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Spin-imbalanced Fermi superfluidity in a Hubbard model on a Lieb lattice
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We obtain a phase diagram of the spin-imbalanced Hubbard model on the Lieb lattice, which is known to
feature a flat band in its single-particle spectrum. Using the BCS mean-field theory for multiband systems, we
find a variety of superfluid phases with imbalance. In particular, we find four different types of FFLO phases, i.e.,
superfluid phases with periodic spatial modulation. They differ by the magnitude and direction of the center-of-
mass momentum of Cooper pairs. We also see a large region of stable Sarma phase, where the density imbalance
is associated with zero Cooper pair momentum. In the mechanism responsible for the formation of those phases,
the crucial role is played by the flat band, wherein particles can readjust their density at zero energy cost. The
multiorbital structure of the unit cell is found to stabilize the Sarma phase by allowing for a modulation of the
order parameter within a unit cell. We also study the effect of finite temperature and a lattice with staggered
hopping parameters on the behavior of these phases.
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I. INTRODUCTION

Electric and thermal conductivity in metals, as well as the
phenomenon of superconductivity are typically modeled by
motion of electrons in the field of a static crystal lattice, which
is often square or cubic (depending on dimensionality), or
there is no lattice at all. This simple picture was sufficient for
understanding, for example, low temperature superconductiv-
ity. To this end, a mean-field theory was devised, named after
the authors, the Bardeen-Cooper-Schrieffer theory (BCS) [1].
In the conventional superconductor with interactions through
s-wave scattering, the emerging two-body correlations can be
pictured as pairs of electrons with opposite spins and momenta
(Cooper pairs) [2] that develop an off-diagonal long-range
order at low temperatures. This pairing mechanism and its
developments lead to multiple new phases of matter, such
as conventional and unconventional superconductivity [3–5],
including topological superconductors [6]. The same pairing
mechanism explains unconventional superfluid phases in liq-
uid 3He [7]. Apart from Cooper pair formation, interacting
fermions may also be subject to Fermi surface (FS) instability
toward symmetry-breaking deformations of the FS, called the
Pomeranchuk instability [8].

Going beyond the standard square lattice in modeling
condensed matter phenomena adds to this variety of non-
trivial phases, in particular to exotic superfluidity. Among
such nontrivial superfluid phases, the Fulde-Ferrell-Larkin-
Ovchinnikov (FFLO) family of phases stands out, where the
pairing between two imbalanced spin components is possible
due to the Cooper pairs acquiring nonzero center-of-mass
momentum [9–11]; the mechanism can be pictured as a rel-
ative momentum shift of the noninteracting FSs of the two
spin components. Such a scenario was proposed by Fulde and
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Ferrell (FF) [9] and independently by Larkin and Ovchinnikov
(LO) [10] for systems in spatial continuum. In the first ansatz,
Cooper pairs have a single momentum, q, while in the second
both q and −q are possible. Both versions lead to a spatial,
periodic modulation of the order parameter, but the LO ansatz
is also characterized by a spatial variation of density. This
continuum model can, in principle, be realized with ultracold
Fermi gases, where the scattering length is appropriately
tuned. However, those predictions have been rather elusive,
supported only by indirect experimental evidence [12,13]. In
ultracold quantum gases, phase separation has been observed
instead of exotic spin-imbalanced superfluids [14–18], con-
sistently with predictions for continuum systems [19–22]. As
an alternative, a deformed FS superfludity [23,24] has been
proposed as giving a lower energy than the conventional BCS
theory.

The paradigmatic model of fermions in a lattice potential is
the Hubbard model [25], where fermions can interact only on-
site. In analogy to continuum systems, the attractive Hubbard
model supports the Cooper pair formation and the mean-field
BCS theory succeeds in explaining superfluidity [25], includ-
ing models with spin-orbit coupling [26,27]. Since the FS of
a Fermi gas in a square or cubic lattice loses its isotropy and
has a squarelike shape in two dimensions, especially close to
Van Hove singularities, it facilitates the FFLO pairing due to a
nesting effect [11], in which the pairing takes place where the
FSs, shifted by the momentum q, match. Therefore, relatively
significant regions with nonuniform superfluidity have been
found theoretically, both with the FF [28–32] and the LO [33]
ansatz. In the repulsive Hubbard model, superfluidity may
coexist with the magnetic stripe order as found by iPEPS [34]
and DMFT methods [35], or with Pomeranchuk instability as
in Refs. [36,37].

