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Abstract—This paper deals with a stator-flux-oriented con-
trol method for permanent-magnet (PM) synchronous motors
and synchronous reluctance motors (SyRMs). The stator-flux
magnitude and the torque-producing current component are
the controlled variables. This choice simplifies the references
calculation (as compared to the current control in rotor co-
ordinates), but the dynamics seen by the inner control loops
become nonlinear and coupled, potentially compromising the
control performance. We propose an exact input-output feedback
linearization structure and a systematic design procedure for the
stator-flux-oriented control method. Simulation and experimental
results are presented to verify the dynamic performance of the
designed controller using a 6.7-kW SyRM drive.

Index Terms—Input-output feedback linearization, nonlin-
ear control, stator-flux-oriented control, permanent-magnet syn-
chronous motor, synchronous reluctance motor.

I. INTRODUCTION

Synchronous reluctance motors (SyRMs) with or with-
out permanent magnets (PMs) provide high torque density,
good flux-weakening capability, and wide constant power
region. Under optimal control, these motors operate along
the maximum-torque-per-ampere (MTPA) locus, in the field-
weakening region, or at the maximum torque-per-volt (MTPV)
limit, depending on the operating speed and the torque refer-
ence.

Many control schemes are based on controlling the current
vector in rotor coordinates [1]–[3]. If the magnetic saturation
and the speed changes are omitted, the dynamics seen by the
current controller are linear and the closed-loop system can be
made comparatively robust [3]. The optimal current references
can be fetched from pre-computed look-up tables [2], [4]. In
addition to one-dimensional MTPA and MTPV tables, at least
one two-dimensional look-up table is typically needed.

In stator-flux-oriented control [5] and in its variant called
direct-flux vector control (DFVC) [6], [7], the stator-flux
magnitude and the torque-producing current component are
selected as the controlled variables. This choice simplifies
the reference calculation, since only the MTPA and MTPV
features have to be implemented, while no two-dimensional
look-up tables are needed. Typically, two separately tuned
proportional-integral (PI) controllers are used for controlling
the stator-flux magnitude and the torque-producing current
component [6]–[8]. Instead of controlling the torque-producing
current component, it is also possible to control the electro-
magnetic torque directly [9].
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Fig. 1. Rotor coordinates (dq) and stator-flux coordinates (ψτ ). Flux and
current components are depicted in both coordinates.

A drawback of these stator-flux-oriented schemes is that
the torque-producing current control loop becomes nonlinear
(even in the case of linear magnetics), which complicates the
tuning procedure. The control perfomance for constant gains
depends on the operating point due to the nonlinear dynamics.
To avoid an oscillatory response, the control design can be
performed for the worst case in a suboptimal manner [6].

In this paper, we develop a modified stator-flux-oriented
control method, using the methods in [5]–[7] as a starting
point. After presenting the motor model in rotor and stator-
flux coordinates in Section II, the control structure and the
main contributions are presented in Section III:

1) An exact input-output feedback linearization controller
structure is derived, yielding a completely decoupled
system;

2) A state-feedback controller with integral action and
reference feedforward is designed;

3) Design guidelines and tuning principles are presented;
4) The anti-windup mechanism is developed, taking into

account the nonlinear structure of the controller.

We will also show that the flux observer is not necessary,
even thought it can be useful in practice. To verify the
dynamic performance of the designed controller, simulations
and experiments are performed for a 6.7-kW SyRM drive and
the results are presented in Section IV.
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Fig. 2. Control system: (a) overall block diagram; (b) reference calculation. Vectors in stator coordinates are marked with the superscript s. In (b), one
look-up table gives ψmtpa corresponding to the MTPA locus and the other gives the maximum torque Tmax corresponding to the MTPV and current limits.
The maximum steady-state voltage umax is obtained from the DC-bus voltage udc. The factor ku defines the voltage margin.

