The amount of information ΔI acquired during the measure-
ment is given by a decrease of the Shannon entropy ΔI= H(P0)−
H(P), where P0(Φi) and P(Φi) are the initial and final probability
distributions and H(P)=�P

i P Φið Þlog2 P Φið Þð Þ. The scaling
behavior ΔI τϕ

� � / ταϕ separates the classical domain with 0 < α ≤
0.5 from the quantum domain with 0.5 < α ≤ 1, where α= 1
corresponds to the ultimate Heisenberg limit. Indeed, in the ideal
case where no relaxation and decoherence phenomena are
present, the quantum algorithms double the flux resolution
(squeeze the flux distribution function into a twice narrower
range) for each next step of the procedure. This means that the
associated Shannon entropy decreases by ln(2) and one learns
one bit of information for each doubling of the Ramsey delay time.
In contrast, the classical procedure with N � 1 repetitions results
in a Gaussian probability distribution of the measured quantity
where the precision scales as δΦ / 1=

ffiffiffiffi
N

p
. Hence the associated

Shannon entropy scales as τ0.5 with an invested total phase
accumulation time τ= Nτ0. We run each quantum algorithm 25
times for every flux value and average over the obtained
information gains and phase times. The resulting scaling
dependence is shown in Fig. 4 and demonstrates that both Kitaev
and Fourier algorithms indeed belong to the quantum domain
with a scaling exponent within [0.624, 0.654] (95% confidence
interval). The scaling exponent is still below the Heisenberg limit,
which is a consequence of the finite dephasing time T2: at large
time delays τ ~ T2 the visibility of the Ramsey interference pattern
decreases, requiring more Ramsey measurements in order to learn
the next bit of information.
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Fig. 4 Information (in bits) inferred by the Kitaev (circles) and
Fourier (filled diamonds) algorithms as a function of the total phase
accumulation time. The Kitaev algorithm was run for five different
tolerance level constants ε at each step (indicated by color). The
color of diamonds indicates the different starting time of the Fourier
algorithm. The dashed red and blue lines refer to the Heisenberg
and shot-noise scaling laws with the corresponding scaling
exponents 1 and 1/2. The thin solid lines show the numerical
simulation for the 6-step Kitaev algorithm with an idealized passport
function given by Eq. (1) at different dephasing times T2 ranging
from 10 μs (red line) to 340 ns (blue line). One can clearly see that at
large dephasing times the Kitaev procedure approaches the
Heisenberg limit, while at smaller T2 the scaling exponent decreases
to the standard quantum limit 0.5. The observed experimental
scaling behavior shows that both Fourier and Kitaev algorithm are
indeed quantum with a scaling exponent above the standard
quantum limit 1/2, see the dash-dotted cyan line connecting the
Kitaev (at 0.2% tolerance) data

Fig. 3 Observed scaling behavior of the flux resolution versus total
sensing time for the three different metrological procedures, Kitaev
(colored circles), Fourier (black diamonds) and standard (red
crosses). The Kitaev algortihm has been run with constant tolerances
ϵk = ϵ for each step k= 1, …, 5 and for five different values of ϵ as
indicated by different colors. The Fourier algorithm has been
performed with the step-dependent tolerances ϵk = 0.182, 0.076,
0.039, 0.02, 0.01 for k= 1, …, 5. We show the result of the Fourier
algorithm only for the final two steps, k= 4 (filled diamonds) and k
= 5 (empty diamonds), running the algorithm with four different
starting delays, τ(s)= 300, 320, 340, and 360 ns (all collapsed to the
same data points). The phase estimation algorithms lag behind in
precision at short times when compared to the standard procedure,
but rapidly gain precision at longer times. The black solid line
represents the scaling law for a numerical simulation of the standard
procedure with a regular passport function given by Eq. (1). The
crossover to the red solid line is due to the irregularity of the
passport function
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DISCUSSION
We have used a single transmon qubit as a magnetic-flux sensor
and have implemented two quantum metrological algorithms in
order to push the measurement sensitivity beyond the standard
shot-noise limit. In our experiments, we utilize the coherent
dynamics of the qubit as a quantum resource. We demonstrate
experimentally, on the same sensor sample, that suitably modified
Kitaev and Fourier algorithms both outperform the classical shot-
noise-limited measurement procedure and approach the Heisen-
berg limit. Both algorithms exhibit a similar asymptotic flux-
sensitivity AΦ ~ 6 × 10−6Φ0 Hz

