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Abstract—This paper deals with state-feedback current control
for power converters, which are equipped with an LCL filter
and connected to a weak grid. The grid-side current is measured
and other states needed by the current controller are estimated
using a reduced-order observer. The control system is designed
directly in the discrete-time domain. The gains of the control
system are calculated using direct pole placement, assuming a
strong grid. Recommendations for the nominal pole locations are
given. The results show that the control system is robust against
the unknown grid impedance, ranging from strong to very-weak
grid conditions. The proposed design is validated by means of
experiments.

Index Terms—Grid converter, LCL filter, reduced-order ob-
server, state-feedback current control, weak grid.

I. INTRODUCTION

Grid converters are typically used to interface distributed
and renewable energy sources with the AC grid. Long trans-
mission lines increase the grid impedance seen from the point
of common coupling (PCC). The large and unknown grid
impedance may lead to unstable operation of a converter [1]–
[4]. The grid impedance is related to the short-circuit ratio
(SCR), which is the ratio of the short-circuit capacity of the
AC system to the rated DC power [5]. The grid is categorized
as weak if SCR < 3.

In order to connect a converter to the grid, an LCL filter is a
preferred option to attenuate the switching harmonics because
of its compact size [6], [7]. However, the LCL filter presents
a resonant behavior that needs to be damped. The resonance
of the LCL filter can be damped passively by introducing
additional passive elements [8] or actively using control [6],
[9], [10]. Active damping of the resonance is preferred since
it makes the system more efficient than passive damping.
However, the active damping of the LCL-filter resonance
becomes more difficult due to the large grid impedance [10],
[11].

The state-feedback current control provides a convenient
and straightforward way for active resonance damping and
for setting the desired dominant dynamics [6], [7], [12]–
[15]. Using direct pole placement, the controller gains can
be expressed analytically using the system parameters and
the desired (nominal) pole locations, cf. [7], [13]. However,
the actual poles of the system depend on the unknown grid
impedance, which may degrade the dynamic performance and
even cause the instability.

For the full-state feedback, all the states must be measured
or estimated using an observer. The observer reduces the
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Fig. 1. Space-vector circuit model of an LCL filter and a grid in stationary
coordinates (vectors marked with the superscript s).

number of sensors, increases reliability, and decreases the costs
in comparison with the methods in [7], [16]. The observer
could be of full order [13], [17] or of reduced order [15],
[18]. The reduced-order observer provides better disturbance
rejection, but it is more sensitive to noise than the full-order
observer [18].

The continuous-time design decreases the pole-placement
accuracy with low sampling (switching) frequencies. The re-
alized dynamics can be much worse than the desired dynamics,
cf. [13]. The direct discrete-time design makes it possible
to choose the sampling frequency more freely [13], [14]. In
addition, the intrinsic delays of the digital implementation
and pulse-width modulator (PWM) can be easily taken into
account in the direct discrete-time design, giving superior
performance as compared to the continuous-time design [13],
[14].

This work deals with control of grid-connected converters
equipped with an LCL filter, taking into account the weak-
grid conditions. A state-feedback current controller is designed
directly in the discrete-time domain. The grid-side current is
measured and other states are estimated using a reduced-order
observer. The design rules for robust operation against grid in-
ductance variations are given. It is shown that stable operation
from strong-grid conditions to very weak-grid conditions can
be achieved without changing the tuning of the control system.
The proposed design is experimentally evaluated using a 12.5-
kVA grid converter.

II. SYSTEM MODEL

A. Continuous-Time Model

Fig. 1 shows an equivalent circuit of an LCL filter connected
to an inductive grid. The converter voltage is denoted by uc,
the voltage across the capacitor by uf , the PCC voltage by
ug, and the grid voltage by eg. The converter-side current is
denoted by ic and the grid-side current by ig. The LCL filter
parameters are: converter-side inductance Lfc; capacitance Cf ;



TABLE I
PARAMETERS OF A 12.5-KVA CONVERTER SYSTEM

Parameter Value Value (p.u.)