II. MOTOR MODEL

A. Rotor Coordinates

A standard model for the synchronous motors is used,
expressed using real space vectors. As an example, the stator
flux linkage in rotor coordinates is denoted by ψ = [ψd, ψq]

T,
where ψd and ψq are the direct and quadrature components,
respectively. The stator voltage equation is

dψ

dt
= u−Ri− ωmJψ (1)

where u is the stator voltage, i is the stator current, R is
the stator resistance, ωm is the electrical angular speed of the
rotor, and J = [ 0 −1

1 0 ] is the orthogonal rotation matrix. The
stator flux is

ψ = Li+ψf (2)

The inductance matrix and the PM-flux vector, respectively,
are

L =

[
Ld 0
0 Lq

]
ψf =

[
ψf

0

]
(3)

where Ld is the d-axis inductance, Lq is the q-axis inductance,
and ψf is the flux linkage induced due to the PMs. If Ld = Lq,
the model represents the surface-mounted PM motor. If ψf =
0, the model of the SyRM is obtained. The electromagnetic
torque can be written as

T =
3p

2
iTJψ =

3p

2
(ψdiq − ψqid) (4)

where p is the number of pole pairs.

B. Stator-Flux Coordinates

Fig. 1 shows stator-flux coordinates (ψτ ), whose ψ-axis is
parallel to the stator flux. The vectors in these coordinates are
marked with the superscript f , e.g.,

ψf =

[
ψ
0

]
= e−δJψ if =

[
iψ
iτ

]
= e−δJi (5)

where δ is the angle of the stator flux vector in rotor coordi-
nates.1 Other vectors are transformed to stator-flux coordinates
similarly. In stator-flux coordinates, the torque expression (4)
reduces to

T =
3p

2
ψiτ (6)

As explained later, the reference calculation becomes simple,
if the stator flux linkage and the torque-producing current
component are used as the controlled state variables. These
variables are packed into a state vector

xf =

[
ψ
iτ

]
(7)

Using (1), (2), and (5), a nonlinear model with the desired
state variables is obtained [6]

dxf

dt
=

[
1 0

a/Ld b/Ld

](
uf −Rif − ωmJψ

f
)

(8)

where the factors are

a =
1

2

(
Ld

Lq
− 1

)
sin 2δ

b =
ψf

ψ
cos δ +

(
Ld

Lq
− 1

)
cos 2δ (9)

It is to be noted that b = 0 corresponds to the MTPV limit.

III. CONTROL DESIGN

A. Structure of the Control System

Fig. 2(a) shows the overall structure of the control system
considered in this paper. The measured current is transformed
to rotor coordinates using the electrical angular position ϑm of
the rotor. The voltage reference uref is transformed to stator
coordinates and fed to the pulse-width modulator (PWM).
The main focus of this paper is on the stator-flux-oriented
controller, which controls the state variables defined in (7).

1For brevity, the coordinate transformations are expressed using the matrix
exponential. The transformation can be written in different forms: exp(δJ) =[
cos δ − sin δ
sin δ cos δ

]
. The matrix elements are cos δ = ψd/ψ and sin δ = ψq/ψ,

where the flux magnitude is ψ = (ψ2
d + ψ2

q)1/2.
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Fig. 3. Stator-flux-oriented controller: (a) conventional method; (b) proposed
method. The nonlinear transformation matrix T = T (ψ) is given in (18).
Here, the flux observer operates in rotor coordinates, but stator coordinates
could be used as well. The compensation for the resistive voltage drop has
been omitted. The anti-windup is not shown in these figures.

This choice of the state variables is advantageous since
the optimal reference xf

ref = [ψref , iτ,ref ]
T is comparatively

easy to calculate from the torque reference Tref , measured
speed ωm, and measured DC-bus voltage udc. Fig. 2(b) shows
an example method for reference calculation. Due to its
feedforward nature, the dynamics of the inner control loop
remain intact and the noise content in the state references
is minor. The MTPA and MTPV tables can be computed
automatically, if the magnetic model of the motor is known [4].
Other similar reference calculation schemes are also available
[6], [7].