Another way in which the spin imbalance can be accom-
modated into superfluidity is the Sarma mechanism. It was
first proposed by Sarma as an unstable solution to the gap
equation [38] and then reintroduced by Liu and Wilczek at
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fixed chemical potentials, wherein the pairing takes place
between atoms on the FS of the minority component and
the atoms inside the Fermi sea of the majority component;
therefore, it is also known as the interior gap pairing [39].
However, at fixed chemical potentials, this phase turns out to
be unstable; this phase was theoretically found to be unstable
unless fully gapped in continuum [20,40]. Only later it was
realized [41–43] that for the stability of the Sarma phase fixed
densities or an external trapping potential are required. The
existence of a stable gapless superfluid was postulated also in
Ref. [44] via an effective theory in the vicinity of the phase
diagram splitting point. It was also found stable in a general
two-band model [45], in a lattice [28,29] at constant densities,
and recently in a mixed geometry lattice in Ref. [46]. A
method for the detection of the Sarma phase was proposed
in Ref. [47].

Including orbital degrees of freedom into a lattice, which
now has more than just one band in its spectrum, increases
the number of ways in which the pairing can take place [46].
Among these multiband systems, particularly interesting are
lattices that feature a flat band (FB) in their single-particle
spectrum [48–50]. Such a FB allows the atoms residing
therein to change their momentum distribution freely, i.e.,
with no energy cost. Thus, a large variety of configurations
is accessible for those atoms, and they may minimize their
energy more easily by developing pairing correlations. FBs
are known to enhance superfluidity, and they can also facilitate
nonuniform superfluid phases due to the interband pairing, as
recently reported in Ref. [51]. In this article, we consider one
such FB lattice, a Lieb lattice, which comprises three sites
in its unit cell, and we further develop the ideas introduced
in Ref. [51]. Such lattices have been experimentally real-
ized for ultracold gases [52,53], in designer lattices [54,55],
and localized FB states have been observed in optical ana-
logues [56,57].

In Sec. II, we present the studied model and the method
we use, in Sec. III we calculate the phase diagram for sym-
metric hoppings, and we identify a plethora of nontrivial
superfluid phases with spin imbalance. Thereafter, we focus
on mechanisms behind those phases: FF and η phases in
Sec. IV and Sarma phase in Sec. V. Finally, we show the
effect of temperature in Sec. VI and the effect of staggered,
nonsymmetric hopping in Sec. VII. We summarize our results
in Sec. VIII.

II. MODEL

We study a spin-imbalanced Fermi gas on the Lieb lattice,
which is described by the Hubbard model,

H =
∑

σ

∑
iα,jβ

ψ
†
iασHiα,jβψjβσ −

∑
σ

μσNσ + Hint, (1)

where the kinetic term, Hiα,jβ , describes the hopping between
neighboring sites, the on-site interaction term reads as

Hint = U
∑

iα

ψ
†
iα↑ψ

†
iα↓ψiα↓ψiα↑, (2)

and the particle number is given by Nσ = ∑
iα ψ

†
iασ ψiασ . The

Lieb lattice, shown in Fig. 1(a), has three sites in its unit

FIG. 1. (a) The Lieb lattice has three sites in the unit cell, which
may assume different values of density or order parameter for spin-
imbalanced superfluid phases. In Sec. VII, we consider hoppings J

x,y
±

that may have different values in different directions. (b) The band
structure of the lattice: There are three bands, two dispersive bands,
and a FB in the center. This band structure is symmetric with respect
to the zero energy plane, where the FB resides. The FB and the Van
Hove singularities give rise to a diverging density of states. If the
hoppings J

x,y
± are not all equal, a gap δgap opens, thus isolating the

FB.

cell (which we label as A, B, and C), that is spanned by
the lattice vectors ax and ay . The Latin indices, e.g., i, are
coordinates of the sites in space, while the Greek indices,
α, number the sublattices: A, B, or C. We include chemical
potentials, as we consider the grand-canonical ensemble. We
define the average chemical potential as μ = (μ↑ + μ↓)/2
and the effective magnetic field as h = (μ↑ − μ↓)/2. We also
allow for a dimerization of the bonds of the lattice in both
directions, which means alternating strong and weak hoppings
as shown in Fig. 1(a),

J
x,y
± = (1 ± δx,y )J. (3)

The parameters δx,y are called hopping staggering parameters.
We use the value of J as the unit of energy and the magnitude
of lattice vectors a = |ax | = |ay | as the unit of length wher-
ever units are not explicitly stated.

The spectrum of the noninteracting system, at U = 0, is
determined by a single-particle Hamiltonian. By performing a
Fourier transform

ψjασ = 1√
V

∑
k

ckασ eikj, (4)

where σ = ↑,↓; k = (kx, ky ) and V is the system’s volume,
and by collecting the fields as ψk = (ck,A↑, ck,B↑, ck,C↑)T ,
the noninteracting Hamiltonian has a compact from H =∑

k ψ
†
kHkψk, where

Hk = −2J

⎡
⎣ 0 s t

s∗ 0 0
t∗ 0 0

⎤
⎦, (5)

with s = cos kx

2 + iδx sin kx

2 and t = cos ky

2 + iδy sin ky

2 . The
noninteracting Hamiltonian gives the band structure: the FB,
ε(k) = 0, and two dispersive bands ε(k) =