LCL filter
Capacitance Cf 8.8 µF 0.036
Converter-side inductance Lfc 3.3 mH 0.081
Grid-side inductance Lfg 3.0 mH 0.074

Grid
Inductance Lg (strong grid) 0 0
Inductance Lg (very weak grid) 37 mH 0.926
Angular frequency ωg 2π· 50 rad/s 1
Voltage (phase-neutral, peak)

√
2/3 · 400 V 1

Converter
Rated current (peak)

√
2 · 18.3 A 1

DC-bus voltage udc 650 V 2
Sampling period Ts 125 µs

and grid-side inductance Lfg. The total grid-side inductance is
given by

Ls = Lfg + Lg (1)

where the grid inductance is Lg. Losses of the filter and the
grid are neglected. The resonance angular frequency of the
system

ωp =

√
Lfc + Ls

LfcLsCf
(2)

depends on the grid inductance Lg via the total grid-side
inductance Ls.

In synchronous dq-coordinates rotating at the grid angular
frequency ωg, the dynamics of the grid-side current are
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where x =
[
ic,uf , ig

]T
is the state vector.

B. Hold-Equivalent Discrete-Time Model

The plant model is converted to a hold-equivalent discrete-
time model. The PWM is modeled as the zero-order hold
(ZOH) in stationary coordinates. With the sampling period
Ts and the discrete-time index k, the hold-equivalent discrete-
time model is

x(k + 1) = Φx(k) + Γcuc(k) + Γgeg(k)

ig(k) = Cgx(k) (4)

ig,ref

isg
e−jϑg

u′c,ref

ig

us
c,ref

udc

LCL
AC-voltage
controller

Current
controller

igd,ref

igq,ref

us
g

esg

Lg

ϑg

ug

ejϑ
′
g

PLL

PWM

Fig. 2. Control system. The sampling is synchronized with the PWM.
The PCC-voltage angle ϑg is obtained using a PLL. The effect of the
computational delay on the voltage reference angle is compensated for in
the coordinate transformation using ϑ′g = ϑg + Tsωg.

where the system matrices are

Φ = eATs Γc =

(∫ Ts

0

eAτe−jωg(Ts−τ)dτ

)
Bc

Γg =

(∫ Ts

0

eAτdτ

)
Bg. (5)

The closed-form expressions of the matrices are given in [13].

C. System Parameters

The parameters of a 12.5-kVA converter system, given
in Table I, will be used in this paper. Two different grid
conditions are considered:
• Strong grid: Lg = 0 (SCR = 14);
• Very weak grid: Lg = 0.926 p.u. (SCR = 1).

The definition SCR = 1/Ls [p.u.], corresponding to [19], has
been used, i.e., the SCR values are defined at the capacitor
terminals of the LCL filter. Throughout the paper, the control
system is tuned assuming Lg = 0. Hence, the control system
sees the grid inductance as a parameter error.

III. CURRENT CONTROL DESIGN

Fig. 2 shows the overall block diagram of the control
system. The current controller operates in PCC-voltage co-
ordinates, where ug = ug + j0. The grid-side current is
measured for state-feedback control. The DC-link voltage udc
is measured for the PWM and the PCC voltage is measured for
the phase-locked loop (PLL) and for the AC-voltage controller.

Fig. 3 shows the observer-based current controller in more
detail. Based on the separation principle [18], the control de-
sign procedure is divided into two steps: 1) full-state feedback
control is designed assuming all the states are available; 2)
reduced-order observer is designed separately.