The reference calculation method in Fig. 2(b) can be used
together in current-controlled drives as well [1], [4]. However,
one or two additional two-dimensional look-up tables (de-
pending on the implementation) are needed for transforming
xf
ref to the corresponding optimal current reference iref . This

additional complexity is avoided in the stator-flux-oriented
control.

It is worth noticing that the MTPV limit as well as zero
stator-flux magnitude condition are singularities in stator-flux
oriented control. Therefore, some small margin (e.g. 5. . . 10%)
in the MTPV limit as well as some small minimum value
for ψref are needed in the implementation. In the case of the
current-controlled drives, these singularities do not exist.

B. Conventional Stator-Flux-Oriented Controller

Fig. 3(a) shows a conventional stator-flux-oriented controller
similar to [6], [7]. Its two key elements, a flux observer and

a proportional-integral (PI) controller are briefly reviewed in
the following. An ideal PWM inverter is assumed, u = uref .

1) Flux Observer: The stator-flux-oriented controller needs
an estimate of the stator flux ψ. The flux can be estimated
directly using the flux model (2) without any observer. Then,
the state vector xf is obtained using (5) and (7). An advantage
of this approach is that the order of the whole control system
is not increased due to the flux estimation and no additional
gains are needed.

Applying a flux observer is preferred in practice, since it
reduces the sensitivity to the errors in the magnetic model (2)
and to the measurement noise. If the drive is equipped with
a position sensor, the flux linkage can be estimated using a
simple state observer in rotor coordinates,

dψ̂

dt
= u−Ri− ωmJψ̂ +G(Li+ψf − ψ̂) (10)

where G is the observer gain matrix. Based on (1), (2), and
(10), the dynamics of the estimation error ψ̃ = ψ − ψ̂ are
governed by

dψ̃

dt
= − (ωmJ+G) ψ̃ (11)

Therefore, any desired closed-loop system matrix can be easily
set via the observer gain G. If a constant gain matrix G = gI
is used, the observer behaves as the voltage model at higher
speeds and as the flux model at low speeds [10]. The parameter
g defines the corner frequency (typically g = 2π · 15 . . . 30
rad/s). The flux observer (10) is presented here as an exam-
ple, but other flux observers could be used instead. Motion-
sensorless observers are reviewed in [11].

2) PI Controller: The voltage reference in rotor coordinates
is

uref = Ri+ ωmJψ + eδJvf (12)

The output of a proportional-integral (PI) controller is

vf =

(
Kp +

K i

s

)(
xf
ref − xf

)
(13)

where s = d/dt is used as the differential operator. The gain
matrices are

Kp =

[
kpψ 0
0 kpτ

]
K i =

[
kiψ 0
0 kiτ

]
(14)

where kpψ and kiψ are the gains for the flux channel and kpτ
and kiτ are the gains for the torque channel. The effect of the
compensation for the resistive voltage drop in (12) is small
and it can be omitted due to the integral action in (13). This
controller is illustrated in Fig. 3(a).

Typically, constant gains in (14) are used. As mentioned,
the motor model in (8) is nonlinear and the dynamics of iτ
depend strongly on b [6]. Therefore, the control response for
constant gains depends on the operating point.

C. Proposed Stator-Flux-Oriented Controller

Fig. 3(b) shows the proposed stator-flux-oriented controller,
which will be explained in the following. The same flux
observer as in the conventional method can be used.