±J
√

2
√

2 + (
1 − δ2

x

)
cos kxa + (

1 − δ2
y

)
cos kya + δ2

x + δ2
y,
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hereafter denoted as I-DB for the lower and II-DB for the
upper one. This band structure gives rise to two types of
singularities in the density of states, one corresponding to a
FB and the other to a diverging density of states in either of the
dispersive bands (Van Hove singularities at ε = ±2 J ). When
either of δx,y is nonzero, there is a band gap in the single-
particle energy spectrum on both sides of the FB, whose width
is given by

δgap = 2J

√
δ2
x + δ2

y. (6)

When the hopping dimerization parameters are set to zero,
δx,y = 0, the gap closes. The first Brillouin zone has three
types of high symmetry points: a � point at k = (0, 0), an
M point at k = (±π,±π ), and two types of X points at k =
(0,±π ) or (±π, 0). The band structure is shown in Fig. 1(b).

We treat the interaction with a mean-field method, intro-
ducing a BCS pairing field �iα = U 〈ψiα↓ψiα↑〉. The system
is at finite temperature, and we calculate the averages over the
grand-canonical ensemble, i.e., 〈O〉 = Tr [Oe−βH ]/Tr e−βH ,
with β = (kT )−1 the inverse temperature and k the Boltzmann
constant. With these definitions, the interaction becomes a
quadratic function of the fermionic fields,

Hint =
∑

iα

�iαψ
†
iα↑ψ

†
iα↓ + H.c. − 1

U

∑
iα

|�iα|2. (7)

We make the FF ansatz for the order parameters, �iα =
�αei q i, where the vector q plays a role of the center-of-
mass momentum of Cooper pairs (the FF momentum). Upon
performing a Fourier transform Eq. (4) and collecting the
fields into a Nambu spinor,

�k = (ck,A↑, ck,B↑, ck,C↑, c
†
q−k,A↓, c

†
q−k,B↓, c

†
q−k,C↓)T ,

the mean-field Hamiltonian becomes

HFF =
∑

k

[
�

†
kHBdG�k − 3μ↓ − 1

U
Tr �†�

]
, (8)

with the Bogoliubov-de Gennes (BdG) Hamiltonian conve-
niently defined as

HBdG =
[
Hk − μ↑ �

�† −H−k+q + μ↓

]
. (9)

The order parameters are collected into a matrix as (�)αβ =
δαβ�α (no summation).

Next, we can transform the fields to the noninteracting
band basis, defined as G†

kσHkσGkσ = εkσ , which gives[
dk↑

d†
q−k↓

]
=

[
G†

k↑ 0

0 G†
q−k↓

]
�k. (10)

The operators (dk↑, d†
q−k↓)T correspond to particles in differ-

ent bands. Now we perform a further unitary transformation
to a quasiparticle basis, (γk,q↑, γ

†
k,q↓)T ,[

γk,q↑
γ
†
k,q↓

]
=

[
Uk,q −V

†
k,q

Vk,q U
†
k,q

][
dk↑

d†
q−k↓

]
,

which diagonalizes the full BdG Hamiltonian, HBdG. The
transformation matrix retains its particle-hole symmetric

structure, as the imbalance, h, commutes with the BdG Hamil-
tonian, HBdG. The diagonalized Hamiltonian reads

HFF =
∑

k

(γ †
k,q↑Ek,q↑γk,q↑ + γ

†
k,q↓Ek,q↓γk,q↓) + E, (11)

where Ek,q σ are numerically calculated diagonal matrices of
the quasi-particle energies, and the energy offset reads as

E = −
∑

k

(
3μ↓ + 1

U
Tr �†� + Tr Ek,q↓

)
. (12)

We look for the global minima of the thermodynamic
potential,

� = − 1

Vβ
ln Tr e−βHFF ,

which determines the stable phases of the system. In the BCS
theory, the thermodynamic potential can be calculated as

� = − 1

Vβ

∑
k,σ

Tr ln(1 + e−β Ek,qσ ) + E
V

. (13)

We independently minimize it with respect to all components
of � and q.

Since the FF ansatz we use limits the possible momentum
of Cooper pairs to only one value, q, we return to the original
formulation in real space to also minimize the original Hamil-
tonian in Eq. (1) with the mean-field interaction Hint given by
Eq. (7). This corresponds to including an arbitrary number of
possible Cooper pair momenta. To this end, we minimize the
energy,

H =
∑
iα,jβ

�
†
iα

[
Hiα,jβ − μ↑ �iα,jβ

�
†
iα,jβ −Hiα,jβ + μ↓

]
�jβ + Er ,

with the space-dependent spinor �iα = (ψiα↑, ψ
†
iα↓)T , and

Er = −∑
iα |�iα|2/U − V μ↓, that, at T = 0, can be calcu-

lated as

〈E〉 =
∑
Eη<0

Eη − 1

U

∑
iα

|�iα|2 − V μ↓.