A. Full-State Feedback Control

One-sampling-period computational delay exists in standard
implementations. In stationary coordinates, the effect of the
computational delay on the voltage production can be modeled



as us
c(k) = u

s
c,ref(k−1), where us

c,ref is the voltage reference
for the PWM according to Fig. 2. Transforming this expression
to synchronous coordinates yields [13]

uc(k) = e−jωgTsuc,ref(k − 1) = u′c,ref(k − 1) (6)

where the modified voltage reference u′c,ref is defined to
simplify notation. The effect of the computational delay on
the angle of the converter voltage is compensated for in the
coordinate transformation, cf. Fig. 2. The extra state needed
for modeling the computational delay is included in (4) as

xd(k + 1) =

[
Φ Γc

0 0

]
︸ ︷︷ ︸

Φd

xd(k) +

[
0
1

]
︸︷︷︸
Γcd
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0

]
︸ ︷︷ ︸
Γgd

eg(k)

ig(k) =
[
Cg 0

]︸ ︷︷ ︸
Cgd

xd(k) (7)

where xd = [ic,uf , ig,uc]
T is the new state vector augmented

with the delayed voltage reference.
For improved disturbance rejection, the system model (7) is

also augmented with an integral state

xi(k + 1) = xi(k) + ig,ref(k)− ig(k) (8)

where ig,ref is the current reference. The augmented model is[
xd(k + 1)
xi(k + 1)

]
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eg(k)
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[
Cgd 0

]︸ ︷︷ ︸
Cga

xa(k) (9)

where xa is the augmented state vector and Φa, Γca, Γt, and
Γga, and Cga are the augmented system matrices.

The reference feedforward is used for improved reference-
tracking performance. In accordance with Fig. 3, the control
law is

u′c,ref(k) = ktig,ref(k) + kixi(k)−Kxd(k) (10)

where kt is the feedforward gain, ki is the integral gain, and
K =

[
k1,k2,k3,k4

]
is the state-feedback gain. From (9) and

(10), the closed-loop reference-tracking transfer function is

ig(z)

ig,ref(z)
= Cga(zI−Φa + ΓcaKa)

−1(ktΓca + Γt) (11)

where Ka =
[
K,−ki

]
is the augmented state-feedback gain.

The characteristic polynomial is

D(z) = det(zI−Φa + ΓcaKa). (12)

Let the desired closed-loop characteristic polynomial be

D(z) = (z − p1)(z − p2)(z − p3)(z − p4)(z − p5). (13)
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Fig. 3. State-feedback current control with a reduced-order observer. The true
state xd in (10) is replaced with the state estimate x̂d.

The gain Ka can be solved from (12) and (13) either analyt-
ically, as in [13], or using numerical tools.

The reference feedforward of the control system produces a
zero in the closed-loop transfer function (11). If the reference-
feedforward zero is to be placed at zt, the feedforward gain
becomes

kt = ki/(1− zt). (14)

The reference-feedforward zero can be used to cancel one of
the control poles.

B. Reduced-Order Observer

The presented scheme measures only the grid-side current
ig, cf. Fig. 3. To design the reduced-order observer, the state
vector x(k) is split into the unknown states x1(k) and the
measured state ig(k). The grid voltage is considered as an
unknown disturbance. The model (4) becomes[

x1(k + 1)
ig(k + 1)

]
=

[
Φ11 Φ12

Φ21 φ22

] [
x1(k)
ig(k)

]
+

[
Γc1

γc2

]
uc(k) (15)

where Φ11, Φ12, Φ21, and φ22 are submatrices of Φ and Γc1

and γc2 are submatrices of Γc. Only the two unknown states
x1 = [ic,uf ]

T are to be estimated. Therefore, the reduced-
order observer is formulated as [18]

x̂1(k) = Φ11x̂1(k − 1) + Φ12ig(k − 1) + Γc1uc(k − 1)

+ Ko[ig(k)− φ22ig(k − 1)

− γc2uc(k − 1)−Φ21x̂1(k − 1)] (16)

where Ko =
[
ko1,ko2

]T
is the observer gain. The character-

istic polynomial of the estimation-error dynamics is

Do(z) = det(zI−Φ11 + KoΦ21). (17)

Let the desired observer characteristic polynomial be

Do(z) = (z − po1)(z − po2). (18)

The gain Ko is solved from (17) and (18).
It is worth noticing that the whole control system is com-

paratively simple: first the state estimate is updated using (16)
and then the voltage reference is calculated using the control
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law (10). The closed-form expressions are available both for
the system matrices and for the gains.