1) Nonlinear State Feedback: We apply exact input-output
feedback linearization [12] to tackle the nonlinearity in the
model (8). Inserting the control law

uf = Rif + ωmJψ
f +

[
1 0
−a/b Ld/b

]
vf (15)

into (8) leads to a simple linear system

dxf

dt
= vf (16)

where vf is the transformed input vector, obtained from an
external linear controller to be designed in the following. Since
the voltage inputs uψ and uτ appear in the outputs ψ and iτ in
(5) after one differentation, the relative degree of both outputs
is one and the total relative degree is r = 2. The order of the
system is n = 2. Since n− r = 0, there are no zero dynamics
and the system is fully input-output linearizeable [12].

The voltage reference uref is obtained by transforming
the control law (15) from stator-flux coordinates to rotor
coordinates

uref = Ri+ ωmJψ + Tvf (17)

where
T = eδJ

[
1 0
−a/b Ld/b

]
(18)

This nonlinear transformation matrix includes both the coor-
dinate transformation and the feedback linearization.

2) Linear Controller: The relation (16) between the trans-
formed input and the output can be rewritten as

xf = vf/s (19)

A linear controller can be easily designed for the system (19).
A state-feedback controller with reference feedforward and
integral action is used,

vf =Ktx
f
ref +

K i

s

(
xf
ref − xf

)
−Kxf (20)

where Kt is the reference feedforward gain, K i is the integral
gain, and K is the state-feedback gain. The gains can be
selected as Kt = αI, K i = α2I, and K = 2αI, leading
to the first-order closed-loop response

xf =
α

s+ α
xf
ref (21)

where α is the bandwidth. If desired, the controller can be
easily modified such that the flux and torque channels have
different bandwidths. If desired, different linear controller
structures could be used instead. As an example, a simple
proportional controller suffices, if steady-state errors are ac-
ceptable.

3) Implementation Aspects: So far, we have assumed an
ideal inverter, u = uref . However, the inverter output voltage
is limited. Fig. 4 illustrates the maximum available voltage,
which corresponds to the border of the voltage hexagon. In
the first sector, the maximum voltage magnitude is [13]

umax =
udc√

3 sin(2π/3− ϑu)
(22)

us
ref

us
ref

ϑu

uα

uβ

udc√
3

Fig. 4. Voltage hexagon of a two-level PWM inverter in stator coordinates.

TABLE I
DATA OF THE 6.7-KW SYRM

Rated values
Phase voltage (peak value)

√
2/3·370 V 1.00 p.u.

Current (peak value)
√

2·15.5 A 1.00 p.u.
Frequency 105.8 Hz 1.00 p.u.
Speed 3175 r/min 1.00 p.u.
Torque 20.1 Nm 0.67 p.u.

Parameters at the rated operating point
d-axis inductance Ld 45.6 mH 2.20 p.u.
q-axis inductance Lq 6.84 mH 0.33 p.u.
Stator resistance R 0.55 Ω 0.04 p.u.
PM flux ψf 0 0

where ϑu = [0, π/3] is the angle of the voltage reference us
ref .

This equation can be easily applied in other sectors as well.
The realizable voltage reference can be calculated as

uref =

uref , if ‖uref‖ ≤ umax
uref

‖uref‖
umax, if ‖uref‖ > umax

(23)

The realizable voltage can be either calculated in the controller
using (22) and (23) or it can be obtained from the PWM.

In practice, the control system is implemented in a digital
computer. The PWM can be modeled as a zero-order hold
in stator coordinates. Furthermore, the control system has
typically a computational delay of one sampling period. Fig.
5 shows a discrete-time implementation, where the PWM and
computational delays are compensated for [3], [14] and the
inverter voltage saturation is taken into account by means of
an anti-windup mechanism based on the realizable voltage
reference [15].