We diagonalize the BdG Hamiltonian in real space,

∑
jβ

[
Hiα,jβ − μ↑ − Eη �iα,jβ

�
†
iα,jβ −Hiα,jβ + μ↓ − Eη

][
uη; jβ

vη; jβ

]
=0,

(14a)

where the order parameter is now collected into a matrix as
�iα,jβ = δijδαβ�iα (no summation), self-consistently with the
gap equation,

�iα = U
∑

η

f (Eη, β ) uη; iα v∗
η; iα. (14b)

The function f (ε, β ) = (1 + exp(βε))−1 is the Fermi-
Dirac distribution function. The densities are calculated as

n↑iα =
∑

η

f (Eη, β ) |uη; iα|2 ,

n↓iα =
∑

η

f (−Eη, β ) |vη; iα|2 .
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FIG. 2. Phase diagram at U = −4J and βJ = 10 around the
intersection of the Van Hove and the FB singularity lines. The
area around this intersection features enhanced superfluidity and a
region with nontrivial superfluid phases, wherein we can identify
the following phases: FF-II with the FF momentum q directed
along the diagonal of the unit cell, η-II where the momentum q
saturates at the M = (π, π ) point of the Brillouin zone, η-I where
q saturates at the X = (π, 0) point, and a Sarma phase (S), where the
spin imbalance is present but no relative shift of the two FSs. Solid
and dashed lines mark first order and continuous phase transitions,
respectively. In the panels on the right-hand side, the value of the
three components of the order parameter, �, are plotted. In the
η-II and Sarma phases �A = 0, while in the η-I phase �B = 0.
The order parameters close to the steep right-hand side boundary
of the imbalanced superfluidity lobe are small and go to zero as
we approach the continuous phase transition to the normal phase;
therefore, at this boundary, there is visible numerical noise.

The real space solution of the mean-field equations should
converge to the results calculated in momentum space as the
lattice size becomes large.

III. PHASE DIAGRAMS

We start with a nondimerized lattice δx,y = 0, and study
the possible phases as a function of μ and h. To this end, we
minimize the thermodynamic potential Eq. (13) by both (1)
solving the gap equation

δ�

δ�† = 0,
δ�

δq
= 0 (15)

and (2) by simplex minimization with the Nelder-Mead al-
gorithm to make sure we find the global minimum in the
multidimensional landscape of �(�, q); in principle, Eq. (15)
identifies only a stationary point.

The resulting phase diagram is shown in Fig. 2, for U =
−4 J . Since the band structure of the Lieb lattice is symmetric
with respect to reflection by the ε = 0 plane, it has a particle-
hole symmetry. This symmetry, together with the symmetry of
renaming the spin species, manifests itself in a phase diagram
as symmetry with respect to transformation: μ → −μ and
h → −h. Therefore, it is sufficient to consider only one
quarter of the phase diagram, here μ � 0 and h � 0. We focus
on the region around the crossing of the FB and Van Hove
singularity lines, wherein we expect the nontrivial superfluid

phases to be favored. Indeed, apart from the BCS phase for
low chemical potential imbalance, we find a region with a
plethora of nontrivial superfluid phases. As already reported
in Ref. [51], above the BCS region we find the FF phase,
whose momentum q grows with a growing imbalance until
it saturates at the edge of the Brillouin zone (M point in this
case), where the phase is called the η-phase. In the η phase,
the modulation of the order parameter is twice the periodicity
of the lattice. In general, we find two types of the FF and η

phases which differ by the direction of the momentum q. The
FF and η phases where q is directed along one of the lattice
vectors (ax in our case) will be called FF-I and η-I phases,
respectively. The other direction of q is along the diagonal
of the unit cell ((ax + ay )/

√
2), and respective phases will be

called FF-II and η-II. In the phase diagram of Fig. 2, the FF-I
phase is not present, but it can be found for lower interactions,
see Figs. 4(a) and 4(b) for U = −3 J and U = −3.5 J .

The mechanical stability of the phases requires the inverse
compressibility matrix ∝ ∂μi/∂nj to be positive definite.
We checked numerically that this is indeed the case for the
imbalanced superfluid phases (FF, η and Sarma phase) from
Fig. 2; these phases are stable against phase separation. For
the BCS phase, one can present a simple analytical argument:
within this phase the magnetization identically vanishes,
m(μ↑, μ↓) ≡ 0, and therefore ∂m/∂μ↑ = ∂m/∂μ↓ = 0 and
(κ )ij = ∂ni/∂μj can be written as

κBCS = 1

4

[
(∂μ + ∂h)n (∂μ − ∂h)n

(∂μ + ∂h)n (∂μ − ∂h)n

]
,

with n being the total density, and ∂μ = ∂/∂μ, ∂h = ∂/∂h.
The rank of the above matrix is clearly rk κ = 1; therefore,
within the BCS phase the eigenvalues of κ are 1

2∂n/∂μ and
zero, reflecting the incompressible (gapped) spin mode of the
BCS state.