C. Selection of Nominal Closed-Loop Poles
As shown in Fig. 4, the open-loop system (4) has three poles

located at

p1,2,ol = exp[−j(ωg ± ωp)Ts] p3,ol = exp(−jωgTs).
(19)

The computational delay and the integral action add two more
poles. All the five closed-loop poles can be arbitrarily placed
by means of full-state feedback. Based on the separation
principle, the control and observer poles can be considered
separately. The desired pole locations are discussed in the
following.

1) Control Poles: To simplify the tuning process, the de-
sired control pole locations are parametrized here as [13]

p1,2 = exp
[(
−ζr ± j

√
1− ζ2r

)
ωpTs

]
p3,4 = exp(−αcTs)

p5 = 0 (20)

where ζr and αc are the design parameters. The undamped
natural frequency ωp of the resonant pole pair is not altered,
but the damping ratio ζr can be set freely. The dominant
dynamics are determined by the pair p3,4 of double real poles.
The design parameter αc corresponds to the approximate
closed-loop bandwidth. The pole p5 originating from the
computational delay is not moved since it is already in the
optimal location. Fig. 4 shows the resulting control poles
for ζr = 1, giving a critically-damped system in nominal
conditions. The selection of ζr will be considered in more
detail in Section IV.

The reference-feedforward zero is placed at

zt = exp(−αcTs). (21)

Therefore, it cancels one of the control poles at p3,4.

2) Observer Poles: The observer poles should preferably
be placed at frequencies higher than the frequency of the
dominant control poles [18]. The observer pole locations are
parametrized as

po1,o2 = exp
[(
−ζo ± j

√
1− ζ2o

)
ωpTs

]
(22)

where the damping ratio ζo is the design parameter. Fig. 4
shows the resulting poles for ζo = 1, giving a pair of real
poles at the same location as p1,2.

IV. ROBUSTNESS ANALYSIS

The robustness of the observer-based current controller is
examined by calculating the eigenvalues of the closed-loop
system. The system shown in Fig. 3 is assumed, i.e., the outer
control loops are not taken into account. The parameters are
given in Table I.

Three parameters are needed for tuning the current con-
troller: αc, ζr, and ζo. The control system is tuned assuming
the strong grid, i.e., Lg = 0, which naturally means that
the actual closed-loop poles will move from their nominal
locations for any nonzero grid inductance Lg. In the following,
the stability of the control system is studied taking into account
nonzero Lg.

The following design parameters are first used: αc = 2π·400
rad/s and ζr = ζo = 1. Fig. 5(a) shows the loci of the closed-
loop poles as the grid-side inductance is increased in the range
Lg = 0 . . . 0.926 p.u., corresponding to the total grid-side
inductance in the range Ls = Lfg . . . 1 p.u. The green crosses
show the nominal pole locations, i.e. Lg = 0, corresponding
to Fig. 4. When the grid inductance increases, the poles move
toward the unit circle. The red crosses show the pole locations
for the very-weak-grid case, i.e., Ls = 1 p.u. All the poles
are still inside the unit circle, i.e., the system is stable from
nominal conditions to very-weak-grid conditions. The analysis
was repeated with different values for the nominal bandwidth
αc while ζr = ζo = 1; it was found out that the poles are
inside the unit circle if αc ≥ 2π · 46 rad/s.