IV. RESULTS

The conventional and proposed stator-flux-oriented control
schemes are evaluated using simulations and experiments.
The control system was implemented on a dSPACE DS1006
processor board. The studied motor is a transverse-laminated
6.7-kW four-pole SyRM, whose rated data are given in Table
I. The effects of the magnetic saturation are taken into account
in the control system by replacing the flux model in (2)
with an algebraic magnetic model [16]. A single-update PWM
is used and the sampling (switching) frequency is 5 kHz.
The stator currents and the DC-link voltage are measured
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Fig. 6. Simulation results for the conventional controller. Acceleration from
zero to the speed of 2 p.u. First subplot: actual speed and its reference. Second
subplot: controlled variables and their references. Third subplot: estimated flux
components. Last subplot: measured current components.

in synchronism with the PWM. The rotor speed is measured
using an incremental encoder. A servo induction machine is
used as a loading machine.

The control scheme shown in Fig. 2 is augmented with
a speed controller, which provides the torque reference Tref
based on the speed reference ωm,ref and the measured speed
ωm. The current limit is 1.5 p.u. Here, the results are only
shown for the stator-flux-oriented controller with the flux
observer (10). The variant without the observer performs

similarly, with the exception of slightly more noise in the
controlled variables.

A. Conventional Controller

A conventional stator-flux-oriented controller is considered.
The control structure shown in Fig. 5 is parametrized to equal
the conventional scheme: T = exp(δJ) and Kt =K =Kp.
The gains in (14) are: kpψ = 2500 rad/s, kiψ = 625 (rad/s)2,
kpτ = 12 · 103 V/A, and kiτ = 3000 V/(As). According to
[6], these gains correspond to the following best-case design
bandwidths: 2π · 400 rad/s for the flux channel and 2π · 75
rad/s for the current channel.

Fig. 6 shows the simulation results of an acceleration test,
where the speed reference is changed stepwise from 0 to 2
p.u. The large overshoot and oscillations can be seen in the
torque-producing current iτ after the speed reference changes
at t = 0.5 s. The control performance could be improved
by means of scheduling the controller gains as a function of
the operating point. However, the gain scheduling would be a
difficult and time-consuming process, if done by means of the
trial-and error method.

B. Proposed Controller

1) Acceleration Test: In the following, the bandwidth is
α = 2π · 100 rad/s. Fig. 7 shows results of the acceleration
test: the simulation results are shown in Fig. 7(a) and the
experimental results in Fig. 7(b). The controlled variables
follow their references according to the designed closed-loop
dynamics, cf. (21). It can also be seen that the experimental
results match very well with the simulation results.

2) Constant Speed Test: Fig. 8 shows the results when
the speed of the load drive is regulated at 0.5 p.u. and the
drive under test is controlled in the torque-control mode: the
simulation results are shown in Fig. 8(a) and the experimental
results in Fig. 8(b). The torque reference is stepped from zero
to the rated torque with increments of 25% of the rated torque.
The controlled variables follow properly their references. The
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Fig. 7. Acceleration from zero to the speed of 2 p.u.: (a) simulation results;
(b) experimental results. First subplot: actual speed and its reference. Second
subplot: controlled variables and their references. Third subplot: estimated
flux components. Last subplot: measured current components.

(a)

(b)

Fig. 8. Torque reference steps at the speed of 0.5 p.u.: (a) simulation results;
(b) experimental results. First subplot: reference and estimated torque T̂ =
(3/2)pψ̂iτ . Second subplot: reference and estimated states. Third subplot:
estimated flux components. Last subplot: measured current components.



estimated torque and the measured current components are
also shown.

V. CONCLUSIONS

We have presented a systematic design procedure for a
decoupled stator-flux-oriented control method for synchronous
motors. A comparison is presented between the conventional
and the proposed controller. Furthermore, we have shown
that the proposed method can be implemented without an
observer (but the observer typically improves the control
performance and robustness and is therefore recommended).
For implementation purposes, the discrete-time equivalent of
the proposed controller and anti-windup mechanism is also
presented. Further, the stator-flux-oriented control makes it
possible to use comparatively simple reference calculation
schemes. The performance of the proposed controller has been
verified using simulations and experiments on a 6.7-kW SyRM
drive.
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