The area in the phase diagram of generic FF phases shrinks
with increasing interaction (in magnitude), while the corre-
sponding η phases grow in size. Also, the relative area of the
Sarma phase grows with interaction, as predicted by energy
estimation in Ref. [39]. We specifically checked that these
phases correspond to global minima of �(q). For example,
the η-I and η-II phases in Fig. 2 correspond to different
global minima, and the phase transition between them is
discontinuous. On the other hand, the transition between the
FF-II phase and the η-II phase is continuous, and the vector
q smoothly grows until it reaches its maximum value. The
phase transitions from the BCS phase to the FF and η phases
are first order, as are the transitions to the normal phase, apart
from the steep right-hand-side boundary of the imbalanced
superfluidity lobe, where the transition is continuous. Figure 3
shows the thermodynamic potential as a function of q for the
FF-II phase, where it is minimized by q = (π ± q0, π ± q0)
and for the η-I phase, minimized by q = (π, 0) or (0, π ).

For larger imbalances of chemical potentials, h, we find a
stable Sarma phase, which is characterized by an imbalance
in densities of the two spin components, but accomodated
in such a way, that the order parameter remains spatially
uniform, i.e., q = 0. This is in contrast to other works, where
the existence of a stable Sarma phase required fixed densities
(canonical ensemble). The phase transition between the η-II
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FIG. 3. Thermodynamic potential, �(q), as a function of the FF
momentum q at (a) μ = 1.4 J and h = 0.9 J , which is minimized
by the FF-II phase and at (b) μ = 0.8 J and h = 1.05 J , which is
minimized by the η-I phase.

and Sarma phases is discontinuous, as it involves an abrupt
jump in the magnitude of q.

IV. FULDE-FERRELL AND η PHASES

The FF-II phase in the phase diagram in Fig. 2 is character-
ized by a momentum q, which is diagonal with respect to the
unit cell of the lattice, that is qx = qy �= 0. This momentum
grows with increasing chemical potential imbalance h until it
reaches the M point of the Brillouin zone and remains there
when h is further increased. This phase with momentum q
saturated to its maximum value is the η-phase.

Remarkably, we find two different types of FF phases:
FF-I and FF-II, and two types of η phases: η-I and η-II; for
different values of chemical potentials different directions of
the FF vector minimize the thermodynamic potential �(q).
In the η-I phase the center-of-mass momentum of Cooper
pairs, q, is parallel to one of the lattice vectors, in this case ax

(which is a degenerate choice with one for q in the direction
of ay). This phase occupies a relatively small corner of the
phase diagram. As schematically shown in Fig. 4(c), the order
parameter at site B, i.e., the site neighboring the central site A
in the direction of the momentum q (x direction), is zero. The
order parameter for sites A and C changes sign every time we
translate it by the lattice vector ax . Thus, the modulation of
the order parameter has a period twice that of the lattice, see
Fig. 4(c).

In the η-II phase, the FF momentum is in the direction of
the diagonal of a unit cell; it extends between the � and M

points. In this case, it is the A site that supports zero order
parameter, �A = 0, and for sites B and C the order parameter
is equal in magnitude, |�B | = |�C |. There is a degeneracy
of sign of the order parameter at these sites. We may fix it
to be the same within a given unit cell, and this sign will
change as we translate by either of the lattice vectors, ax or
ay . Thus, the sign of the nonzero order parameter may assume
a chessboard-like pattern, see Fig. 4(d).

In Fig. 3, we explicitly show the thermodynamic potential
as a function of q for two cases: the FF-II phase where the
momentum q is diagonal with respect to the unit cell and the
η-I phase, where q has only one nonvanishing component.
Clearly, for those values of momentum, the quantity �(q)
attains its global minimum. The phase transition between
the η-I and η-II phases is of the first order, as can be

seen from Fig. 5(a); as we cross between η-I and η-II, the
global minimum of the thermodynamic potential initially cor-
responding to q = (π, 0) is surpassed by the local minimum
at q = (π, π ), which then becomes the new global minimum.
In addition, there is a jump of both a total density and a
polarization, n↑ − n↓, as we cross the phase boundary. The
phase transition between the FF-II phase and η-II phase is,
on the other hand, continuous. The FF momentum q grows
continuously from having equal values in one of the four
degenerate minima around (π, π ) until it reaches a critical
point with a single minimum at the M point, see Fig. 5(b). As
expected, no jump in density or polarization is present. The
FF-I phase, where the vector q is parallel to one of the lattice
vectors, but remains inside the Brillouin zone, is present for
smaller (in magnitude) values of interaction, see Figs. 4(a) and
4(b), but vanishes already at U = −4 J .