−1/2 or magnetic-field sensitivity AB
~ 20.7 pT Hz−1/2 within a dynamical range ΔΦ=AΦ � 417

ffiffiffiffiffiffi
Hz

p
at a

coherence time T2~260 ns of the qubit.
Finally, we can compare the characteristics of our qubit sensor

with other magnetometers. dc-SQUID sensors typically feature a
1 μΦ0 Hz

−1/2 sensitivity and a much larger dynamical range
� 106

ffiffiffiffiffiffi
Hz

p
, see ref.27. However, conventional dc-SQUIDs are

operated with a current bias close to critical, which limits their
sensitivity to 10−8–10−6Φ0 Hz

−1/2, see refs.27–29, due to intrinsic
thermal noise fluctuations of excited quasi-particles. Atomic
magnetometers30 can approach a magnetic field sensitivity
~0.1–1.0 fT Hz−1/2. However, these magnetometers measure the
field in a finite macroscopic volume ~1 cm3 and their sensitivity
translated to the (100 μm)3 volume range of a transmon sensor
reduces to 0.1–1.0 pT Hz−1/2, with a dynamical range ~104–105ffiffiffiffiffiffi
Hz

p
compatible with dc-SQUID sensors. NV centers in diamond

are able to resolve magnetic fields with atomic spatial resolution
and approach sensitivities ~ 6.1 nT Hz−1/2. Phase estimation algo-
rithms allow one to enlarge the dynamical range of NV-sensors15–17

up to 3 × 105 Hz1/2. With magnetic-field sensors based on super-
conducting qubits there is a lot of potential for improvements in
dynamic range and sensitivity. In contrast to dc-SQUIDs, such
sensors are not prone to thermal noise fluctuations. Their
sensitivity is limited only by their coherence time and the duration
of the readout procedure. With a coherence time of T2~5 μs and
very fast control and readout Trep ’ τ� ’ T2

� �
, one can potentially

access a sensitivity of Aquant≃ 4 × 10−8Φ0 Hz
−1/2 and a dynamical

range of ΔΦ/Aquant ≃ 6.3 × 104
ffiffiffiffiffiffi
Hz

p
. Moreover, making use of the

higher excitation levels in a transmon atom, one can increase the
sensitivity even further.31

METHODS
The superconducting artificial atom
The transmon18 is a capacitively-shunted split Cooper-pair box, with a
Hamiltonian

H ¼ 4ECn
2 � EJðΦÞcosðφÞ; (6)

where EC is the charging energy EC= e2/2CΣ with CΣ the total capacitance
(dominated by the shunting capacitor). The SQUID loop in the transmon
design provides a flux-dependent effective Josephson energy EJ(Φ)= EJΣ|
cos(πΦ/Φ0)| (assuming identical junctions). The state of the device is
described by a wavefunction which treats the superconducting relative
phase across junctions φ as a quantum variable similar to a standard
coordinate. In contrast to standard SQUID measurements, the flux
dependence is reflected in the quantized energy levels; for the first
transition this reads

�hω01 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ECEJðΦÞ

p
� EC: (7)

The readout of the qubit state is realized by a dispersive coupling of the
transmon to a CPW resonator whose resonance frequency depends on the
transmon state. This allows us to perform a non-demolition measurement
of the qubit state by sending a probe pulse to the CPW right after the
second π/2-pulse and collecting the resulting resonator response signal
whose shape in time depends on the qubit state, see SI 1.

Dephasing mechanisms
The dephasing of the qubit can be modeled via an interaction of the qubit
with an external classical noise source ν(t). The qubit state acquires a
stochastic relative phase δϕ ¼ R

dtνðtÞ∂ω01=∂ν. Then the decay function
γðτÞ 
 eiδϕ

� �
can be expressed via a noise spectral density function Sν(ω)

=
R
dtdt0 νðtÞνðt0Þh ih ieiω t�t0ð Þ as γ(τ)= exp � 1

2 ð∂ω01=∂νÞ2
h

R
dω
2π SνðωÞsin2ðωτ=2Þ=ðω=2Þ2

i
, see ref.32. A white noise source with a

constant spectral density Sν= Swn at low frequencies gives an exponential
decay function γ(τ)= exp(−Γwnτ) with Γwn = 1

2 Swn ∂ω01=∂νð Þ2. A 1/f-noise
Sν(ω)= S1/f/|ω| gives a Gaussian decay γ(τ)= exp[−(Γ1/fτ)

2] with Γ1=f ~ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S1=f ln ωcτð Þj j=ð2πÞp

∂ω01=∂νj j, where τ~2T1 and ωc~1s
−1 is a low

frequency cut-off. One can estimate the corresponding decay rates Γwn
= (520 ns)−1 and Γ1/f= (420 ns)−1, from the free-induction decay of the
qubit state at the working point of the qubit spectrum, see SI 2. If we
assume that the main dephasing mechanism is due to the intrinsic
magnetic flux noise of the SQUID loop ν(t)= δΦ(t), one can translate these
rates into the corresponding noise spectral densities, Swn ≈ (5.9 × 10−8

Φ0)
2/Hz and S1/f(f) ≈ (1.9 × 10−5Φ0)

2/f[Hz], where we have used a value
dω01/dΦ ≈−2π × 5.3 GHz/Φ0 obtained from the characterization measure-
ment of the qubit spectrum.