Fig. 5(b) shows the loci of the closed-loop poles for the
very-weak-grid case (Ls = 1 p.u.), when the damping ratios
ζr = ζo are varied from 0 to 1. The system is stable if
ζr = ζo > 0.22. If the damping ratios are selected separately,
stability condition changes. For example, if ζr = 1 is selected,
ζo ≥ 0 provides stable operation. In this paper, the damping
ratios ζr = ζo = 1 are selected.

V. IMPLEMENTATION ASPECTS

A. Current Reference

The reference for the active-power-producing current com-
ponent is

igd,ref =
2

3

Pref

ug,ref
(23)

where ug,ref is the reference for the PCC voltage and Pref is
the reference for the active power.

An AC-voltage controller is necessary for operation in weak
grids [1], [4]. Here, an integral controller is used for simplicity.
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Fig. 5. Loci of the closed-loop poles: (a) total grid-side inductance is increased
in the range Ls = Lfg . . . 1 p.u. while ζr = ζo = 1; (b) nominal damping
ratios are increased in the range ζr = ζo = 0 . . . 1 while Ls = 1 p.u. The
nominal bandwidth is αc = 2π · 400 rad/s in both cases.

It gives the reference for the reactive-power-producing current
component

igq,ref(k) =
Tski,ac
z − 1

[ug,ref(k)− ug(k)] (24)

where ki,ac is the integral gain. The gain can be related to the
approximate bandwidth αac of the AC-voltage control loop
by means of a simple small-signal model, where the PLL
dynamics are omitted and ideal current control is assumed.
These assumptions lead to ki,ac = αac/(ωgLB), where LB is
the base inductance.

B. PLL

A simple PLL operating in synchronous coordinates is used
[20]. In weak grids, the PCC voltage varies with the grid
current. Therefore, a slow PLL should be used in order to

(a)

(b)

Fig. 6. Measured step responses of the active power and the corresponding
grid-side current components igd and igq: (a) strong grid, Lg ≈ 0; (b) very
weak grid, Ls ≈ 1 p.u. The same controller tuning based on Lg = 0 is used
in both cases.

avoid the coupling between the current control dynamics and
the PLL dynamics [2].

VI. EXPERIMENTAL RESULTS

The proposed control strategy is verified by means of
experiments. A 12.5-kVA 50-Hz grid-connected converter is
considered (Table I). The control method was implemented
on the dSPACE DS1006 processor board. The switching
frequency of the converter is 4 kHz and synchronous sampling
(twice per carrier) is used. The bandwidth of the AC-voltage
controller is αac = 2π ·10 rad/s and the bandwidth of the PLL
is 2π·2 rad/s. The PCC voltage reference is ug,ref = 1 p.u. The
design parameters of the current controller are αc = 2π · 400
rad/s and ζr = ζo = 1. The grid inductance Lg = 0 is assumed
in the control system.

Fig. 6(a) shows the measured active power response and
the corresponding grid-side current components igd and igq
in the strong-grid condition, when the active power reference
Pref is set with three successive steps (0.2 → 0.6 → 1 p.u.).
As expected, the response in this nominal case is critically



damped. Under these conditions, the bandwidth αc and the
sampling frequency could be freely chosen within the limits
coming from the Nyquist frequency and parameter accuracy.

Fig. 6(b) shows the measured active power response and the
corresponding grid-side current components igd and igq in the
very-weak-grid condition. It is worth mentioning that reactive
current is needed in order to keep the PCC voltage at 1 p.u.
It can be seen that the system remains stable even if the SCR
≈ 1. The same control system and parameters are used in both
cases.

VII. CONCLUSION

This paper presented a state-feedback current controller with
a reduced-order observer designed directly in the discrete-time
domain for a grid converter equipped with an LCL filter. Only
the grid-side current is measured for the current controller.
The control method does not require additional damping for
the resonance of the LCL filter. The controller provides stable
operation in the whole range of grid inductance variation from
strong-grid conditions to very weak-grid conditions. The de-
sign rules for the robust operation against the grid-impedance
variations are given. The proposed method is validated by
means of experiments.
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