The reason behind such a rich phase diagram of FF-type
phases is the presence of a FB, where particle density can
reorganize without energy cost and therefore contribute to
pairing with greater flexibility. In the FF and η-II phases,
the density distribution of the minority component in the
FB mimics the distribution of the majority component in the
II-DB, as was already reported in Ref. [51]. This allows for
an interband pairing, i.e., pairing between atoms residing in
different bands, the FB and II-DB in our example.

Intraband pairing between particles within the same dis-
persive band is also possible. The extra atoms, which do not
contribute to the pairing, remain in a normal state, forming a
sharp FS. The density of this normal gas is constant and equal
to

n↑(k) − n↓(k) = 1, (16)

which, after integration, reads N↑ − N↓ = Vol/4π2, in accor-
dance with the Luttinger theorem [11], which states that the
number of states enclosed by the FS (Vol) does not change
when the interactions are present. Within the region delimited
by this FS, there is the intraband pairing of atoms within the
II-DB. This mechanism can be understood from the calcula-
tion of the band-resolved correlations, C

n,m
k,q = 〈dn k↑dm q−k↓〉,

wherein we can discern between the two most significant
contributions to the pairing: the interband pairing between
atoms in the FB and II-DB and the intraband pairing within
the II-DB, as plotted in Fig. 6(a) for the η-II phase.

In the case of the generic FF phases, there is a relative mo-
mentum shift of the two FSs. Together with the deformation
of the FS of the majority species, especially in the region of
the other FS, it enhances the pairing in a similar way to the
nesting effect in the square lattice FFLO mechanism. In our
case, it contributes to the intraband pairing in the II-DB. In
the interacting system, this deformed FS can be seen in the
distribution of the noninteractng gas formed by the excess
particles, but it also leaves its imprint on the momentum
distribution of the paired particles and on correlations. For
plots of relevant correlations and densities, see Ref. [51].
There, we also showed how the deformation of the majority
FS augments as one approaches the FB singularity, where the
FS loses its continuity (and the minority FS disappears).

There is also a possibility of a pairing between two dis-
persive bands, I-DB and II-DB. This happens when both
chemical potentials are away from the FB, which therefore
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FIG. 4. Phase diagrams for interactions: (a) U = −3 J and (b) U = −3.5 J . Unlike in Fig. 2, there is visible FF-I phase. Also, with
decreasing interaction strength, the region with imbalanced superfluidity shrinks until it disappears completely. In panels (c) and (d), we show
the configurations the order parameter assumes in the η-I and η-II phases, respectively.

does not contribute to the pairing. Around the crossing of the
two Van Hove singularities, at μ↑↓ = ±2 J (or μ = 0 and
h = 2 J ), there is a small region with the η-II phase, where
the pairing comes virtually exclusively from the correlations
between I-DB and II-DB, see Fig. 6(b). Since the FS around
the Van Hove singularity assumes a particular square shape,
the momentum shift of q = (π, π ) maximizes the overlap
between the two densities, because the density of the minority
component fills the inner region delimited by such FS and the
majority component fills the outer region.

V. SARMA PHASE

When the chemical potential imbalance, h, is increased,
μ↓ decreases and approaches the FB, while μ↑ grows. For
the noninteracting system, it means a very low occupation
of the II-DB for the minority component, which fills it only
in small corners around the M point, whereas the majority

0. π/2 π 3π/2
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−

Ω
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/J
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Ω
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)/

J
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h =0.94

h =0.96

(a) (b)

FIG. 5. (a) The thermodynamic potential as it changes across
the η-I and η-II phases. At the transition point, the minimum for
the parallel q vector goes below that for the diagonal q vector. The
η-I phase becomes stable and the transition is clearly discontinuous.
(b) The thermodynamic potential across the FF and η-II phases as
a function of q = |q|. The FF wave vector for which the minimum
is attained converges continuously to π , and the double-well shape
of the thermodynamic potential suggests a Landau mechanism of a
continuous phase transition.

component fills most of the II-DB save a small region around
the � point. Thus, as we leave the η phase by increasing the
imbalance, it becomes energetically favorable for the system
to switch to a pairing mechanism that does not involve either
a momentum shift of the FSs or their deformation. Instead,
almost all the pairing comes from the correlations between
the FB and the II-DB. The correlations between particles in
different bands are plotted in Fig. 7(c), while crossections
of cumulative density profiles in Fig. 7(d). Like in the FF
and η phases, the pairing is manifested by matching density
profiles, whereas the normal gas, which does not take part
in the pairing, shifts the density of the majority component
by n↑ − n↓ = 1 wherever the unpaired particles are present.
The presence of a normal gas is also reflected in the gap
closing in the quasiparticle energy spectrum around the M

point. This mechanism resembles the so-called interior gap

↑,
I-

D
B

↓, I-DB ↓, FB ↓, II-DB

↑,
F
B

↑,
II

-D
B

↓, I-DB ↓, FB ↓, II-DB

0.0 0.5

kx

ky

(a) (b)