Quantum and classical magnetic flux sensitivities
After N Ramsey experiments at a fixed delay τ, the probability of the
excited state P(τ, Δω) can be estimated as N1/N, where N1 is the number of
outcomes where an excited state was detected. The accuracy δP2=

Pðτ;ΔωÞ � N1=Nð Þ2
D E

of this estimate is given by a binomial statistics, δP2

= N1(N− N1)/N
3 ≤ 1/(4N). From the equation P(τ, Δω)= N1/N, one can find

the frequency mismatch Δω. The corresponding accuracy δ[Δω] can be

found from the relation δP= ∂P τ;Δωð Þ
∂Δω

��� ���δ Δω½ �, hence δ[Δω]= ∂Pðτ;ΔωÞ
∂Δω

��� ����1
1

2
ffiffiffi
N

p .

From Eq. (1), it follows that minΔω
∂Pðτ;ΔωÞ
∂Δω

��� ����1
� 	

= 2 τγðτÞ½ ��1eτ=2T1 . Combin-

ing all factors, one arrives at the flux resolution

½δΦ� ¼ dω01ðΦÞ
dΦ

����
����
�1

δ ΔωðΦÞ½ � ¼ dω01ðΦÞ
dΦ

����
����
�1 eτ=2T1

τγðτÞ ffiffiffiffi
N

p : (8)

The standard (classical) measurement is done at a minimal effective
delay τ ¼ τ0 � T2. Assuming that each Ramsey experiment takes a time
Trep, the flux resolution of the standard scheme is given by Eq. (2) where t
= NTrep. In a quantum limited measurement, one optimizes the time delay
τ. Minimizing the time factor ½τγðτÞ��1eτ=2T1 in Eq. (8), one finds the optimal
time delay τ* from an equation (2T1)

−1−(ln[γ(τ)])′= τ−1. Considering the 1/f
flux noise dephasing model (see Methods: Dephasing mechanisms) with γ
(τ)= exp[−(Γ1/fτ)

2], we obtain

τ� ¼ 1
4
Γ�1
1=f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8þ 2T1Γ1=f

� ��2
q

� 2T1Γ1=f
� ��1

� 	
: (9)

As suggested in ref.23 the 1/f flux-noise originates from spin flips of
magnetic impurities located nearby the SQUID loop. The noise strength
then increases linearly with the loop size L giving Γ1=f /

ffiffiffi
L

p
. Hence at large

L one has τ� → Γ�1
1=f=

ffiffiffi
2

p / 1=
ffiffiffi
L

p
, which degrades the attainable flux

resolution [δΦ]∝ 1/τ*. The corresponding magnetic field resolution [δB]=
[δΦ]/L2∝ L−3/2 still improves with increasing loop size.

Voltage-to-flux conversion
The magnetic flux threading the transmon SQUID loop is generated by a
dc-current flowing through the flux-bias line located nearby the SQUID
loop with the current controlled by a dc-voltage V∈ [0.977, 1.009] V
generated with an Agilent 33500B waveform generator (see SI 2). As a
result, our device can also be operated as a sensitive voltmeter. The
conversion from voltage values to the non-integer part of the normalized
flux (Φ/Φ0− n), where n is an integer number, is obtained from
spectroscopic measurements (Fig. 1a), and has the form

ΦðVÞ
Φ0

� n

� 	
¼ V

V0
þ Φtr

Φ0
: (10)

Here, V0 is the periodicity (in volts) of the CPW resonator and qubit spectra,
which corresponds to the magnetic flux change by one flux quantum, and
Φtr is the residual flux trapped in the SQUID loop. Measuring the CPW
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resonator spectrum periodicity (see Fig. 1a inset), one finds V0= (12.55 ±
0.05) volts, and the trapped flux value can be found from the position of
the qubit spectrum maximum ω01[Φ(V)] (Fig. 1a), which gives Φtr/Φ0=
0.059 ± 0.004. Hence, our qubit based magnetic flux sensor measures a flux
change relative to some reference value.

Data availability
The data that support the findings of this study are available from the
corresponding author upon reasonable request.
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