FIG. 6. Pairing between various bands for the η-II phase in panel
(a) and the small η-II region for μ = 0 and h = 2 J in panel (b), see
text. In (a) we can separate two contributions to the pairing: an in-
terband pairing between the FB and II-DB and an intraband pairing,
mostly within the II-DB. There is also a visible trace of deformation
of the majority FS. In (b), the pairing is between particles of opposite
spins residing on two different dispersive bands: I-DB and II-DB.
The two FSs are identical, as they are formed at μ↑↓ = ±2 J . They
are far away from the FB, which does not contribute to the pairing in
this case.
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FIG. 7. (a) In the Sarma phase, the order parameter at the central
site is zero, �A = 0, while it takes opposite but equal magnitude
values at sites B and C, �B = −�C . In panel (b), we show the
dependence of � on the order parameters at fixed μ as the imbalance
h is being increased across the transition between the η-II phase
and the Sarma phase. While the thermodynamic potential is always
minimized by �A = 0, its symmetry with respect to �B changes
from a symmetric function to a single minimum function. In this
way, the sign of �B is determined as opposite to �C . This intracell
modulation of the order parameter allows for the existence of the
stable Sarma phase. In (c), we plot the band resolved correlations,
〈dαk↑dβq−k↓〉, which show that the main contribution comes from the
pairing between majority atoms in the II-DB and minority atoms
in the FB (color scale as in Fig. 6). (d) Cumulative densities for
majority and minority components along the high symmetry lines:
�–M–X–�. There is a clear matching of the density profiles where
the interband pairing takes place, accompanied by a jump in densities
n↑ − n↓ = 1, in accordance with the Luttinger theorem. Around the
M point (corners of the BZ) the densities are equal.

pairing, known also as the Sarma phase. In its original form, it
is a pairing between the atoms in the vicinity of the minority
FS and atoms of opposite momenta from inside of the majority
Fermi sea. In our case, it is the pairing between the FB and the
dispersive band, but like in the original works by Sarma [38]
and by Liu and Wilczek [39], no momentum shift is involved.

An important question in relation to this phase is its
stability. Fig. 7(b) shows the thermodynamic potential as a
function of order parameters �A and �B as we cross from
the η phase to the Sarma phase. The global minimum of the
thermodynamic potential yields a non-zero order parameter
and a finite spin imbalance. The initial degeneracy of sign for
�B an �C in the η phase (we had �B = ±�C) is replaced
by a configuration, where �B and �C have opposite signs.
The central site of the unit cell assumes �A = 0, like in

−1.5

−1.2

−0.9

−0.6

−0.3

0.0

0.3

0.6

0.9

1.2

1.5(a) (b)

FIG. 8. Real space configuration of the order parameter �iα

obtained as a solution to Eq. (14). In (a), an eta-II phase is obtained
for μ = 1.4 J and h = 1.05 J , and in (b) the solution converges
to Sarma phase at μ = 1.4 J and h = 1.3 J . The shown central
fragment comes from the simulation on a 32 × 32 lattice.

the η-II phase. This explains the existence and stability of
the Sarma phase in our multiband model: due to a unit cell
composed of more than one site, an intracell modulation
of the order parameter is possible, leading to a stable spin-
imbalanced superfluid phase which does not involve a finite
FF momentum (modulation across different unit cells). It is
thus the nonuniformity within the unit cell that allows for the
Sarma phase, see Fig. 7(a).

Finally, we confirm the existence of the previously men-
tioned phases by converging the set of Eqs. (14) on a 32 × 32
lattice. In Fig. 8, the order parameters for the η-II phase and
the Sarma phase are shown. In case of the Sarma phase, there
is a clear alteration of the sign of the order parameter at sites
B and C, while site A supports �A = 0. Insofar as the η phase
is concerned, the order parameter’s pattern also conforms to
our predictions, with some defects being evidently visible,
however. This might be a result of higher degeneracy of
the sign choice in the η phase and of the open boundary
conditions we employed. It is important to note that the
real-space computation may favor a different type of FFLO
ansatz, such as the LO ansatz. In fact, we observe a spatial
density modulation (not shown here), which accompanies the
variation of the order parameter.

VI. TEMPERATURE DEPENDENCE

Next, we turn to the temperature dependence of the phase
diagram. In Fig. 9, we show the phase diagram plotted against
the temperature and chemical potential as we move along the
FB singularity line, μ = h. This choice has been made be-
cause the superfluidity enhancement and nontrivial superfluid
phases with spin imbalance occur in the vicinity of this line.

It is clear that with growing temperature, the area where
we may observe nontrivial superfluid phases, such as FF, η or
Sarma phase, shrinks. This region disappears already at lower
temperatures than the BCS lobe. At higher temperatures,
where the BCS lobe already occupies a small region in the
μ – h phase diagram, there is visible spin imbalance (shown
as color intensity in Fig. 9), for, at high temperatures, single-
particle excitations are allowed. The Berezinskii-Kosterlitz-
Thouless temperature for superfluids in two dimensions is
smaller than the BCS one, but can also be of the same order
of magnitude [49,50,58,59].
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FIG. 9. Temperature dependence of the phase diagram at interac-
tion U = −4 J . The phase diagram is plotted against the temperature
kT /J and chemical potential μ/J along the FB singularity line μ =
h. Color intensity denotes the polarization (apart from the normal
phase), and lines show the detected phase boundaries.

VII. STAGGERED HOPPINGS

Finally, we reintroduce the lattice dimerization parameters
δx,y . First, we consider staggering only in one direction: δx �=
0, while δy = 0. In this case, with growing asymmetry, the two
directions are no longer eqivalent, and this takes effect on the
FF momentum, q. In Fig. 10(a), we show what happens to the
BCS solution at μ = 0.8 J and h = 0.8 J when the asymme-
try is switched on and increased. Since the B and C sites are
not equivalent anymore, there is no reason to expect the order
parameters |�B | and |�C | to be equal. Indeed, with growing
δx the initial degeneracy is removed. This is associated with
a density imbalance; therefore, as a consequence of growing
asymmetry, the system enters a Sarma phase for fixed values
of chemical potentials.

The effect of hopping asymmetry for the Sarma phase,
initially present at μ = 1.4 J and h = 1.3 J , is shown in
Fig. 10(b). Here, the effect is even more dramatic: not only
the magnitudes of the order parameters start diverting from
one another, but at a certain δx a non-zero FF momentum
appears, growing as the staggering parameter is increased. It
is not surprising that it is the qy component that assumes a
non-zero value, since the system becomes weakly coupled in
the x direction when the staggering in on, which effectively,
gradually reduces its dimesion to one. As seen in Figs. 10(c)
and 10(d) the thermodynamic potential, �(q), becomes in-
dependent of qy for large enough values of δx . At δx ≈ 0.7
[see Fig. 10(d)], the momentum qy reaches the value qy = π

and the sytem enters the η-I phase. Finally, at values of the
staggering close to δx ≈ 1 we have a collection of independent
one-dimensional wires.

When both staggering parameters are set to nonzero values,
the scenario is similar save the fact that no direction for q is
now preferred. However, since now as the system becomes
decoupled, it approaches a collection of disconnected unit
cells, for which the mean-field theory loses its sense, and the
system should be rather described at a level of single-particle
physics.
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n↓
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δx

qx

qy
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π/2

π

q x
,
q y
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(c) (d)

FIG. 10. Order parameters (solid lines with markers), densities
(dashed lines) and FF momentum components (dashed lines with
markers) of (a) the BCS phase (μ = 0.8 J and h = 0.8 J ) and (b) the
Sarma phase (μ = 1.4 J and h = 1.3 J ), as the staggering parameter
δx is increased, while δy = 0. The nature of the phase can change
with growing staggering of the hoppings, as detailed in the text.
(c), (d) Thermodynamic potential, �(q), as a function of q for a
dimerized lattice at μ = 1.4 J and h = 1.3 J , corresponding to the
Sarma phase. With growing dimerization in the x direction (δy = 0),
the initial configuration favoring the Sarma phase at δx = 0.3 (c)
turns into one whose minimum does not depend on qx , here δx =
0.7 (d).

VIII. CONCLUSIONS AND PROSPECTS

In conclusion, we studied superfluid phases of the Hubbard
model with spin imbalance on a Lieb lattice. We found that if
one of the chemical potentials is in the vicinity of a FB, a spin-
imbalanced superfluidity is possible. By considering a mean-
field BCS theory and a FF ansatz for the order parameter,
we found four types of phases with spatial modulation of
the order parameter and a Sarma phase, where the density
imbalance does not require a spatial modulation. By studying
spin-resolved correlations, we discover that the mechanism re-
sponsible for these effects involves pairing between different
particles in different bands of the system: a FB, where the
atoms can readjust their momentum space density with no
energy cost, and dispersive bands. On the one hand, such a
flexibility allows for the observed variety of the imbalanced
superfluid phases, especially the FF and η phases with spatial
modulation of the order parameter. On the other hand, the
multiorbital structure of the unit cell allows for the modulation
of the order parameter within the unit cell, which in turn stabi-
lizes the Sarma phase. We also considered the effects of finite
temperature on the discovered phases. Finally, we assumed
the staggered form of hopping between the neighboring sites,
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and we concluded that such dimerized hopping can change the
phase of the system.

In summary, the Lieb lattice offers an astonishing richness
already at the mean-field level, and certainly deserves further
study, especially that ultracold Fermi gases offer the possibil-
ity of immediate realization of our predictions. Lieb lattice
geometry has been realized in optical lattices [52,53] and
novel techniques such as digital mirror devices or holograms
[60–62] permit further experiments with lattices with complex
unit cells.
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